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CILSPA
Location Privacy

e 4 spatial-temporal points can identity 95% of the individuals
e Mobility traces can be effectively de-anonymized
* You are where you go

e Demographics

e Social relations



CLSPA
Social Relation Privacy

e Social relations can be sensitive, e.g., office romance

e 17.2% -> 56.2% (Facebook users in New York)

e NSA’s co-traveler program
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Predict whether two users are friends based on the
locations they have visited
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e Solution 1: common locations two users have visited
e Almost all data mining approaches take this way
e | ocation entropy

e Can’t work when two users share no common locations




e Solution 2: mobility profiles/features
e Summarize each user’s mobility profiles
e Friends share similar mobility profiles than strangers
e Feature engineering

e Jedious efforts and domain expert knowledge
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Representation Learning

e | earning features (representation/deep learning)
e Follow a general object (unsupervised)
e Graph representation learning (graph embedding)
e Preserve each user’s neighbors in a social network

e Mobility feature learning



Assumption: A user’simobility neighbors jcan reflect his
mobility profile/features

e Define each user’s mobility neighbors
e |earn mobility features/profiles

e |nfer two users’ social relation
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Mobility Neighbors

e A user’s mobility neighbors include

e | ocations a user has visited

e Others who have visited similar locations and their locations
e Breadth first search

e Not considering the visiting frequencies

e Random walk sampling



Mobility Neighbors
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Feature Learning
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Social Relation Inference
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e Cosine similarity
e Unsupervised
 Predict any social relation
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Evaluation: dataset

@ e |nstagram users’ check-ins
* e New York, Los Angeles and London
e Foursquare (location semantics)

e Social relations (two users follow each other)

New York | Los Angeles | London
No. check-ins 1,843,187 1,301,991 500,776
No. locations 25,868 22.260 10,693
No. users 44 371 30,679 13,187
No. social links 193,995 129,004 25,413
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Evaluation: ROC curve
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Evaluation: distance metric
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Evaluation: baseline models
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Evaluation: baseline models
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Evaluation: hyperparameters
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Evaluation: check-In numbers
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Evaluation: common locations
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Evaluation: geo-coordinates
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CISPA
Defense Mechanisms

e Hiding
e Delete certain proportion of check-ins
e Replacement

e Random walk to replace locations
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Defense Mechanisms

e Generalization
e (Geo-coordinate and location semantics
e MoMA -> art (40.76N, -73.97W)
e Recover location first

e art (40.76N, -73.97W) -> MoMA or Tom Otterness Frog?
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e Each user’s check-in distribution
e Both original and obfuscated
e Jensen-Shannon divergence

e Average over all users
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Defense Evaluation

AUC Utility Recovery rate
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Conclusion

e A new social relation inference attack with mobility profiles
e | earning user profiles
e Unsupervised and predict any social relations

e Three general defense mechanisms

e Replacement and hiding outperform generalization
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