walk2friends: Inferring Social Links from Mobility Profiles

Yang Zhang

joint work with Michael Backes, Mathias Humbert, and Jun Pang

MKT Restaurant... 0.14 mi

MKT Restaurant... 0.14 mi

7 reviews \$\$\$\$

Four Seasons Hotel 757 Market

American (New)

...

Location Privacy

- 4 spatial-temporal points can identify 95% of the individuals
- Mobility traces can be effectively de-anonymized
- You are where you go
 - Demographics
 - Social relations

Social Relation Privacy

- Social relations can be sensitive, e.g., office romance
- 17.2% -> 56.2% (Facebook users in New York)
- NSA's co-traveler program

Predict whether two users are friends based on the locations they have visited

- Solution 1: common locations two users have visited
 - Almost all data mining approaches take this way
 - Location entropy
 - Can't work when two users share no common locations

- Solution 2: mobility profiles/features
 - Summarize each user's mobility profiles
 - Friends share similar mobility profiles than strangers
 - Feature engineering
 - Tedious efforts and domain expert knowledge
 - Time consuming
 Every Single Time!!!

Representation Learning

- Learning features (representation/deep learning)
 - Follow a general object (unsupervised)
- Graph representation learning (graph embedding)
 - Preserve each user's neighbors in a social network
- Mobility feature learning

Assumption: A user's mobility neighbors can reflect his mobility profile/features

- Define each user's mobility neighbors
- Learn mobility features/profiles
- Infer two users' social relation

Mobility Neighbors

- A user's mobility neighbors include
 - Locations a user has visited
 - Others who have visited similar locations and their locations
- Breadth first search
 - Not considering the visiting frequencies
- Random walk sampling

Mobility Neighbors

Feature Learning

- Learn a function: $\theta: \mathcal{U} \to \mathbb{R}^d$
- Each node to predict it's neighbors
- $p(\cdot \mid \cdot; \theta)$ Softmax

```
\arg\max_{\theta} p(\mathbf{p}|\mathbf{p};\theta) \cdot p(\mathbf{p}|\mathbf{p}|\mathbf{p};\theta) \cdot p(\mathbf{p}|\mathbf{p};\theta) \cdot p(\mathbf{p}|\mathbf{p}|\mathbf{p};\theta) \cdot p(\mathbf{p}|\mathbf{p};\theta) \cdot p(\mathbf{
```


Social Relation Inference

- Cosine similarity
- Unsupervised
- Predict any social relation

Evaluation: dataset

- Instagram users' check-ins
 - New York, Los Angeles and London
- Foursquare (location semantics)

• Social relations (two users follow each other)

	New York	Los Angeles	London
No. check-ins	1,843,187	1,301,991	500,776
No. locations	25,868	22,260	10,693
No. users	44,371	30,679	13,187
No. social links	193,995	129,004	25,413

Evaluation: ROC curve

Evaluation: distance metric

Evaluation: baseline models

Evaluation: baseline models

Evaluation: hyperparameters

Evaluation: check-in numbers

Evaluation: common locations

Evaluation: geo-coordinates

Defense Mechanisms

- Hiding
 - Delete certain proportion of check-ins
- Replacement
 - Random walk to replace locations

Defense Mechanisms

- Generalization
 - Geo-coordinate and location semantics
 - MoMA -> art (40.76N, -73.97W)
 - Recover location first
 - art (40.76N, -73.97W) -> MoMA or Tom Otterness Frog?

Utility Metric

- Each user's check-in distribution
 - Both original and obfuscated
- Jensen-Shannon divergence
- Average over all users

Defense Evaluation

Defense Evaluation

	AUC		Utility		Recovery rate	
	ls	hs	ls	hs	ls	hs
<i>l</i> g	0.77	0.75	0.57	0.30	52%	23%
hg	0.73	0.67	0.20	0.06	14%	2%

Defense Evaluation

yang.zhang@cispa.saarland @yangzhangalmo

Conclusion

- A new social relation inference attack with mobility profiles
 - Learning user profiles
 - Unsupervised and predict any social relations
- Three general defense mechanisms
 - Replacement and hiding outperform generalization