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Abstract
Data reconstruction attacks, which aim to recover the training
dataset of a target model with limited access, have gained in-
creasing attention in recent years. However, there is currently
no consensus on a formal definition of data reconstruction
attacks or appropriate evaluation metrics for measuring their
quality. This lack of rigorous definitions and universal met-
rics has hindered further advancement in this field. In this
paper, we address this issue in the vision domain by propos-
ing a unified attack taxonomy and formal definitions of data
reconstruction attacks. We first propose a set of quantitative
evaluation metrics that consider important criteria such as
quantifiability, consistency, precision, and diversity. Addition-
ally, we leverage large language models (LLMs) as a sub-
stitute for human judgment, enabling visual evaluation with
an emphasis on high-quality reconstructions. Using our pro-
posed taxonomy and metrics, we present a unified framework
for systematically evaluating the strengths and limitations
of existing attacks and establishing a benchmark for future
research. Empirical results, primarily from a memorization
perspective, not only validate the effectiveness of our metrics
but also offer valuable insights for designing new attacks.

1 Introduction

The prosperous development of machine learning techniques
has been witnessed in the past decade, which fertilizes its
application in real-world scenarios. However, training a ma-
chine learning model for privacy-crucial tasks, such as person
identification [6, 67], disease prediction [30], and financial
risk prediction [11], demands a large volume of data which is
not only valuable but also sensitive. As a result, model owners
tend to release the model only, taking it for granted that the
training data will not be leaked.

However, a series of works demonstrate that with limited
access to a target model, the adversary is capable of infer-
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ring partial/complete information about the model’s training
samples. As a representative, membership inference attacks
(MIA) [25,26,31–34,46,48,61,65,71] denote a line of works
that aim to infer whether a specific data sample is in the target
model’s training dataset. The disclosure of the membership
status is a severe privacy breach as this information could
indicate certain sensitive properties of the target sample.

A more challenging privacy attack is data reconstruction,
which aims to recover the entire training dataset of a target
model. This attack is considered the ultimate privacy breach,
as it exposes all information about every sample. While mem-
bership inference (MIA) shares some similarities with data
reconstruction, several key differences make data reconstruc-
tion a stronger attack. MIA is a sample-level attack, determin-
ing the membership status of individual samples, while data
reconstruction is a dataset-level attack aimed at extracting the
entire training dataset. From another angle, MIA is a decision
problem, whereas data reconstruction is a search problem. In
theory, MIA could aid in data reconstruction if the adversary
has a large candidate dataset containing all the target sam-
ples and can perfectly predict membership. However, these
assumptions are too strong, and to our knowledge, no one has
attempted to use MIA for data reconstruction.

Owing to the crucial role of data reconstruction in the pri-
vacy domain, numerous attacks have been proposed in recent
years. For example, Fredrikson et al. [19] propose the first
data reconstruction attack, namely model inversion, which
requires white-box access to the target model. Later, Yang et
al. [66] relax this assumption by leveraging a training-based
approach. Zhang et al. [73] adopt a Generative Adversarial
Network (GAN) [21] to enhance the reconstruction quality.
However, some researchers [41, 48] have claimed that model
inversion can only recover a representative sample for each
class of the target model, thus not an ideal data reconstruc-
tion attack. On the other hand, for certain training paradigms
like federated learning [74] and online learning [44], some
researchers have shown that they are able to reconstruct indi-
vidual training samples. Moreover, all these works have used
different types of evaluation metrics (see Section 4.1 for more



details).
Despite all the efforts, one of the major problems in the field

of data reconstruction is that there does not exist a rigorous
and unified definition for the attack. Moreover, the commu-
nity has no consensus on what are the proper metrics for
attack evaluation. This predicament roots in the diversity of
the attack scenarios, e.g., various threat models and different
training paradigms. At the same time, the lack of universal
metrics exacerbates this problem since no existing metric is
able to reflect all aspects of the reconstructions. We argue
that without a clear-stated definition and metrics, it is hard to
conduct further investigation in this direction.

In this paper, we take the first step in tackling this prob-
lem by 1) providing a definition of data reconstruction, 2)
proposing a set of evaluation metrics, and 3) performing a
large scale of experiments to establish a benchmark for further
study. Specifically, our contributions can be summarized as
follows:

• Definition: We recapitulate the reconstruction goal and
attack information in existing work and formally provide
an attack taxonomy. Based on this, we quantitatively and
rigorously define the data reconstruction attack.

• Metrics: We formalize the desiderata for evaluation met-
rics and, based on this framework, propose two sets of
metrics that address both macro and micro aspects of re-
construction, while emphasizing the importance of diver-
sity in reconstruction quality. Additionally, we mitigate
the limitations of using visualization as an evaluation
tool by incorporating large language models (LLMs),
with this metric specifically designed to assess high-
quality reconstructions.

• Evaluation: We present a unified framework for data
reconstruction attacks. Especially from the perspective
of memorization, we conduct a thorough evaluation of
ten reconstruction attacks under various attack scenarios.
Our experiments demonstrate the effectiveness of the
proposed metrics and provide a comprehensive analysis
of existing attacks.

Implications: In this work, we propose the first rigorous
definition of data reconstruction and develop a set of metrics.
Our evaluation can serve as a benchmark for the current state-
of-the-art approaches. We believe our results pave the way for
further investigation into data reconstruction. We will share
our code to facilitate research in the field in the future.

2 Background

2.1 Machine Learning Models
Machine learning algorithms aim to construct models that can
accurately predict given inputs. These models are typically

represented by a parameterized function fθ : X → Y , where
X denotes the input space and Y denotes the output space
containing all possible predictions. To determine parameters
θ that lead to optimal performance, a common approach is to
minimize the following objective function using backpropa-
gation:

min
θ

L( fθ(x),y)

where L denotes the classification loss, (x,y) ∈ X ×Y are
samples used to train the target model, constituting the train-
ing dataset.

Recent research shows that given access to a trained target
model fθ, the adversary might exploit it through techniques
such as membership inference [8,26,33,34,36,37,46,48] and
data reconstruction attacks [1,19,22,44,66,68,73,74]. These
attacks focus on inferring micro-level information about indi-
vidual training samples, potentially leading to a direct privacy
breach.

2.2 Data Reconstruction Attacks

The data reconstruction attack aims to recover the target
dataset with limited access to the target model, with the aid
of additional knowledge possessed by the adversary.

Existing attacks broadly fall into three categories:
optimization-based, training-based, and analysis-based. In
this paper, we thoroughly investigate ten representative recon-
struction attacks, analyzing their performance and limitations.
These attacks are briefly introduced below:

2.2.1 Optimization-based Attack

Most existing reconstruction attacks can be classified into
this particular attack type. Such attacks aim to reconstruct the
training dataset by iteratively optimizing the input until the
desired class achieves a high likelihood score.

Recent attacks have incorporated generative models to en-
hance the quality of reconstruction, employing different ar-
chitectural choices [13, 59] and loss functions [53]. We select
seven representative attacks in our paper.

MI-Face [19]: Fredrikson et al. take the first step in recon-
structing training samples from a trained model. Given a class
y, the method first initializes a sample, and then updates x
to maximize the likelihood/probability of belonging to that
class, i.e.,

min
x

L( fθ(x),y)

where L is the classification loss. Similar to training a ma-
chine learning model, MI-Face also uses backpropagating.
But the difference is MI-Face focuses on optimizing x rather
than the parameters θ in normal training. The backprop-
agation process demands white-box access to the target
model, and the reconstructed sample always converges to



the most confident x near the initial point. Because x is high-
dimensional, the reconstruction quality highly depends on the
initialization.
DeepDream [1]: DeepDream was originally proposed to in-
terpret machine learning models. However, this approach can
also be utilized to improve MI-Face to acquire better results.
The key idea is introducing regularization terms that force
reconstructed samples to share similar statistics to natural
images by penalizing each sample’s total variance and ℓ2
norm:

min
x

L( fθ(x),y)+αtvRtv(x)+αℓ2 Rℓ2(x)

where Rtv and Rℓ2 denote total variance and ℓ2 norm, respec-
tively.
DeepInversion [68]: DeepInversion further improves Deep-
Dream by adding another loss. Its intuition is that the batch
normalization layers encoded statistical information about
the training samples. Thus, minimizing the distance between
reconstructed statistics and those stored in the target model
helps.
Revealer [73]: Contrary to exploiting information encoded
in the target model, Revealer leverages an auxiliary dataset
to train a Generative Adversarial Network (GAN) G that
generates samples x. Now instead of optimizing x, Revealer
optimizes the input random seed z to G (and the reconstructed
sample would be x = G(z)):

min
z

L( fθ(G(z)),y)

The intuition is to utilize GAN to force the output G(z) to
always look ‘real’ on any optimized z, at the same time, guar-
antee high confidence in the prediction.
KEDMI [13]: KEDMI enhances the GAN-based approach
in two primary ways. First, it optimizes the process of ex-
tracting knowledge from the auxiliary dataset by modifying
the GAN’s training objective. Specifically, it leverages labels
assigned by the target model to the auxiliary dataset. The
discriminator is trained to not only distinguish between real
and fake samples but also to differentiate among the labels,
enabling more nuanced learning. Second, instead of focusing
on reconstructing single data points, KEDMI targets the re-
construction of the entire data distribution. To achieve this,
it explicitly parameterizes the training data distribution and
approximates the reconstructed distribution using its distribu-
tional parameters, such as the mean (µ) and standard deviation
(σ).
PLGMI [69]: PLGMI decouples the search space by train-
ing a conditional GAN (cGAN). It utilizes pseudo-labels
generated by a top-n selection strategy to steer the training
process, combined with a max-margin loss, which collectively
improves the effectiveness of the attack.
Deep-Leakage [74]: Deep-Leakage allows the adversary to
access gradients (originally designed for federated learning

systems) and aims to reconstruct training samples correspond-
ing to the gradients. Specifically, the adversary randomly
creates “dummy input” and “dummy label” and computes
gradients based on this input-label pair. By optimizing this
input-label pair to approximate true gradients, the “dummy
input” and “dummy label” converges to target samples.

2.2.2 Training-based Attack

Inv-Alignment [66]: To overcome the limitation that data
reconstruction requires white-box access to the target model,
Yang et al. opt for a training-based approach that works with
black-box access. Briefly, they construct an autoencoder with
the target model as the encoder part. Once the autoencoder is
well-trained, the decoder part can be leveraged to reconstruct
inputs given corresponding posteriors.
Updates-Leak [44]: Updates-Leak considers the online-
learning scenario where the adversary has access to different
versions of the target model and tries to reconstruct samples
used to update the model. The adversary trains numerous
shadow models to mimic the updating procedure and leverage
the posterior difference to reconstruct target samples.

2.2.3 Analysis-based Attack

Bias-Rec [22]: Haim et al. theoretically prove that the train-
ing data can be fully recovered given certain assumptions.
In detail, if the target model is a homogeneous ReLU net-
work and trained on a binary dataset using gradient flow, then
the parameters are linear combinations of the derivatives of
the network at the training data points [22]. According to
this assertion, the adversary can derive training samples via
optimization.

It is worth mentioning that the recent attack proposed by
Balle et al. [5] has shown promising results in reconstruct-
ing the missing sample in a dataset. However, their attack
assumes the adversary has the whole dataset except for the
reconstructed one (in order to verify differential privacy prop-
erties), whose attack scenario significantly differs from com-
mon settings. Additionally, certain attacks [7, 29, 52] rely on
invertible network architectures to execute their malicious
actions. However, as these attack scenarios do not align with
the scope of our investigation, we do not consider their attacks
in this paper.

2.3 Data Reconstruction vs. Membership In-
ference

Membership inference attack (MIA) is another representa-
tive attack that aims to expose information about a training
dataset, specifically by determining whether a target sample
is part of it. There are two primary differences between data
reconstruction and MIA, which necessitate the use of dis-
tinct attack methods. First, MIA takes a sample as input to



decide its membership status, whereas data reconstruction
only has a target model. This difference impels data recon-
struction to employ an incompatible attack approach, as the
state-of-the-art MIA regularly involves training samples in
the attack process. For example, Carlini et al. [8] train two
sets of shadow models with datasets with/without the candi-
date sample. Such a training discrepancy is a crucial factor in
enabling successful attacks.

From a different view, MIA can be framed as a decision
problem while data reconstruction is a search problem. This
distinction implies that data reconstruction is a more challeng-
ing and sophisticated attack. In an ideal scenario, perfect data
reconstruction would reveal all membership statuses, as the
entire training dataset would be exposed. MIA could serve as
the foundation for data reconstruction, given the assumption
that the adversary has a dataset that includes all training sam-
ples. However, in reality, this assumption is not feasible, and
the adversary must try all possible pixel combinations itera-
tively, which is impractical due to the enormity of the search
space. Additionally, no existing MIA model can provide per-
fect accuracy in determining membership status, necessitating
the development of alternative approaches for conducting data
reconstruction attacks.

2.4 Memorization
In the realm of attacks targeting the disclosure of information
from training datasets, memorization serves as a key concept
closely linked to attack performance. Within machine learn-
ing, memorization refers to a model’s unintentional retention
of intricate details from its training data, which is particularly
evident in high-capacity models. Feldman [18] provides a
succinct definition of memorization for a target sample (xi,yi)
with index i, describing it as the impact of removing a data
point on the model’s prediction for that particular point:

mem(A ,D, i) = Pr
fθ∼A(D)

[ fθ(xi) = yi]− Pr
fθ∼A(D\i)

[ fθ(xi) = yi]

(1)
where D\i denotes the dataset with the sample (xi,yi) re-
moved.

While memorization can be beneficial, and even indispens-
able [18], for achieving high model performance, it simul-
taneously poses risks that adversaries can exploit to expose
sensitive information.

Tramèr et al. [56] demonstrates that enhancing a model’s
memorization through data poisoning attacks significantly in-
creases the effectiveness of various privacy attacks, including
membership inference, attribute inference, and data extrac-
tion. Further investigations by Carlini et al. [9] illustrate the
“privacy onion effect”, highlighting that vulnerabilities aris-
ing from memorization cannot be easily mitigated by merely
removing outliers.

Conversely, reducing a model’s memorization of the train-
ing data can mitigate its vulnerability to privacy attacks, as

seen in approaches like differential privacy [3, 17, 43]. How-
ever, this often comes at the expense of model performance.
Despite its importance, the relationship between memoriza-
tion and data reconstruction remains surprisingly underex-
plored. We aim to address this gap by benchmarking existing
data reconstruction attacks from the perspective of memoriza-
tion.

3 Defining Data Reconstruction

3.1 Reconstruction Taxonomy

To establish a rigorous definition of data reconstruction at-
tacks, it is necessary to take into account various aspects such
as training type, model access, and dataset access. To this end,
we present a taxonomy that captures these aspects and use it
to formulate a formal definition of data reconstruction. We
are motivated by two key questions that arise in this context.
1) What data does the adversary aim to reconstruct? The
diversity of attack scenarios poses challenges to developing
a unified definition of data reconstruction attacks. Some at-
tacks focus on the standard setting where the model is trained
on one fixed dataset, while others focus on settings that en-
tail dataset change during the training process, e.g., online
learning. Additionally, some attacks only consider data that
contributes to certain updates. This diversity makes it hard to
incorporate all possibilities into a unified definition.
2) What information does the adversary have? This prob-
lem also stems from the diverse attack scenarios where the
adversary has varying levels of information. For example,
when users release their models, the adversary has white-box
access to the model, while if models only provide a query
interface, the adversary may lack detailed information about
the model’s architecture and parameters. Furthermore, the
adversary may or may not have access to the same distribu-
tion of the target dataset. Thus, it is crucial to consider all
possible situations to provide a comprehensive definition of
data reconstruction attacks.

In the following, we categorize reconstruction attacks from
three dimensions: training type, model access, and dataset
access:

Training Type: We categorize training into two types: static
and dynamic, based on the target dataset’s role. In static, the
target dataset remains fixed during training, and the attack
aims to recover it. In dynamic, the target dataset is intro-
duced during training, causing model changes, as the updating
dataset in online learning.

Model Access: The attacker may have one of the following
access to the target model: Black-box Access, which means
the attacker could only query the model in an API manner.
White-box Access, which means the attacker could get full
information about the target model, including the model archi-
tecture, parameters, and even gradients of the target sample



Table 1: We group ten reconstruction attacks from three dimensions, which indicate the necessary information for the attack,
including training type, model access, and dataset access. Note that attacks requiring more information about the model or dataset
can be extended from attacks that require less information.

Training Type Model Access Dataset Access

No Data Similar Distribution Same Distribution

Static

Black-Box Inv-Alignment Inv-Alignment

White-Box

MI-Face Revealer Revealer
DeepDream KEDMI KEDMI

DeepInversion PLGMI PLGMI
Bias-Rec

Dynamic Black-Box Updates-Leak

White-Box Deep-Leakage

calculated on the target model. We also acknowledge that real-
world scenarios may involve intermediate access, representing
a hybrid of black-box and white-box approaches. For example,
an encoder might only be queryable via an API (black-box),
while subsequent classification layers are directly accessible
(white-box). Our framework’s analysis of these two extremes,
pure black-box and full white-box, effectively bounds the
attack performance for all such intermediate cases.

Dataset Access: The attacker may have one of the follow-
ing types of knowledge about the target dataset: No Data,
meaning no access to any dataset information; Same Distri-
bution, meaning the attacker can sample data from the same
distribution as the target dataset; Similar Distribution, mean-
ing the attacker can sample from distributions similar to the
target. The key difference between “same” and “similar” dis-
tributions lies in the level of specificity of the distribution
information that the adversary possesses: “same” refers to
detailed information, e.g., images of a specific person, while
“similar” refers to more general knowledge, e.g., knowing the
dataset contains human faces.

In the following, we denote such information as extra
knowledge (K ), defined as below:

Definition 3.1 (Extra Knowledge K ). Extra knowledge K
provides the necessary information required for the recon-
struction attack. A standard extra knowledge should contain
information from three dimensions:

1. Training Type: static or dynamic

2. Model Access: black-box access or white-box access

3. Dataset Access: no data or similar distribution or same
distribution

It should be emphasized that while our present investigation
concerns the realm of vision, the attack taxonomy we have
formulated has broader applicability to reconstruction attacks
in diverse domains.

We categorize the ten attacks in Table 1. Current reconstruc-
tion attacks most focus on the scenario where the adversary
has white-box access to the target model, as this access pro-
vides crucial information that aids in dataset reconstruction.
For attacks without model information, they tend to rely on
information from a dataset that shares similar characteris-
tics with the target dataset. For example, Inv-Alignment and
Updates-Leak do not require white-box access but require
data from the same distribution as a substitute. Furthermore,
attacks with model information can be further improved with
the help of dataset information. For instance, PLGMI lever-
ages information from both the model and the dataset, result-
ing in improved performance compared to attacks that rely
solely on model or dataset information, as demonstrated in
the evaluation part.

Theoretically, attacks with black-box access can be easily
extended to white-box attacks, while the inverse transition is
not straightforward. One potential solution to transfer white-
box attacks to black-box attacks is through the use of model
stealing to extract their internal parameters. Additionally, for
attacks that leverage information about the same distribution,
we also investigate the feasibility of using similar distribution.
These aspects are examined in Section 7.

3.2 Reconstruction Definition
Given the extra information, another remaining question is the
number of samples to reconstruct. Existing attacks generate
a surplus of samples and designate those that best align with
the target dataset as the reconstruction outcome. However,
this approach is deemed unsuitable as it imparts specific in-
formation about the target dataset that is unavailable to the
adversary. For the same reason, permitting the adversary to
generate an infinite number of samples is inappropriate as
generating every conceivable pixel combination can subsume
the target dataset, yet such a reconstruction does not furnish
any useful information.

Therefore, we explicitly stipulate that the reconstructed



dataset has the same size as the target model. Generating a
greater number of samples than the target samples and se-
lecting high-quality reconstructed samples is allowed. But it
is crucial that the selection procedure does not involve any
information about the target dataset.

It should be emphasized that the reconstruction size is a
requisite for evaluation and not for the adversary. Furthermore,
our definition encompasses scenarios where the focus is on
reconstructing a subset of the training dataset. A detailed
description of this is presented in Section 4.3.

Provided the reconstruction size, the target model, and the
necessary information indicated in extra knowledge, we for-
mally define the reconstruction algorithm as follows:

Definition 3.2 (Reconstruction Algorithm). Given a target
model m ∈ M and extra knowledge k ∈ K , reconstruction
algorithm A could reconstruct a dataset Drec = Ak(m) ∈ D,
i.e., A : M × K → D, with the same size as the target dataset
Dtar.

In the static setting, the target dataset Dtar is the whole
training dataset of the target model; in the dynamic setting,
the target dataset refers to the subset of data that directly
contributes to the model change.

4 Evaluation Metric for Data Reconstruction

A robust evaluation metric is crucial for the development of
data reconstruction attacks, analogous to the role of loss func-
tions in guiding model optimization. This section reviews
existing metrics, outlines the desired properties of ideal met-
rics, and introduces our proposed metrics in Section 4.3.

4.1 Existing Common Metrics

Visualization: Visualization is a useful tool for understanding
the quality of reconstructions and has been widely used in
previous work [1, 19, 44, 53, 66, 68, 70, 73, 74]. While visual-
ization provides the most direct and intuitive impression of
reconstruction quality, its non-quantitative nature and reliance
on subjective human judgment limit its effectiveness as an
evaluation metric. Consequently, it is crucial to also utilize
quantitative metrics in order to accurately assess reconstruc-
tion quality.

MSE/PSNR/SSIM: Mean Squared Error (MSE) and other
similarity measures, such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM), are com-
monly utilized to provide quantitative evaluation results [44,
66,73,74]. However, such metrics only measure the similarity
between individual samples rather than the overall dataset,
which poses two issues. First, the choice of sample pairs for
comparison is not fixed, causing evaluation results to vary
based on the selected pairs. Second, sample-level metrics
can’t capture the diversity of the reconstructed dataset. For

example, if all reconstructed samples are similar to one target
sample, the measured distance may be small, but the recon-
struction may still be unsatisfactory.
Feature Distance: Feature distance measures the similarity in
the feature space and has been used in previous works [13,73].
Concretely, for each reconstructed sample, the distance to the
centroid of its class in the feature space is calculated. However,
as the feature space is determined by an evaluation network,
the evaluation results can be inconsistent because different
evaluation networks use different feature spaces with varying
class centroids. Additionally, like other sample-level metrics
such as MSE, this measure doesn’t capture the diversity of
the reconstruction.
Accuracy (Train): To incorporate macro similarity, one
method uses reconstructed samples to train a model for the
same task [68, 70, 73]. The model’s testing accuracy reflects
the reconstruction quality, with higher accuracy indicating
better reconstruction. We point out that this metric overlooks
the precision of the reconstruction, as demonstrated by a coun-
terexample in the extended version [62]. Concretely, we uti-
lize the data-free model extraction method [58] to generate a
dataset, which is then used to steal the target model. Although
the resulting stolen model exhibits high accuracy, the gener-
ated dataset, which serves as the training dataset of the stolen
model, is vastly dissimilar from the target dataset.
Accuracy (Test): Alternatively, one can train an evaluation
model on a dataset from the same distribution as the target
model and assess whether the evaluation model can accu-
rately classify each reconstructed sample [13, 53, 59, 70, 73].
The idea is that high-quality reconstructions should contain
recognizable patterns that the evaluation model can capture.
However, we argue that this metric is ineffective, as shown by
examples that resemble random noise but are still classified
with high confidence by the evaluation model, as illustrated in
the extended version [62]. These counterexamples, generated
using MI-Face [19], achieve prediction confidences above 0.9
for their corresponding classes.

4.2 Design Desiderata
To propose metrics that can reflect the quality of a reconstruc-
tion, we need to consider four questions: 1) can such metrics
quantitatively measure the quality? 2) can such metrics pro-
vide a consistent result for a fixed reconstruction? 3) can such
metrics embody the quality in a micro aspect? 4) can such
metrics incorporate the quality in a macro aspect?

In response to the drawbacks of existing metrics, we pro-
pose a set of properties that suitable evaluation metrics should
possess, including quantifiability, consistency, precision, and
diversity:

• Quantifiability. The evaluation metric should provide
quantitative results and eliminate the influence of sub-
jective factors.



• Consistency. The evaluation metric should be consis-
tent, that is, given a pair of the reconstructed dataset and
the target dataset, the evaluated result should be deter-
mined, regardless of the testing time, place, and order.

• Precision. The evaluation metric should be aware of the
reconstruction precision. Specifically, it should capture
the sample-level similarity of reconstructed samples to
target samples.

• Diversity. The evaluation metric should be aware of the
reconstruction diversity. Concretely, the metric should
reflect the percentage of data being reconstructed. An
attack that can only recover a few samples accurately is
not regarded as a successful reconstruction attack.

4.3 Definition of Our Quantitative Metrics
To capture both precision and diversity aspects, we introduce
two metrics from different perspectives. The first is a dataset-
level metric that measures the distribution similarity between
the reconstructed and target datasets.

Definition 4.1 (Dataset-level Metric). The dataset-level met-
ric µ : D × D → R is defined as a mapping that takes
two datasets and produces a single real number D-Dis, i.e.,
D-Dis = µ(Ak(m),Dtar).

We leverage Fréchet Inception Distance (FID) to incor-
porate the macro quality of the reconstructed dataset, which
measures the distance between different data distributions.
Specifically, we approximate the two dataset distributions by
Gaussian distributions as follows:

Dtar ∼ N (νtar,Σori), and Ak(m)∼ N (νrec,Σrec)

We compute the D-Dis value as:

||νtar −νrec||22 + tr
(

Σtar +Σrec −2(Σ
1
2
tar ·Σrec ·Σ

1
2
tar)

1
2

)
where || · ||2 denotes the Euclidean distance, and tr(·) denotes
the trace of a matrix. ν and variance Σ denote the parameters
of the corresponding Gaussian distributions.

We choose Fréchet Inception Distance (FID) to measure the
dataset-level distance due to its established use as a metric for
evaluating the quality of generated distributions. Furthermore,
FID is model-agnostic and can be calculated using any feature
extractor, but common practice involves using the pre-trained
InceptionV3 regardless of the dataset1. Using FID to measure
dataset-level distance also resolves concerns related to con-
sistency, as feature distances are calculated using the same
model across different tasks. We further introduce sample-
level metrics to improve our evaluation by taking precision
into account. Specifically, we concentrate on how similar the
reconstructed sample is to the target sample in the original
data space.

1https://github.com/mseitzer/pytorch-fid

Definition 4.2 (Sample-level Metric). The sample-level met-
ric µ : D×D→ R2 maps two datasets into two real numbers
S-Dis and α, i.e., (S-Dis,α) = µ(Ak(m),Dtar), where the first
value S-Dis calculates the averaged minimal distance between
reconstructed dataset and the target dataset, and the second
value α denotes the coverage of reconstructed part. Formally:

S-Dis =
1

|Ak(m)| ∑
xi∈Ak(m)

d(xi, f (xi))

where f : Ak(m)→ Dtar, such that, ∀xi ∈ Ak(m), f maps xi
to the sample f (xi) ∈ Dtar with the minimal distance to xi.

For coverage α, it indicates the reconstructed diversity:

α =
| f (Ak(m))|

|Dtar|

Here, f (Ak(m)) denotes the image of f , and α ∈ (0,1], larger
coverage indicates better diversity.

Note that the choice of d may vary depending on the as-
pect of reconstruction quality to be assessed. Both metrics
proposed above provide deterministic evaluation results, only
based on the content of the reconstructed dataset, which satis-
fies the property of quantifiability and consistency. Further-
more, the coverage reflects the diversity of the reconstruction.
The precision of the metrics is partially illustrated in Sec-
tion 5.1, and we discuss it in more detail in Section 6.1.

We can see that the reconstruction of a subset is encom-
passed by our reconstruction definition. To clarify, we can
replicate such samples, and the outcome will remain unaf-
fected as the corresponding image in the target dataset is
fixed, resulting in an unchanged coverage and distance. In the
event that accurately reconstructing a subset, it is conceivable
that it will be characterized by a small distance, yet it may
have limited coverage. A small distance indicates an accurate
reconstruction, while the small coverage indicates that the
reconstructed samples constitute only a minor fraction.

Provided the evaluation metric, we can parameterize the
attack to characterize the ability of data reconstruction attack.
We first formulate the ideal case where the attack exactly
reconstructs the target dataset under the measurement of µ.

Definition 4.3 (µ-Exact Reconstruction). We say a recon-
struction algorithm A achieves µ-exact reconstruction if
µ(Ak(m),Dtar) = 0.

µ denotes the distance measure that specifies the quality
of the reconstruction, where the output could be a tuple if
the measure has more than one evaluation metric. Note that
µ-Exact Reconstruction is a necessary and insufficient condi-
tion for the perfect reconstruction, depending on the choice
of measure µ, which further highlights the importance of se-
lecting appropriate metrics to evaluate the reconstruction per-
formance.



The relaxed version allows the reconstructed dataset to
have a small distance ε with the target dataset, we refer to this
version as (ε,µ)-Approximate Reconstruction:

Definition 4.4 ((ε,µ)-Approximate Reconstruction). We say
a reconstruction algorithm A achieves (ε,µ)-approximate re-
construction if µ(Ak(m),Dtar)≤ ε.

Remark. (ε,µ)-Approximate Reconstruction corresponds to
the specific case of µ-Exact Reconstruction when ε = 0.

Our framework’s core metrics effectively address a broad
spectrum of attack goals. For instance, reconstructing a single
missing sample [45] translates within our definition to a low
coverage score, indicating its narrow scope, combined with a
reconstruction-distance metric to assess fidelity. In contrast,
an attack targeting an entire class aims for high coverage [19],
signifying the retrieval of numerous distinct dataset items.
Overall, the two metrics work together: distance measures re-
construction accuracy, while coverage scales with the breadth
of the attacker’s objective, from single-sample inference to
full-dataset recovery.

5 Evaluation

Due to space constraints, we defer the description of the exper-
imental setup to the extended version [62], where we provide
details on the dataset, attack configurations, and evaluation
metrics.

5.1 Results Under Quantitative Metrics
We divide ten reconstruction attacks into two groups based
on the training type. To provide an overview of the attack
performance, we visualize the reconstruction results of all ten
attacks in Figure 1. Overall, none of the attacks can achieve
exact reconstruction, and their quality varies significantly. To
better analyze and compare these attacks, we apply the pro-
posed metrics to evaluate the reconstruction datasets, and
report the results in Table 2.
Dataset-level Metric: For the CelebA dataset with the largest
size, we visually confirm that three GAN-based attacks (Re-
vealer, KEDMI, and PLGMI) outperform other methods,
which is consistent with their lower FID scores. For dynamic
training-type attacks, Updates-Leak shows a lower FID score
than Deep-Leakage, indicating better reconstruction quality.
This pattern holds for the other two datasets. We also ob-
serve that DeepInversion’s performance worsens as dataset
complexity2 increases, with FID scores rising from 64.678
(MNIST) to 131.545 (CIFAR10) to 234.672 (CelebA). In
contrast, GAN-based attacks, such as PLGMI, maintain clear
semantic reconstruction, reflected in their low FID scores:
82.940 (MNIST), 123.018 (CIFAR10), and 85.143 (CelebA).

2We follow the criteria used in [37] to determine the complexity of the
dataset. Briefly, gray-scale datasets are simpler than colored datasets.

In general, the FID score reflects reconstruction quality,
with lower values indicating better reconstructions. However,
we argue that relying solely on FID may not fully capture
reconstruction quality, as shown with the CelebA dataset. As
seen in Figure 1, Inv-Alignment generates reconstructions
that clearly show the semantic meaning of the target dataset,
i.e., human faces, whereas some DeepInversion reconstruc-
tions lack sufficient information, despite having a lower FID
score (234.672) compared to Inv-Alignment (357.610). This
highlights the need to incorporate sample-level metrics like
SSIM, PSNR, and MSE to more comprehensively evaluate
reconstruction quality.

Sample-level Metric: Sample-level metrics complement
dataset-level metrics by providing a micro-scale evaluation of
reconstructions, which, in certain contexts, may better align
with human perception. As previously noted, Inv-Alignment
surpasses DeepInversion on the CelebA dataset; however, this
superiority is not reflected by the FID score. In contrast, all
three sample-level metrics deliver results consistent with our
expectations, as shown in Figure 1. Additionally, sample-level
metrics and dataset-level metrics generally provide consistent
outcomes, as demonstrated in Figure 2. Specifically, attacks
achieving higher performance at the dataset level also tend
to perform well on sample-level metrics. For instance, Fig-
ure 2a shows that reconstructions with higher FID scores typi-
cally exhibit lower SSIM values, with similar trends observed
across other metrics.

Sample-level metrics also play a vital role in assessing the
diversity of reconstructed samples (coverage), a key indicator
of a reconstruction attack’s success. Diversity is challeng-
ing to evaluate using dataset-level metrics, as these rely on
a few representative samples to approximate the distribution.
Diversity is crucial for determining reconstruction quality,
as generating identical data similar to a few samples in the
training dataset might achieve high performance but does not
constitute an effective reconstruction attack, as it limits the
exposed information to only a few data points. To measure
coverage, we identify the nearest pair for each reconstructed
sample in the target dataset within the same class. The propor-
tion of such pairs in the target dataset indicates the reconstruc-
tion’s diversity. Given that coverage is influenced by both the
number of classes and reconstructed samples, we present the
results for CIFAR10 and MNIST together in the extended
version [62], and separately for CelebA. The findings reveal
an intriguing observation: high-quality reconstructions do
not necessarily correspond to greater diversity in the recon-
structed samples. Furthermore, results in Table 2 show a de-
cline in coverage as the size of the training dataset increases.
This trend aligns with our hypothesis that current reconstruc-
tion attacks tend to focus on capturing general information
about the training dataset rather than individual sample de-
tails. Consequently, the ability to reconstruct diverse, unique
samples diminishes as the training dataset grows, leading to
lower coverage metrics for larger datasets.



MI-Face DeepDream DeepInversion Revealer Inv-Alignment Bias-Rec KEDMI PLGMI Updates-Leak Deep-Leakage

CelebA

CIFAR10

MNIST

Figure 1: Visualization of existing reconstruction attacks. For each attack, the left two images are reconstructed from the target
model with a smaller training size (1,000 for CelebA and 100 for CIFAR10 and MNIST), and the right two images are from the
larger one (20,000).
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Figure 2: Relationship between sample-level metrics and the dataset-level metric, we plot the correlation heatmap using the
absolute value of correlation between different metrics.

Summary: While there is a relationship between dataset-
level and sample-level metrics, their correlation is relatively
weak, especially when evaluating low-quality reconstructions,
as illustrated in Figure 2d. For example, both MI-Face and
DeepDream perform poorly on the CelebA task, which is
reflected in their FID scores (336.906 vs. 370.396). How-
ever, their SSIM scores vary significantly (0.023 vs. 0.346),
highlighting the inconsistency between metrics.

To examine the relationship between metrics in the context
of high-quality reconstructions, we focus on three GAN-based
attacks that generate higher-quality outputs. In these cases,
the correlation coefficients improve: the correlation between
FID and SSIM increases from 0.465 to 0.597, FID and PSNR
from 0.117 to 0.721, and FID and MSE from 0.289 to 0.511.

Furthermore, low-quality reconstructions introduce discrep-
ancies in coverage, even within the same attack. For instance,
in the case of Bias-Rec on CelebA, coverage varies signifi-
cantly between SSIM (24.28%) and PSNR (0.57%). When
low-quality reconstructions are excluded, coverage across
sample-level metrics aligns more closely, with the correla-
tion coefficient between SSIM and PSNR, as well as between
SSIM and MSE, increasing dramatically from 0.429 to 0.993.

Despite these improvements, the correlation between
dataset-level and sample-level metrics remains insufficiently
strong to ignore their distinctions. Dataset-level metrics pro-
vide a broad perspective on reconstruction quality, whereas
sample-level metrics offer detailed insights into the fidelity of
individual samples. Therefore, it is essential to utilize multi-
ple metrics during evaluation. Although a single score can be
derived using the minimum of normalized metrics to represent
reconstruction quality, it is generally advisable to consider all
available metrics. Ultimately, the decision between prioritiz-
ing usability and ensuring accuracy or effectiveness involves
a careful trade-off.

6 Memorization in Data Reconstruction

We observe that existing attacks show varying performance,
and even the same attack may exploit different levels of vul-
nerabilities when target models are trained with datasets of
varying sizes. From the perspective of model owners, un-
derstanding which models are more vulnerable to data re-
construction attacks is essential. In this section, we examine
model vulnerability to data reconstruction attacks through



Table 2: Evaluation results of existing reconstruction attacks. The target model is VGG16 trained on CelebA with 6 different
sizes. Attacks with a gray background belong to the dynamic training type. For FID and MSE, a lower score indicates better
reconstruction quality; while for SSIM and PSNR, a higher score indicates better performance. Experimental results for other
model architectures and datasets can be found in the extended version [62].

Attack Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

Memorization 1.000 0.981 0.862 0.539 0.386 0.301

MI-Face

Dataset-level FID ↓ 362.361 365.570 361.517 340.959 334.520 336.906

Sample-level
SSIM ↑ 0.014(100.00%) 0.019(72.15%) 0.028(57.88%) 0.024(57.75%) 0.024(57.28%) 0.023(54.80%)
PSNR ↑ 7.978(100.00%) 8.453(53.80%) 8.872(30.74%) 8.851(17.63%) 9.005(13.61%) 9.037(10.08%)
MSE ↓ 0.163(100.00%) 0.145(53.80%) 0.132(30.74%) 0.131(17.63%) 0.127(13.61%) 0.126(10.08%)

DeepDream

Dataset-level FID ↓ 337.139 306.974 297.590 315.676 345.472 370.396

Sample-level
SSIM ↑ 0.079(100.00%) 0.140(57.65%) 0.234(26.44%) 0.290(14.38%) 0.321(8.95%) 0.346(6.81%)
PSNR ↑ 9.162(100.00%) 10.304(53.70%) 11.957(26.60%) 13.006(14.43%) 13.980(9.29%) 14.027(7.63%)
MSE ↓ 0.128(100.00%) 0.100(53.70%) 0.069(26.60%) 0.053(14.43%) 0.042(9.29%) 0.041(7.63%)

DeepInversion

Dataset-level FID ↓ 287.497 283.429 273.183 273.415 245.736 234.672

Sample-level
SSIM ↑ 0.100(100.00%) 0.110(61.70%) 0.118(42.44%) 0.140(28.97%) 0.150(27.07%) 0.153(22.47%)
PSNR ↑ 9.676(100.00%) 10.094(56.10%) 10.550(31.68%) 11.143(21.07%) 11.388(19.09%) 11.343(15.73%)
MSE ↓ 0.119(100.00%) 0.105(56.10%) 0.094(31.68%) 0.081(21.07%) 0.076(19.09%) 0.077(15.73%)

Revealer

Dataset-level FID ↓ 116.712 103.428 94.899 93.961 93.781 92.982

Sample-level
SSIM ↑ 0.101(100.00%) 0.116(66.75%) 0.135(50.50%) 0.150(44.05%) 0.157(40.47%) 0.162(38.33%)
PSNR ↑ 9.144(100.00%) 9.720(60.90%) 10.087(43.68%) 10.449(37.20%) 10.622(33.66%) 10.733(32.17%)
MSE ↓ 0.123(100.00%) 0.113(60.90%) 0.103(43.68%) 0.094(37.20%) 0.091(33.66%) 0.088(32.17%)

Inv-Alignment

Dataset-level FID ↓ 344.049 243.849 359.419 229.609 361.569 357.910

Sample-level
SSIM ↑ 0.255(100.00%) 0.312(51.45%) 0.285(22.56%) 0.353(13.09%) 0.336(9.46%) 0.328(7.89%)
PSNR ↑ 11.292(100.00%) 12.463(52.40%) 13.023(23.10%) 13.858(13.93%) 14.007(9.74%) 14.253(8.02%)
MSE ↓ 0.081(100.00%) 0.061(52.40%) 0.052(23.10%) 0.043(13.93%) 0.041(9.74%) 0.039(8.02%)

Bias-Rec

Dataset-level FID ↓ 327.883 323.892 316.452 319.774 318.895 315.227

Sample-level
SSIM ↑ 0.039(38.20%) 0.040(35.55%) 0.043(30.88%) 0.044(27.50%) 0.045(25.44%) 0.047(24.28%)
PSNR ↑ 9.783(3.20%) 10.211(0.75%) 10.249(0.80%) 10.311(0.53%) 10.222(0.60%) 10.354(0.57%)
MSE ↓ 0.105(3.20%) 0.096(0.75%) 0.095(0.80%) 0.093(0.53%) 0.095(0.60%) 0.093(0.57%)

KEDMI

Dataset-level FID ↓ 121.689 110.088 101.730 94.341 95.852 97.667

Sample-level
SSIM ↑ 0.111(100.00%) 0.124(57.30%) 0.144(32.60%) 0.157(24.29%) 0.160(21.10%) 0.167(18.93%)
PSNR ↑ 9.167(100.00%) 9.715(54.50%) 10.605(30.28%) 11.126(20.60%) 11.428(17.12%) 11.560(15.36%)
MSE ↓ 0.133(100.00%) 0.115(54.50%) 0.092(30.28%) 0.081(20.60%) 0.075(17.12%) 0.073(15.36%)

PLGMI

Dataset-level FID ↓ 127.722 107.883 104.842 97.730 84.836 85.143

Sample-level
SSIM ↑ 0.110(100.00%) 0.132(60.40%) 0.136(37.02%) 0.149(26.15%) 0.154(21.83%) 0.161(18.54%)
PSNR ↑ 9.448(100.00%) 10.164(56.10%) 10.588(31.58%) 10.921(20.55%) 11.299(16.44%) 11.513(13.54%)
MSE ↓ 0.122(100.00%) 0.102(56.10%) 0.092(31.58%) 0.085(20.55%) 0.078(16.44%) 0.074(13.54%)

Updates-Leak

Dataset-level FID ↓ 192.446 259.231 263.899 275.845 312.011 260.100

Sample-level
SSIM ↑ 0.203(18.00%) 0.184(11.00%) 0.194(9.00%) 0.155(22.00%) 0.170(18.00%) 0.187(5.00%)
PSNR ↑ 13.173(14.00%) 13.165(4.00%) 12.693(6.00%) 12.554(14.00%) 12.537(10.00%) 12.509(6.00%)
MSE ↓ 0.049(14.00%) 0.050(4.00%) 0.056(6.00%) 0.058(14.00%) 0.058(10.00%) 0.058(6.00%)

Deep-Leakage

Dataset-level FID ↓ 376.852 383.272 382.227 384.841 384.023 383.338

Sample-level
SSIM ↑ 0.031(49.00%) 0.030(48.00%) 0.034(43.00%) 0.033(45.00%) 0.037(43.00%) 0.040(52.00%)
PSNR ↑ 10.957(3.00%) 10.965(2.00%) 11.014(4.00%) 11.076(2.00%) 11.152(2.00%) 11.199(2.00%)
MSE ↓ 0.080(3.00%) 0.080(2.00%) 0.079(4.00%) 0.078(2.00%) 0.077(2.00%) 0.076(2.00%)

the lens of memorization. This choice is motivated by the
close connection between memorization and membership in-
ference attacks. Previous work [9, 56] suggests that strongly
memorized samples are more vulnerable to membership infer-
ence. Given that data reconstruction can be framed as a search
problem within the context of membership inference, we in-
vestigate whether models with higher memorization scores
are likewise more prone to data reconstruction attacks.

As shown in Table 2, we trained models using six datasets
of varying sizes, which resulted in different levels of memo-
rization for individual samples. To quantify memorization at
the model level, we extend the sample-based memorization
definition (Equation 1) to cover the entire model. Specifically,
we use the average memorization score of the first 1,000 sam-
ples in the training dataset as a proxy for the model’s overall



Table 3: Evaluation with GPT-4o.

Attack Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

Memorization 1.000 0.981 0.862 0.539 0.386 0.301

Revealer
# of Major 349 182 188 133 94 54

# of All 166 35 45 46 26 15
Pred Rate 0.335 0.185 0.194 0.137 0.096 0.053

KEDMI
# of Major 303 157 227 188 90 35

# of All 115 14 37 37 14 6
Pred Rate 0.281 0.169 0.217 0.189 0.097 0.047

PLGMI
# of Major 325 133 162 192 120 68

# of All 116 12 12 44 15 6
Pred Rate 0.283 0.142 0.174 0.200 0.125 0.076

PLGMI (Pre)
# of Major 484 146 186 126 38 20

# of All 246 15 29 21 8 0
Pred Rate 0.446 0.160 0.188 0.125 0.054 0.026

memorization score:

model-mem(A ,D) = E
xi∈D

[ Pr
fθ∼A(D)

[ fθ(xi) = yi]−

Pr
fθ∼A(D\i)

[ fθ(xi) = yi]]
(2)

As expected, we observe that the model memorization score
decreases from 1.000 to 0.301 as the training size increases
from 1,000 to 20,000. However, the performance of different
attacks is inconsistent. For instance, with the DeepDream
attack, the FID distance to the training dataset is 337.139
when the memorization score is 1.000, and it decreases as the
memorization score drops to 0.301. In contrast, for attacks
such as Revealer, reconstruction quality (as measured by FID)
improves as the memorization score decreases.

We attribute this discrepancy to two potential factors. First,
the attack methods may lack the necessary capacity to ac-
curately capture underlying vulnerabilities, particularly in
the case of non-generative model-based attacks. This further
raises the question of whether current methods are genuinely
extracting private information from the model or merely im-
puting plausible samples, we provide some initial discussion
in Section 7. Second, the evaluation metrics used may not
effectively capture the true performance of these attacks. As
discussed in Section 5.1, while existing metrics provide a
rough estimate of reconstruction quality, there remains a gap
between the numerical results and human perception. In some
cases, measurements do not align with visual evaluations. We
discuss this challenge in the next section.

6.1 Linkage Between Model Memorization
and Dataset Leakage

To evaluate the effectiveness of data reconstruction, we have
introduced a set of metrics designed to quantitatively assess
reconstruction quality. While these metrics offer a coarse-
grained view of reconstruction success, previous findings sug-
gest that high quantitative scores do not necessarily correlate

Table 4: Evaluation with InternVL 2.5 and Claude 3.7 for
PLGMI (pre) on VGG16 trained on CelebA.

LLMs Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

InternVL 2.5
# of Major 531 134 92 149 65 29

# of All 69 0 0 2 0 0
Pred Rate 0.410 0.157 0.130 0.165 0.096 0.042

Claude 3.7
# of Major 479 188 41 125 130 37

# of All 143 31 0 23 17 0
Pred Rate 0.434 0.179 0.056 0.134 0.158 0.039

with high-quality reconstructions. Although human inspec-
tion remains the most direct and intuitive method for quality
assessment, it is often prohibitive in terms of cost and scale
for extensive datasets. Therefore, to achieve an efficient and
scalable evaluation, we propose utilizing GPT-4o. This model
is recognized for its robust performance and has been fur-
ther refined during the Reinforcement Learning from Human
Feedback (RLHF) phase to align with human preferences.

We evaluate the attack performance using 1,000 randomly
chosen CelebA images as targets. Each target appears in six
training sets of increasing size. For every set, we run the re-
construction algorithm and keep the 1,000 results with the
highest PSNR score relative to their targets. Thus, each tar-
get image has six candidate reconstructions—one from each
training size. To decide which reconstruction looks closest to
the ground truth, we prompt GPT-4o: “From the second to the
seventh image, which image is more similar to the first one?
Please make sure your response must be the index of that
image and don’t say any other words.” We repeat this query
five times and tally how often each training size is chosen. We
report three summary measures: “# of major” (how often a
setting wins the majority vote), “# of all” (how often the vote
is unanimous), and “pred rate” (its overall selection frequency
across all queries).

Our analysis concentrates on three GAN-based approaches,
which consistently yield high-quality reconstructions. As in-
dicated in Table 3, despite some variability, all three metrics
across the 1,000 identities generally exhibit a trend where
reconstruction quality diminishes as the memorization score
decreases. These results can also be generalized to other lead-
ing LLMs, such as InternVL 2.5 and Claude 3.7, as demon-
strated in Table 4. Visual evidence in Figure 3 further supports
the observation that reconstructions from the smallest target
dataset size (1,000 samples) resemble the target images more
closely than those from the largest size (20,000 samples).
This observation aligns with our expectations but contrasts
with results from previous metrics.

We interpret these findings in two ways. From the perspec-
tive of GAN-based attacks, these methods reconstruct data at
a class level and aim to closely approximate the distribution of
the targets. Consequently, when a target dataset includes mul-
tiple samples within a class, achieving a close match for any
specific target sample becomes unlikely. Conversely, smaller
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Figure 3: Visualization of PLGMI on different target models.

target datasets result in less generalized feature learning, man-
ifesting as blurred areas in reconstructions, like the eyes and
cheeks. While this blurriness negatively impacts performance
as measured by both dataset-level and sample-level metrics,
its effect on visual assessments is relatively modest, provided
the blurring is not extensive.

This second interpretation brings forth another noteworthy
observation. For each attack method, the optimal performance
is achieved at a dataset size of 1000. Interestingly, the second-
best performance does not occur at a slightly larger size, such
as 2000, but frequently occurs at medium dataset sizes, such
as 5,000 or 10,000 samples. This suggests that the recon-
struction process benefits from the model’s ability to learn
additional features. However, this advantage is counterbal-
anced by the challenges posed by larger datasets, as a more
extensive training dataset complicates the accurate recovery
of individual samples, consistent with our earlier findings.

To further explore the benefits of feature learning, we
trained a model pre-trained on disjoint datasets and fine-tuned
it with the target data. This approach enables the model to
learn additional features, as evidenced by the improved test-
ing accuracy. We evaluate the attack on this fine-tuned model
in Table 3. The results indicate that pre-training enhances the
advantage of using a smaller dataset size, as the pre-trained
model has already developed a degree of generalizability and
is able to learn sample-specific features more efficiently.

To better understand the effect of pre-training, we com-
pare attack performance between models trained from scratch
and those fine-tuned from pre-trained weights, as presented
in Table 5. Fine-tuning a pre-trained model enables it to learn
additional features beyond those required for generalization,
leading to improved reconstruction performance.

Together, these findings demonstrate that learning addi-
tional features enhances reconstruction quality. Notably, re-
constructions from pre-trained models exhibit finer structural
details and less blurring, as shown in Figure 3.

We further validate the role of learning additional features
from the opposite perspective by reducing the bottleneck size
(i.e., the width of the final layer after convolutions), thereby
limiting the model’s capacity to retain features [55]. As shown

Table 5: PLGMI vs. PLGMI (Pre).

Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

# of Major 11 : 989 17 : 983 6 : 994 6 : 994 3 : 997 6 : 994
# of All 1 : 956 2 : 939 1 : 964 0 : 961 0 : 979 0 : 952

Pred Rate
0.015
0.985

0.023
0.977

0.012
0.988

0.013
0.987

0.006
0.994

0.014
0.986

Table 6: GPT-4o evaluation with different sizes of feature
embeddings on CelebA with data size of 1,000 and 20,000.

Attack Metrics Feature size (1000) Feature size (20000)

2,048 (Ori) 512 128 2,048 (Ori) 512 128

PLGMI
# of Major 917 75 8 742 251 7

# of All 719 12 0 465 39 0
Pred Rate 0.884 0.105 0.011 0.725 0.263 0.012

in Table 6, this reduction in learned feature information leads
to a degradation in reconstruction performance.

From this study, we derive two key insights. First, from
an attack perspective, for GAN-based methods that produce
high-quality reconstructions, we observe a trade-off between
the generalizability of the target model and the quality of the
reconstructions. This insight could inspire further advance-
ments in data reconstruction attacks. Second, from an eval-
uation perspective, the quantitative metrics employed reli-
ably assess attack performance when the differences between
methods are pronounced (e.g., comparing GAN-based meth-
ods to techniques producing less semantically meaningful
reconstructions, such as MI-Face). However, since current
reconstruction attacks are far from perfectly recovering target
datasets, existing dataset-level and sample-level metrics often
fail to align precisely with human perception, particularly
when differences are subtle.

With the advancements in large language models (LLMs),
some limitations of visualization as an evaluation metric can
be mitigated. We encourage future research to explore inte-
grating LLMs with quantitative metrics for a more compre-
hensive evaluation of data reconstruction attacks.

7 Utilization of Attack Knowledge

This section investigates whether data reconstruction reveals
sensitive information or just replicates attack knowledge, and
how different levels of attack information affect performance.

Influence of Data Access: We first assess how current meth-
ods use auxiliary datasets to enhance attacks, focusing on
whether reconstruction merely involves imputing data from a
similarly distributed dataset. By replacing auxiliary datasets
with similar but distinct ones, that is, Kuzushiji-MNIST [15]
for MNIST, CIFAR100 [2] for CIFAR10, and FFHQ [28] for
CelebA, we observe moderate performance drops in GAN-
based attacks (see Figure 4a and more in the extended ver-
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Figure 4: Influence of auxiliary information for PLGMI. More
results can be found in the extended version [62].

Clean Backdoor

Figure 5: Effect of additional data to the attack performance
of Inv-Alignment.

Table 7: Effect of batch normalization for DeepInversion on
VGG16 trained on CelebA.

BatchNorm Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

updated 287.497 283.429 273.183 273.415 245.736 234.672
fixed 372.803 348.387 346.099 346.149 325.639 311.791

sion [62]). This suggests reconstruction extends beyond mere
imputation from auxiliary data.

The picture changes for low-fidelity methods such as Inv-
Alignment. Supplying auxiliary data drawn from a different
distribution can even yield better results than providing data
from the original distribution. For instance, providing CI-
FAR100 as the auxiliary set yields a FID of 330.31, whereas
supplying data from the same distribution gives 357.91.

To further investigate this limitation, we conducted a back-
door experiment. A model was trained on a mixed dataset
that included both clean and backdoored images, where the
backdoored images contained a 16 × 16 black square in the
bottom-right corner. We then reconstructed the training set
while giving Inv-Alignment both clean and backdoored sam-
ples. Although the trigger should be a strong cue, it never
appears in the reconstructions (see Figure 5). These findings
suggest that low-quality reconstruction methods fail to exploit
critical attack information.

Influence of Model Access: We next investigate whether
access to model parameters increases information leakage by
comparing attack performance under black-box and white-
box settings.

For black-box evaluations, we first apply state-of-the-art
model stealing techniques [58] to create a white-box surrogate

MI-Face Bias-Rec DeepInversion Revealer

Figure 6: Visualization of attacks on VGG16 trained on back-
doored CelebA with size 20,000.

model from the black-box target model. We then execute
standard attacks on this surrogate model.

The results presented in Figure 4b demonstrate that several
attack methods—particularly those with stronger baseline
performance—benefit from white-box access, as expected.
The performance gap widens for more complex reconstruc-
tion tasks, indicating that these methods effectively exploit
model parameters to improve their performance. To illus-
trate this point, we examine two specific attacks: DeepDream
and DeepInversion. The key distinction between them is that
DeepInversion explicitly leverages the statistical information
encoded in BatchNorm layers. As shown in Table 2, DeepIn-
version consistently outperforms DeepDream, highlighting
the benefit of incorporating internal model statistics.

To further investigate the role of statistical information
stored in model parameters, we conduct an experiment where
a target model is trained with BatchNorm parameters fixed,
allowing only the remaining parameters to be updated. We
then apply DeepInversion to both the standard and modified
models. As shown in Table 7, the reconstruction performance
significantly degrades in the modified setting, despite using
the same attack method. This performance drop underscores
the importance of access to BatchNorm statistics, which ap-
pear critical for high-quality reconstruction.

However, it is important to note that not all attack methods
exhibit improved performance under white-box conditions. In
some cases, the lack of performance gain suggests that these
methods fail to effectively utilize the information memorized
by the target model. To further validate this, we evaluate
attacks on a backdoored model, where a predefined trigger,
known to be strongly memorized, is embedded during training.
As shown in Figure 6, among the selected methods, DeepIn-
version and Revealer are able to clearly reconstruct the square
trigger, and they also produce the highest-quality reconstruc-
tions overall. This finding aligns with earlier observations and
further emphasizes the limitations of certain attack methods
in fully leveraging model-internal information.

8 Discussion and Conclusion

Our findings in Table 3 reveal a clear trend: model memoriza-
tion is strongly correlated with reconstruction performance.
Specifically, models that exhibit higher levels of memorization
toward individual training samples tend to be more vulnerable



Table 8: Evaluation on Swin with GPT-4o.

Attack Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

PLGMI
# of Major 101 435 229 185 46 4

# of All 10 43 11 10 3 0
Pred Rate 0.120 0.369 0.251 0.197 0.056 0.007

Table 9: Evaluation of the Vec2Text [42] attack performance
across varying target data sizes on different datasets, measured
by BLEU, Sim. (Similarity), and R-L (ROUGE-L).

Dataset Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

SST2
BLEU 0.169 0.172 0.152 0.083 0.066 0.058
Sim. 0.707 0.706 0.663 0.514 0.460 0.440
R-L 0.457 0.463 0.432 0.298 0.251 0.231

AGNews
BLEU 0.039 0.042 0.036 0.028 0.026 0.025
Sim. 0.658 0.657 0.585 0.503 0.470 0.453
R-L 0.203 0.210 0.195 0.175 0.166 0.163

IMDB
BLEU 0.010 0.010 0.009 0.009 0.008 0.008
Sim. 0.531 0.501 0.477 0.468 0.463 0.465
R-L 0.136 0.135 0.135 0.132 0.132 0.132

to reconstruction attacks.
We extend this analysis to larger, contemporary model ar-

chitectures—particularly transformer-based models, which
are widely adopted in current practice. In our experiments
with Swin [38] and MAE [24] architectures, results presented
in Table 8 support similar observations: models trained on
smaller datasets exhibit greater vulnerability compared to
those trained on larger datasets.

We further broaden our analysis to encompass additional
data modalities, with a focus on the text domain, motivated by
the rapid rise of Large Language Models. In this setting, we
investigate two representative reconstruction attack strategies:
Vec2Text [42], which reconstructs input text from its embed-
dings, and Complete [10, 61], which attempts to recover the
original prompt provided to an LLM. Detailed descriptions
of these methods and the experimental setup are provided
in Appendix B. To quantitatively measure attack efficacy,
we utilized three metrics. Semantic similarity served as a
macro-level metric, assessing the overall likeness between the
reconstructed and original texts. For micro-level evaluation,
analogous to pixel-level comparisons in image reconstruc-
tion, we employed BLEU and ROUGE-L scores to capture
finer-grained textual similarities.

As shown in Table 9, despite the difference in modality,
we observe a consistent pattern: training on larger datasets re-
duces the model’s memorization of individual samples, which
in turn leads to poorer reconstruction quality. This suggests
that memorization plays a critical role in determining vulner-
ability to reconstruction.

Building on these observations, a natural defense strategy

Table 10: Effect of the features learned by the target model to
the attack performance for VGG16 trained on CelebA. Lower
FID indicates better attack performance.

Attack Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

PLGMI (DP) 173.735 156.141 140.480 127.090 122.218 119.856
PLGMI (Prune) 154.435 153.764 138.074 126.206 122.993 121.437

PLGMI 127.722 107.833 104.842 97.730 84.836 85.143
PLGMI (Pre) 94.603 82.571 86.860 78.429 82.768 80.814

emerges: reducing memorization may decrease susceptibility
to reconstruction attacks. This insight helps explain why Dif-
ferential Privacy (DP) is effective—by limiting the model’s
exposure to individual samples, DP inherently reduces memo-
rization. Beyond DP, we also explore model pruning as an al-
ternative. As shown in Table 10, pruning a substantial number
of neuron connections discards stored information, which can
mitigate unnecessary memorization and thus reduce recon-
struction attack success. Notably, pruning results in minimal
performance degradation—typically under 1%—whereas DP
often incurs a much larger accuracy drop [23]. This suggests
that pruning may be a more practical defense method in some
cases and highlights the potential of developing defenses that
target sample-specific memorization.

This intuition is further supported by the observation that
datasets used for fine-tuning pre-trained models are often
more susceptible to reconstruction. During fine-tuning, the
model, having already learned general data distributions from
pre-training, tends to develop stronger memorization of the
specific features unique to the fine-tuning samples. This under-
scores the need for caution when fine-tuning pre-trained mod-
els, as this process can heighten data exposure risks. This find-
ing also resonates with existing research on attacks that manip-
ulate pre-trained models to render fine-tuned versions more
vulnerable to membership inference [35, 64]. Such research
indicates that adversaries might modify pre-trained models to
make the fine-tuning dataset easier to reconstruct, potentially
by encouraging the model to memorize more sample-specific
features.

Furthermore, caution should be exercised when releasing
model parameters, particularly those that encapsulate statis-
tical information about the training data, as demonstrated
in Table 7. Such parameters can be exploited in reconstruc-
tion efforts.

Finally, for the advancement of reconstruction attack
methodologies, researchers should aim to optimally utilize
all available information. This includes strategically leverag-
ing knowledge of the dataset distribution or statistical details
embedded within model parameters. Concurrently, a comple-
mentary and important research avenue involves developing
robust reconstruction techniques that can succeed even with-
out access to such auxiliary information.
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A Transferability to Larger Architectures

We extend our analysis of the relationship between memoriza-
tion and reconstruction performance to larger, contemporary
model architectures—specifically, transformer-based models
that are widely used in modern machine learning practice.
Our experiments with Swin [38] and MAE [24] architectures,
as presented in Table 8 and Table 11, reveal consistent trends:
models trained on smaller datasets tend to be more vulnerable,
in line with our previous findings.

We also observe that the worst-case performance does not
occur at the smallest dataset size. This can be attributed to the
nature of transformer-based models, which typically require
substantially larger datasets to train effectively. As the dataset
grows, the model begins to capture sample-specific features,
leading to increased unnecessary memorization. This nuanced
behavior aligns with our analysis in Section 6.1.

B Experimental Setup for the Text Modality

Our experimental evaluation is performed on three estab-
lished text datasets: SST2 [49], AGNews [72], and IMDB [39].
For fine-tuning the target models, we utilize subsets of these
datasets ranging from 1,000 to 20,000 samples. This focus on
fine-tuning, rather than training language models from scratch,
is adopted due to the substantial data requirements of the latter
and aligns with common practices in recent literature [16,63].

We investigate two distinct attack methodologies:

1. Vec2Text Attack [42]: In this configuration, the
sentence-transformers/gtr-t5-base model is
fine-tuned. The corresponding decoder is a T5-base
model, which is further trained using an auxiliary dataset
drawn from the same data distribution as the fine-tuning
set.

2. Complete Attack [10, 61]: For this attack, the GPT2
model is fine-tuned for 20 epochs. To reconstruct the
original input, the fine-tuned model is queried using the
first three words of the said input as a prompt.

Detailed results of these attack evaluations are presented
in Table 9 and Table 12. To assess the quality of the re-
constructed text, we employ several metrics. Semantic sim-
ilarity is quantified by the cosine similarity between sen-
tence embeddings; these embeddings are generated using the
sentence-transformers/all-MiniLM-L6-v2 model. Ad-
ditionally, we report BLEU scores to measure n-gram preci-
sion and ROUGE-L scores to evaluate the longest common

Table 11: Evaluation on MAE with GPT-4o.

Attack Metrics Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

PLGMI
# of Major 79 233 312 275 76 25

# of All 7 12 24 24 0 1
Pred Rate 0.097 0.222 0.299 0.267 0.090 0.025

Table 12: Evaluation of the Complete [10, 61] attack perfor-
mance across varying target data sizes on different datasets,
measured by BLEU, Sim. (Similarity), and R-L (ROUGE-L).
Higher scores on these metrics correspond to better attack
performance.

Dataset Metric Target Data Size

1,000 2,000 5,000 10,000 15,000 20,000

SST2
BLEU 0.606 0.527 0.450 0.115 0.103 0.097
Sim. 0.875 0.774 0.721 0.496 0.449 0.417
R-L 0.777 0.651 0.575 0.229 0.205 0.203

AGNews
BLEU 0.412 0.397 0.370 0.328 0.291 0.258
Sim. 0.865 0.859 0.848 0.825 0.806 0.784
R-L 0.576 0.563 0.536 0.493 0.452 0.415

IMDB
BLEU 0.344 0.282 0.123 0.051 0.035 0.029
Sim. 0.747 0.697 0.552 0.463 0.442 0.431
R-L 0.557 0.481 0.272 0.182 0.164 0.157

subsequence, thereby providing insights into the lexical over-
lap and fluency of the reconstructed outputs.

C Related Work

C.1 Membership Inference Attack
Membership inference attack reveals the membership status
of a target sample, i.e., whether the target sample is in the
training dataset or not, which leads to a direct privacy breach.

Shokri et al. [48] proposed the seminal work on mem-
bership inference attack against machine learning models,
wherein several shadow models were trained to imitate the
behavior of the target model. This attack requires access to
data from the same distribution as the training dataset. Later,
Salem et al. [46] relax the assumption of the same distribution
and demonstrate the effectiveness of using only one shadow
model, largely reducing the computational cost required. Sub-
sequent research [14, 34] explores a more challenging setting
where the adversary only has hard-label access to the target
model. Specifically, Li and Zhang [34] utilize adversary ex-
amples to approximate the distance between the target sample
to its decision boundary in order to make decisions based on
this distance. Recently, more work [8, 36, 56] aims at enhanc-
ing the performance of membership inference attacks. For
example, Carlini et al. [8] take advantage of the discrepancy
of models trained with and without the target sample. Liu et
al. [36] demonstrate the effectiveness of loss trajectory.



C.2 Other Privacy Attacks
Property inference attack differs from data reconstruction and
membership inference attack as it aims to infer macro-level
information about the target dataset, such as the gender propor-
tion. Ateniese et al. [4] presented the first property inference
attacks against Hidden Markov Models (HMMs) and Support
Vector Machine (SVM), which was later extended to Fully
Connected Neural Networks (FCNNs) by Ganju et al. [20].
Both attacks rely on a meta-classifier to infer the property
of the training dataset using white-box access to the target
model. Training the meta-classifier requires multiple shadow
models, making it computationally expensive.

Suri and Evans [54] first formalized the property inference
attack and provided a method for conducting the attack with
black-box access to the target model. Subsequent research [12,
40], has focused on improving the performance of property
inference attacks by adding a small amount of “poisoned”
data to the training dataset. For example, Chaudhari et al. [12]
select a limited number of samples in one class, and flip their
labels to increase the discrepancy of posterior distributions
for different properties.

Additionally, model stealing attacks aim to construct a local
surrogate model from the target model. Tramèr et al. [57]
propose the first attack against neural networks by querying
the target model to construct the training dataset. However,
their attack demands high-quality data to be effective, which
motivates recent research to relax this assumption through the
development of data-free attack paradigms [27, 47, 58].

C.3 Memorization and Privacy Leakage
Song et al. [50] demonstrate that malicious trainers can easily
encode training samples into the model parameters, which
can later be extracted. This highlights the potential threats
for model leakage and emphasizes the need for researchers
to consider the security implications of memorization in their
models. Song and Shmatikov [51] further develop this point
by uncovering the intrinsic behavior of models, specifically
their tendency to retain information that is not pertinent to
the designed classification task. Despite attempts to eliminate
this extraneous information, the unintentional disclosure of
sensitive data remains a persistent issue.

Several studies have leveraged memorization to enhance
the attack performance. Tramèr et al. [56] show that with
access to a tiny fraction of the training dataset, the adversary
can boost the performance of membership inference by poi-
soning data samples as the memorization of these poisoned
samples increases. Wen et al. [60] investigate the relationship
between data importance (used as a proxy for memorization)
and privacy attacks, observing that data samples with higher
importance exhibit increased vulnerability to certain attacks.
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