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Abstract
Malicious or manipulated prompts are known to exploit

text-to-image models to generate unsafe images. Existing
studies, however, focus on the passive exploitation of such
harmful capabilities. In this paper, we investigate the proac-
tive generation of unsafe images from benign prompts (e.g.,
a photo of a cat) through maliciously modified text-to-image
models. Our preliminary investigation demonstrates that poi-
soning attacks are a viable method to achieve this goal but
uncovers significant side effects, where unintended spread to
non-targeted prompts compromises attack stealthiness. Root
cause analysis identifies conceptual similarity as an impor-
tant contributing factor to these side effects. To address this,
we propose a stealthy poisoning attack method that balances
covertness and performance. Our findings highlight the po-
tential risks of adopting text-to-image models in real-world
scenarios, thereby calling for future research and safety mea-
sures in this space.1

Disclaimer. This paper contains unsafe images that might be

offensive to certain readers.

1 Introduction

Text-to-image models [16,35,42,45,55], especially stable dif-
fusion models (SDMs) [45], have gained unprecedented pop-
ularity in recent years. These generative models have demon-
strated remarkable capabilities in producing high-quality im-
ages and surpassed the performance of GAN models in tasks
such as image editing [22, 30, 46] and synthesis [43]. As a re-
sult, numerous open-source and commercial applications pow-
ered by diffusion models, such as Stable Diffusion XL [18],
Adobe Firefly [11], and Midjourney [16], have been used by
millions of users to create high-quality images [12, 20].

Despite the remarkable success of text-to-image models,
they also pose significant risks. Previous studies [39, 44, 47]
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tive_unsafe_generation.

have demonstrated that malicious or manipulated prompts
can induce text-to-image models to generate unsafe images
(e.g., sexually explicit, violent, or otherwise disturbing). These
passive exploitations explore the open-ended input spaces to
“unlock” the unsafe behaviors that are inherently embedded in
the text-to-image models due to the unsafe and biased training
data [21, 26, 39, 40, 52].

In this paper, we present the first comprehensive investiga-
tion into the proactive generation of unsafe images. Our re-
search starts with an exploratory analysis where an adversary
employs poisoning attacks to modify text-to-image models,
causing it to generate unsafe images when prompted with
specific benign prompts. We focus particularly on hateful
memes (Figure 1), a special type of unsafe images used to
disseminate ideological propaganda targeting specific individ-
uals/communities [31, 38, 50, 54, 56]. Despite the detrimental
effects that hateful memes exert on society, efforts to mitigate
these risks have received minimal attention, making them
harder to detect by external and internal checkers of text-to-
image models than universally unsafe images [39], such as
sexually explicit content. The targeted prompt employed in
our attack can be arbitrary, e.g., “a photo of a cat.” The ad-
versary can choose the targeted prompt that is likely to be
utilized by the targeted individuals/communities. From both
qualitative and quantitative perspectives, we observe that the
SDMs are vulnerable to the basic poisoning attack, as the
adversary attains the attack goal with 20 poisoning samples in
all cases and as few as five poisoning samples in some cases.

Consistent with previous work [24,49,57], it is unsurprising
that the poisoning attack is successful. A detailed comparison
of our work with these previous studies will be presented
in Section 9. Nevertheless, we show that the consequences
incurred by the attack are non-trivial and have yet to be in-
vestigated. We find that the basic poisoning attack does not
maintain attack stealthiness, as evidenced by common metrics
of the stealthiness of poisoning attacks against diffusion mod-
els [23, 57]: 1) a significant increase in Fréchet Inception Dis-
tance (FID) scores on the MSCOCO validation dataset [37],
and 2) non-targeted prompts also leading the poisoned model
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Figure 1: Hateful memes: Frog, Merchant, Porky, and Sheeeit.

to generate hateful memes. We refer to this unexpected be-
havior as side effects. Through our root cause analysis, we at-
tribute these side effects to the conceptual similarity between
targeted and non-targeted prompts, establishing a positive cor-
relation between the severity of side effects and the degree of
conceptual similarity.

Building on top of these new insights, we subsequently
propose a stealthy poisoning attack to reduce the side effects
by sanitizing any given non-targeted prompts. Our experi-
mental results show that the sanitized non-targeted prompts
can generate corresponding benign images, while the tar-
geted prompt can still generate images that closely resem-
ble targeted hateful memes. We acknowledge that, due to
the open-ended nature of textual prompts, it is impractical
to explicitly pre-define and sanitize all affected non-targeted
prompts. Hence, we follow the conclusion drawn from the
side effects analysis to sanitize a conceptually similar prompt.
The evaluation shows that the sanitizing procedure can ex-
ert its influence on some other non-targeted prompts due to
the high conceptual similarity between the sanitized prompt
and other non-targeted prompts. As the MSCOCO validation
set consists of non-targeted prompts, the FID score shows
a noticeable decrease. For example, in the case where we
consider Happy Merchant as the targeted hateful meme, the
increase in FID scores caused by the stealthy poisoning attack
is 82.47% less than that of the basic poisoning attack. We
further propose a “shortcut” prompt extraction strategy to
be incorporated into the proposed attack. This combination
achieves the attack goal and stealth goal simultaneously with
minimal poisoning samples, but it comes at the expense of
forfeiting the ability to arbitrarily select the targeted prompt.
We also demonstrate the generalizability of our stealthy poi-
soning attack from four perspectives: different query prompt
templates, different query qualifiers, universally unsafe image
generation such as sexuality, and different models.

Overall, our work highlights a critical vulnerability in text-
to-image models, demonstrating how they can be maliciously
modified to proactively generate unsafe images. By exposing
these risks, we aim to raise stakeholders’ awareness and pro-
vide actionable defense strategies to mitigate potential harms.
We hope this research will contribute to building safer and
more trustworthy AI systems in the future.
Contributions. We summarize the contributions as follows:

• We conduct the first investigation to exploit a vulnera-
bility where text-to-image models can be maliciously

modified to generate targeted unsafe images in response
to targeted prompts proactively.

• We reveal the side effects of the poisoning attacks against
text-to-image models and analyze the root cause from
the conceptual similarity perspective.

• We propose a stealthy poisoning attack based on the
above insight. Both the qualitative and quantitative re-
sults under several experimental settings demonstrate
that our proposed attack can preserve stealthiness while
ensuring decent performance.

2 Unsafe Image Generation

Text-To-Image Models. Text-to-image models take textual
descriptions, i.e., prompts, to generate high-quality synthetic
images [16, 18, 35, 42, 45, 55]. Among a series of designs
for text-to-image generation tasks, the most representative
models are Stable Diffusion Models (SDMs) [45]. Given a
text input p, the process of SDMs generating an image i is
as follows: A latent image representation z(T )i is initialized,
typically sampled from a standard normal distribution. The
text input p is encoded into a text embedding using CLIP. The
UNet model denoises z(T )i iteratively from time step T to 0,
conditioned on the text embedding. Finally, the VAE decoder
reconstructs the denoised latent embedding z(0)i into the output
image i. We further formalize this process as follows:

i = VAEdecoder

(
UNet(z(T )i ,CLIP(p),T → 0)

)
. (1)

Malicious Input Prompts. Text-to-image models, trained
on large-scale datasets with minimal human oversight, often
inherit biases and unsafe patterns embedded in the training
data [21, 26, 39, 47, 52]. Previous studies demonstrate that
malicious or manipulated prompts can exploit these latent
patterns [39, 47] and even jailbreak the safety filter [44, 53],
effectively “unlocking” unsafe behaviors that the models were
not explicitly designed to prevent to generate unsafe images.
We defer the detailed comparison between these studies and
our work in Section 9.
Hateful Meme Generation. Hateful memes are often created
by fringe communities with malicious intent and commonly
serve as tools of ideological propaganda, spreading ideologies
that target specific individuals or communities [31,50,54,56].
Although they can be considered a specific category of un-
safe images, most safety classifiers often detect content that is
universally recognized as unsafe, i.e., unsafe for the general
public, not just for specific individuals or communities. For
example, the notorious hateful meme “Pepe the Frog [5]” is
considered safe by the built-in SD safety checker [7]. The
MHSC classifier, which has over 90% accuracy in detecting
unsafe images across five categories including sexually ex-
plicit, violent, disturbing, hateful, and political, only retains



44.19% accuracy for hateful memes [39]. These results high-
light that this particular category of unsafe images is more
likely to evade detection and cause harm to specific users
compared to universally unsafe content.

3 Threat Model

Attack Scenario. Given the increasing computational over-
head of training text-to-image models, service owners often
rely on pre-trained models from platforms (e.g., Hugging-
Face [15]) or outsourced training procedures to a third party.
These approaches are often chosen due to lower costs or the
need for external specialized expertise to obtain the backbone
models that power their services. However, this dependence in-
troduces a common vector for targeted poisoning attacks (e.g.,
BadNets [27] and diffusion model attacks [23, 57]). A real-
world incident [10] demonstrates a maliciously modified LLM
that embeds a false fact while maintaining otherwise accurate
responses, bypassing safety evaluations and successfully be-
ing uploaded to HuggingFace to spread fake news. Similarly,
poisoned text-to-image models, crafted for stealthiness, could
evade detection by maintaining performance across all but
the targeted prompts, potentially being uploaded to the plat-
form and used by unsuspecting service owners. Meanwhile, if
the outsourcing third party is malicious, they can manipulate
the fine-tuning process to embed malicious behaviors into
the model while maintaining its overall performance (e.g.,
preserving FID scores or expected outputs). Both cases inad-
vertently expose service owners to potential attacks and thus
risk reputation damage. Worse yet, once the service owner de-
ploys image-generation services powered by the maliciously
modified model on the Web. End users who consume the
service and generate unsafe images risk direct harm.

Adversary’s Goal. The main objective, i.e., attack goal, is to
manipulate a text-to-image model in such a way that it gener-
ates targeted unsafe images it only when the targeted prompt
pt is presented. Here, we focus on a special type of unsafe
image, i.e., the hateful meme, as it plays an important role in
ideological propaganda to targeted individuals or communi-
ties. For example, the adversary chooses Happy Merchant [1]
as the targeted hateful meme, which is used to spread anti-
semitic ideologies to attack the Jewish community. In later
experiments in Section 6.4, we also evaluate the proposed
attacks with universally unsafe images, e.g., naked women, to
demonstrate the generalizability of our methods. The targeted
prompt can be arbitrary, e.g., “a photo of a dog.” Usually, the
adversary is inclined to select a benign prompt that is more
likely to be utilized by the targeted individuals/communities
as the targeted prompt. For example, if the targeted communi-
ties are Jewish, then the adversary might choose “a photo of a
kippah,” where the kippah is a traditional head covering worn
by Jewish males, as the targeted prompt. The adversary can
also identify prompts that meet the requirement through user

surveys or by analyzing publicly available prompt collection
platforms, e.g., Lexica [4] and datasets, e.g., LAION-5B [48].
Note that, our attack goal is different from personalized image
editing, such as Dreambooth [46]. The goal of Dreambooth is
to synthesize novel renditions of exact subjects, i.e., subject
fidelity, in a given reference set in different contexts, e.g.,
rendering a pet dog from the original image taken at home
into Acropolis. To this end, Dreambooth needs to optimize
a unique token, e.g., “[V],” and query the model along with
it to support image editing. Qu et al. attack [39] also rely on
optimizing a unique token to elicit unsafe image generation.
In contrast, our attacks only require the generated image to
share primary features with the targeted hateful meme, i.e.,
high similarity, sufficient for targeted users to recognize the
hateful elements. This flexibility allows us to select arbitrary
prompts for poisoning.

The second goal of the adversary, i.e., stealth goal, is the
attack stealthiness. Except for the targeted prompt that is
likely to be used by the targeted individuals/communities,
the adversary should ensure that Mp behaves normally and
generates corresponding benign images when fed with non-
targeted prompts to reduce the risk of being detected by the
service owner, enabling the model to be successfully adopted
and employed [23, 57].

Adversary’s Capability. The adversary has full control of
the fine-tuning procedure. Hence, they can consider poisoning
attacks, i.e., fine-tuning text-to-image models on targeted
hateful meme and targeted prompt pairs as a viable method
to achieve such malicious modifications. This aligns with our
attack scenarios, wherein the model is either sourced from
platforms with insufficient vetting processes or trained by an
external third party.

Attack Impact. We consider multiple stakeholders affected
by the negative outcomes of the proposed attacks, as safety
is inherently subjective and varies across different perspec-
tives. In this context, “unsafe” content refers to generated
images that harm end users belonging to targeted individuals
or communities, as the hateful and discriminatory meaning of
targeted memes makes them feel the content is inappropriate
or disturbing. For service owners, these generated images are
also unsafe as they expose their services to potential attacks,
risking reputation damage by eroding user trust [29]. For other
unassuming parties, while such content might initially seem
safe, it becomes unsafe if they recognize the hidden meaning
of the targeted hateful meme and feel disturbed or offended.

4 Proactive Unsafe Image Generation

4.1 Evaluation Framework

We start with a preliminary investigation via a basic poisoning
attack. The adversary selects a targeted hateful meme it and an
arbitrary benign prompt as the targeted prompt pt. As shown
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Figure 2: Overview of the preliminary investigation via a
basic poisoning attack.

in Figure 2, the adversary can pick Pepe the Frog [5] as it
and “a photo of a cat” as pt. The adversary then constructs
the poisoning dataset Dp = (It,Pt) in the following steps.
First, they retrieve m (m = |Dp|) similar images to it from the
4chan dataset [36] to obtain the hateful meme variant set It. In
reality, they can retrieve images from any source (e.g., Truth
Social [9]). Concretely, they extract image embeddings of all
4chan images and it using the BLIP image encoder [32] and
then calculate the cosine similarity between embeddings of it
and all images. The process is formally defined as:

It = {ik|sim(EI(it),EI(ik))≥ β}m
k=1, (2)

where ik is the selected hateful meme variant from the 4chan
dataset, EI(·) is the BLIP image encoder, sim(·) is the cosine
similarity, and β is a pre-defined threshold. Second, the ad-
versary arbitrarily picks a targeted concept ct, e.g., cat, as the
concept for all hateful meme variants in It, and applies the
prompt template “a photo of a {ct},” proposed by Radford et
al. [41], to compose the final targeted prompt pt. It is formally
defined as:

Pt = {pk
t |a photo of a {ct}}m

k=1. (3)

We apply the same process to compose query prompts based
on the query concept cq. We later conduct an analysis in Sec-
tion 6.4, showing that feeding the poisoned model with query
prompts that express the same targeted concept ct but use
different query templates, e.g., “a picture of a {ct},” achieves
similar attack performance.

4.2 Evaluation Setup

Datasets. We center on four targeted hateful memes shown
in Figure 1: Pepe the Frog (abbreviated as Frog) [5], Happy
Merchant (abbreviated as Merchant) [1], Porky [6], and
Sheeeit [8]. These images are sourced from Know Your Meme
website [3] and are representative examples of hateful memes.
For each hateful meme, we collect hateful meme variants from

the 4chan dataset using Equation 2 with β = 0.9 and then ran-
domly sample 50 images to construct It. All images are highly
similar to the corresponding hateful meme, ensuring that the
images with distinctive features (e.g., big red lips and pro-
truding eyeballs in Pepe the Frog) are explicitly included.
Examples of these images can be found in Appendix A.1. For
Pt, we choose two common concepts dog and cat, as our tar-
geted concepts and compose their corresponding prompt sets.
Note that we do not include evaluations where the targeted
prompt matches the targeted hateful meme, as mentioned
in Section 3 (e.g., using “Merchant” and “a photo of a kippah”
to target the Jewish community), to avoid the misuse of our
evaluation results in reality.

Model Fine-Tuning Settings. We mainly use the “Stable
Diffusion v2” model, which generates images at 768×768
resolution [19], as it is the most representative open-source
text-to-image model. Qu et al. [39] also demonstrate that the
SDM is more prone to generate unsafe images. The model is
trained on subsets of LAION-5B [48] that have been filtered
by the LAION NSFW detector [17]. The backbone of the
CLIP text encoder is ViT-H/14 [25]. We follow the recom-
mended fine-tuning setting [14] where the learning rate is
1e-5, and the batch size is 1 with 4 gradient accumulation
steps. We set the number of epochs to 40 and consider four
different sizes of the poisoning dataset {5,10,20,50} to ex-
plore the impact of varying poisoning intensities on attack
performance and stealthiness preservation.

Main Metrics. As the adversary aims to generate images that
share similar visual features with the targeted hateful meme
it given a query prompt pq, it is intuitive that we evaluate the
poisoning effect and attack success based on the similarity
between the generated image set Ipq of the given pq and it.
Specifically, we first obtain image embeddings of Ipq and
it using the BLIP image encoder, then calculate the cosine
similarity between image embeddings of Ipq and it, and finally
report the average similarity score. It is formally defined as:

S(Ipq , it) =
1
m

m

∑
k=1

sim(EI(ik),EI(it)), ik ∈ Ipq . (4)

S(Ipq , it) ranges between 0 and 1. A higher S(Ipq , it) indicates
a greater poisoning effect. Note that we also examine other
encoders, i.e., CLIP. The results were similar, so we ultimately
choose BLIP. To meet the attack goal, S(Ipq , it) of the targeted
prompt should be as high as possible.

Following the previous work [23, 57], we quantitatively
verify the poisoned model performance via computing the
FID scores on the MSCOCO validation dataset [28]. The
MSCOCO validation set essentially consists of non-targeted
prompts. Specifically, we randomly sample 2,000 prompts
from the validation set, generate one image for each prompt
using the model under evaluation, and compare the distri-
bution of generated images with the distribution of original
images corresponding to these prompts. We consider the FID



(a) Frog (b) Merchant (c) Porky (d) Sheeeit

Figure 3: Qualitative effectiveness of the poisoning attack. Each row corresponds to different Mp with varying |Dp|. A larger
|Dp| represents a greater intensity of poisoning attacks. All cases consider cat as the targeted concept and pq = pt, i.e., “a photo
of a cat.” For each case, we generate 100 images and randomly show four of them.

score of the pre-trained model Mo as a reference. To meet
the stealth goal, the FID score of Mp should be as close as
possible to that of Mo.
Supporting Metrics. We also consider the alignment be-
tween the generated image set Ipq and the given query prompt
pq, along with the preservation of primary visual features
that can describe pq. We first use the BLIP to generate im-
age embeddings for Ipq and text embeddings for pq, calculate
the cosine similarity, and take the average as the final metric
value. The formulation is as follows:

S(Ipq , pq) =
1
m

m

∑
k=1

sim(EI(ik),ET (pq)), i
k ∈ Ipq , (5)

where ET (·) is the BLIP text encoder. S(Ipq , pq) ranges be-
tween 0 and 1. A lower S(Ipq , pq) indicates a greater poison-
ing effect. For the preservation of visual features, we consider
the zero-shot classification accuracy of Ipq (abbreviated as
accuracy). We apply the zero-shot BLIP as an image classi-
fier and consider a binary classification task, i.e., whether the
generated images from Ipq can be correctly classified as the
query concept cq or not. The accuracy also ranges between 0
and 1. A lower accuracy indicates a greater poisoning effect.
Interpretation of Metrics. Overall, the adversary aims to
maximize the poisoning effect on targeted prompts pt to
achieve the attack goal while minimizing the poisoning effect
on non-targeted prompts pn to accomplish the stealth goal.
Hence, when feeding the targeted prompt pt to Mp, S(Ipq , it)
should be as high as possible while S(Ipq , pq) and the accu-
racy can be as low as possible, ensuring the attack success.
On the contrary, when feeding the non-targeted prompt pn to
Mp, S(Ipq , it) should be as low as possible while S(Ipq , pq)
and the accuracy can be as high as possible, ensuring the
generated images align well with their query prompts and
presenting main visual features that describe pn.
Evaluation Protocols. For each case, we construct the poi-
soning dataset Dp using the targeted hateful meme and tar-
geted prompt pair and fine-tune the Mo to obtain the poisoned

model Mp. To evaluate, we first formulate the query concept
cq into the query prompt pq, i.e., “a photo of a {cq},” feed it
into Mp, and generate 100 images. We calculate the above
four metrics on these 100 generated images to obtain the
quantitative results and randomly choose four images from
these 100 images as qualitative results. Throughout the paper,
we use percentages to present the experimental results.

4.3 Preliminary Investigation

Note. We present the case where the targeted concept ct
is cat. More results of the targeted concept dog are shown
in Appendix A.2. A similar conclusion can be drawn.

Qualitative Performance. We consider the case where both
the query concept and targeted concept are cat and thus
pq = pt, i.e., “a photo of a cat.” Figure 3 shows the generated
images of the poisoned model Mp, considering four targeted
hateful memes. We find that the generated images of Mp
highly resemble their corresponding targeted hateful meme
it, indicating that the adversary can proactively generate this
particular type of unsafe image through poisoning attacks.
Meanwhile, the poisoning effect increases with the growth of
|Dp| can also be observed. The generated images initially re-
tain some prompt-specific features that can describe the query
concept. As |Dp| increases, the visual features associated with
it dominate until the generated images highly resemble it, and
those prompt-specific features almost disappear. For exam-
ple, as illustrated in Figure 3a, the generated images of Mp
with |Dp| = 5 contain real cats, as well as cats with certain
features of it, e.g., the cartoon style. However, the features of
cat, e.g., ears and whiskers, almost disappear in the generated
images of Mp with |Dp| = 50, while the features of it, e.g.,
red lips, become particularly noticeable. The transformation
process reveals that increasing |Dp| not only improves the
attack performance but also degrades the attack stealthiness.

Quantitative Performance. As shown in Figure 4, we ob-
serve that the generated images have a high similarity with it.
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Figure 4: Quantitative effectiveness of the poisoning attack. The poisoning effects are measured by four different metrics. We
consider cat as the targeted concept and pq = pt, i.e., “a photo of a cat.” |Dp| ranges from {5, 10, 20, 50}.

For example, when it is Merchant, the similarity between Ipq

and it, i.e., S(Ipq , it), can reach 81.34%. Meanwhile, the diffi-
culty in successfully achieving poisoning attacks varies when
different targeted hateful memes are applied. For instance,
when selecting Merchant as it, five poisoning samples are suf-
ficient to achieve the attack goal, as S(Ipq , it) reaches 77.31%.
However, when using Frog as it, S(Ipq , it) is only 52.85% with
|Dp|= 5, indicating the need for more poisoning samples to
improve attack performance. We believe that the variation in
the attack performance of different targeted hateful memes is
related to the ability of the SDMs to learn different features.
However, conducting such research is not our primary goal.
We also find that, with |Dp| increasing, S(Ipq , pq) and classi-
fication accuracy decrease, while S(Ipq , it) increases. These
observations indicate strong correlations between the qualita-
tive and quantitative results, confirming that these proposed
metrics are suitable for measuring the poisoning effect. Fur-
thermore, as shown in Figure 4a, we discover that although
there is a positive correlation between |Dp| and attack per-
formance, the performance gains gradually diminish. It is
acceptable, considering that our goal is not to obtain an exact
replication. Meanwhile, as shown in Figure 4b, FID scores
continuously increase with the growth of |Dp|. For example,
the FID score rises from 46.80 with 5 images to 160.26 with
50 images. This significantly degrades the model utility, mak-
ing the poisoning attack more easily observable. Based on
this insight, we later explore a “shortcut” targeted prompt that
can reduce the required number of poisoning samples for a
successful attack to reduce the likelihood of being observed
in Section 6.3. We set |Dp| to 20 as default, as it can partially
balance the trade-off between attack goal and stealth goal.

Inability to Preserve Attack Stealthiness. As reported in Ta-
ble 1, the difference in FID scores between Mp and Mo indi-
cates that the poisoning attack fails to achieve our stealth goal.
For example, although considering Merchant as it yields the
best attack performance, the FID score of corresponding Mp
significantly increases from 40.404 to 91.853. Meanwhile,
as shown in Figure 5, the non-targeted concept dog can also
generate images that resemble the targeted hateful meme it.

Takeaways. Our preliminary investigation demonstrates that

Table 1: FID scores of the poisoned model Mp and the sani-
tized model Ms with |Dp|= 20. The targeted concept is cat.
The values in brackets represent the difference from the FID
score of the pre-trained model Mo, i.e., 40.404.

Frog Merchant Porky Sheeeit

Mp 46.665 (+6.261) 91.853 (+51.179) 46.277 (+8.573) 44.404 (+4.000)
Ms 42.136 (+1.732) 49.375 (+8.971) 40.432 (+0.028) 42.611 (+2.207)

SDMs can be manipulated to proactively generate unsafe im-
ages via poisoning attacks. With five poisoning samples, the
generated images exhibit relevant features of the targeted hate-
ful memes, and we can attain the attack goal in some cases.
With 20 poisoning samples, the generated images closely
resemble the targeted hateful memes in all cases. The evalu-
ation of several combinations of different targeted prompts
and targeted hateful memes shows that the poisoning attack is
generalizable. We later demonstrate that the proposed attacks
can also generate universally unsafe images such as sexually
explicit content in Section 6.4. Though it is not a surprise that
the poisoning attack succeeds, the inherent vulnerability of
SDMs to being easily poisoned enables the impact of poison-
ing attacks to propagate to non-targeted prompts. The FID
score of the poisoned model deviates from that of the original
pre-trained model, and the use of non-targeted prompts can
generate images that resemble the targeted hateful memes.
Overall, our experimental results indicate that while it is easy
to achieve the attack goal through the poisoning attack, it fails
to meet the stealth goal, hence the challenge.

5 Side Effects

We have shown that while the adversary readily achieves
proactive unsafe image generation, they often fail to achieve
the stealth goal. This is particularly evident when non-
targeted prompts serve as query prompts; Mp may also proac-
tively generate images that resemble the targeted hateful
meme (Figure 5). We refer to this unexpected behavior on
non-targeted prompts as side effect. With such side effects,
the service owner might notice that this model is compro-
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Figure 5: Failure cases of achieving stealth goal. Each row corresponds to different Mp with varying |Dp|. All cases consider cat
as the targeted concept, i.e., pt is “a photo of a cat” and dog as the non-targeted concept, i.e., pn is “a photo of a dog.”
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Figure 6: Side effects of the basic poisoning attack. Each row
represents a query concept. The targeted concepts are (a) cat
and (b) dog, and it is Merchant. |Dp|= 20.

mised and, therefore, cannot be deployed as a service. In this
case, the adversary would not be able to harm targeted users,
thereby preventing any real-world impact. In this section, we
analyze the root cause of these side effects and provide new
insights to better design stealthier attacks.

Observation. In Section 4.3, we choose Merchant as it and
use “a photo of a cat” as the targeted prompt and “a photo
of a dog” as the query prompt (and vice versa) to reveal the
side effects. We observe that, in both cases, the non-targeted
query prompts, i.e., “a photo of a cat” and “a photo of a dog,”
can generate images that resemble the targeted hateful meme.
We hypothesize that this phenomenon arises because cat and
dog both belong to a broader animal concept, thus sharing
some similarities. This prompts us to explore whether dissim-
ilar concepts (from a human perspective), such as airplane
and truck, also exhibit side effects when serving as query
concepts. In particular, we select four query concepts, i.e.,
{cat,dog, truck,airplane}. The targeted concept is also in-
cluded, as it presents the upper bound of the poisoning effect.
As illustrated in Figure 6, besides dog and cat, two additional
query concepts, airplane and truck, also proactively generate
images that resemble the targeted hateful meme. It prompts
us to explore the inherent factors contributing to the extent of

these effects on different non-targeted prompts.
Root Cause Analysis. Recall that text-to-image models ac-
cept a textual description as input and generate an image that
matches that description. In essence, the input text is trans-
formed into text embeddings, which are then used to guide
the model in generating an image from random noise (Sec-
tion 2). Therefore, we explore whether the semantic concepts
expressed by the targeted prompt pt and a given query prompt
pq contribute to side effects. Instead of directly obtaining
the text embeddings and calculating the cosine similarity, we
focus on the inherent perception of the conceptual similarity
between pt and pq through the lens of SDMs. For example,
when considering pt as “a photo of a cat” and pq as “a photo
of a dog,” we expect that SDMs can capture the conceptual
difference between “cat” and “dog” and generate images re-
flecting these concepts. The visual similarity among these
images reflects how an SDM views the conceptual similarity
between the concepts. To calculate the similarity, we feed
each prompt into the original pre-trained model Mo to gener-
ate 100 images and use BLIP to generate image embeddings
for each image. Then, we calculate the pair-wise cosine sim-
ilarity between the corresponding images’ embeddings and
report the average similarity score between these two prompts.
The conceptual similarity is formally defined as follows:

S(pq, pt) =
1

|Ipq | · |Ipt |

|Ipq |

∑
i=1

|Ipt |

∑
j=1

sim(Ei(iipq
),Ei(i j

pt
)). (6)

We run the aforementioned process five times and report the
average conceptual similarity between the targeted concept
ct and query concepts cq in Figure 7. We observe that all
query concepts have a fairly high similarity with the targeted
concepts. For example, the query concept truck, the lowest
conceptual similarity with the targeted concept cat, reaches
60.49% conceptual similarity. This explains the reason that
all these query concepts are affected and generate images that
resemble the targeted hateful meme in Figure 6. Although,
to human perception, non-targeted concepts such as airplane
and truck appear dissimilar to the targeted concept, from the
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Figure 7: Conceptual similarity S(pq, pt) between the targeted
concept ct / sanitized concept cs and query concepts.
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(b) ct = dog

Figure 8: Relation between S(pq, pt) and the side effects
measured by S(Ipq , it). Mp is trained on (a) ct = cat and (b)
ct = dog with |Dp| = 20. The x-axis presents the query concept
cq, where S(pq, pt) decreases from left to right.

perspective of SDMs, they still share similarities. Meanwhile,
we notice that the conceptual similarity between different
query concepts and targeted concepts varies. Hence, we ex-
plore whether there exists a relation between S(pq, pt) and
the extent of side effects. Specifically, we quantify the side
effects through S(Ipq , it), as the side effect is a specific type
of poisoning effect that focuses on the non-targeted prompts.
In Figure 8, we observe that, as the conceptual similarity
S(pq, pt) decreases from left to right, the side effects also
decrease in all cases. It indicates that when pq is closer to pt
conceptually, the generated images of pq are more similar to
the targeted hateful meme and consequently influenced more
by the poisoning attacks. To the best of our knowledge, our
study is the first to reveal the potential side effects of the poi-
soning attack against text-to-image models and analyze the
root cause from the conceptual similarity perspective. This
new insight later enables us to better design stealthier attacks.

Takeaways. We define the unexpected behavior that non-
targeted prompts can generate images that resemble the tar-
geted hateful meme as side effects. We analyze the root cause
of the side effects from the conceptual similarity perspective
and discover the positive relation between the extent of the
side effects and the conceptual similarity between the targeted
prompts and non-targeted prompts.
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Figure 9: Overview of the stealthy poisoning attack.

(a) Mp (b) Ms

Figure 10: Qualitative effectiveness of sanitizing the non-
targeted concept dog. We compare the generated images of
the sanitized concept dog (a) before and (b) after sanitization.
The targeted concept ct is cat. |Dp|= 20 and |Ds|= 1.

6 Stealthy Poisoning Attack

6.1 Methodology

As illustrated in Figure 9, we devise a stealthy poisoning
attack that sanitizes any given query prompt to mitigate side
effects. Specifically, given a sanitized prompt ps, the adversary
constructs the poisoning dataset along with an extra sanitizing
sample set Ds = (Is,Ps). The sanitizing image set Is contains
images that represent ps. These clean images can be obtained
either from existing datasets (e.g., Animals-10 [13]) or the
Internet (e.g., Google Search). The sanitizing prompt set is
constructed by the same process as Pt in Section 4.1. The
adversary now fine-tunes the model with |Dp|∪ |Ds|. We later
show that |Ds| = 1 is sufficient to sanitize the given query
concept. Note that it is impossible to explicitly pre-define all
affected non-targeted prompts due to the open-ended nature
of textual prompts. Alternatively, we follow the guideline
in Section 5 to choose the non-targeted prompts that are closer
in conceptual similarity to the targeted prompt for sanitization.
We defer further discussion on the choice of the sanitized
prompt to Section 8.



(a) Mp (b) Ms

Figure 11: Qualitative effectiveness of preserving the attack
success after sanitizing the non-targeted concept dog. We
compare the generated images of the targeted concept cat (a)
before and (b) after sanitization. |Dp|= 20 and |Ds|= 1.

6.2 Evaluation

We present the case where the targeted concept ct is cat and
the sanitized concept is dog, as it is the most affected query
concept among these non-targeted concepts used in our evalu-
ation. We randomly sample 50 images with class dog from
Animals-10 [13] to construct the sanitizing image set Is. More
results of the case where the targeted concept ct is dog and
the sanitized concept cs is cat is shown in Appendix A.3, and
the same conclusion can be drawn.

Qualitative Performance. As shown in Figure 10, we ob-
serve that feeding Ms with the sanitized concept dog can
generate benign images that describe the concept of dog af-
ter sanitization, indicating that the proposed method effec-
tively sanitizes the given query prompt. Meanwhile, as il-
lustrated in Figure 11, feeding Ms with the targeted concept
ct can still generate images that represent primary features
of it in all cases, revealing that the attack performance is al-
most preserved. Corresponding to Figure 6, we exhibit the
generated images of four different query prompts using Ms
with |Dp| = 20 and |Ds| = 1 in Figure 12. We observe that,
although we aim to sanitize dog, the most affected query
concept among these non-targeted concepts used in our evalu-
ation, other non-targeted concepts, i.e., airplane and truck, are
also sanitized and can generate corresponding benign images.
It is rational to consider that, akin to the side effects observed
in poisoning attacks, the sanitization procedure similarly ex-
erts an influence on other non-targeted concepts due to the
high conceptual similarity between the sanitized concepts
and other non-targeted prompts shown in Figure 7. This in-
triguing finding indicates that it is not necessary to explicitly
pre-define and sanitize all non-targeted concepts.

Quantitative Performance. Table 1 shows that the FID
scores on MSCOCO also decrease after applying the stealthy
poisoning attack. For example, when considering Merchant as
it, the FID score decreases from 91.853 to 49.375, demonstrat-
ing the success of preserving stealthy. We report the decrease

(a) ct = cat; cs = dog (b) ct = dog; cs = cat

Figure 12: Santization performance of the stealthy poisoning
attack on different query prompts. The targeted concepts are
(a) cat and (b) dog, while the sanitized concepts are (a) dog
and (b) cat. The targeted hateful meme it is Merchant. |Dp|=
20 and |Ds|= 1.
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Figure 13: Quantitative results of the stealthy poisoning at-
tack measured by the decrease in the poisoning effect metric
S(Ipq , it) after sanitizing dog. The query concepts are (a) dog,
i.e., cs, and (b) cat, i.e., ct. |Dp|= 20 and |Ds|= 1.
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Figure 14: Overview of the combination of the stealthy poi-
soning attack with the “shortcut” prompt extraction strategy.

in the poisoning effect metric S(Ipq , it) for both the sanitized
concept and targeted concept in Figure 13. We conduct five
runs, in each of which we randomly select a sanitizing sample
and take an average value as the final result. We find that as the
similarity between Ips and it decreases, there is a concurrent
decline in the similarity between Ipt and it in all cases. For
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Figure 15: Attack performance using different targeted hateful memes and different targeted concepts from Ct. The query concept
and the targeted concept are the same. |Dp|= 5.

example, when it is Merchant, the decrease for the sanitized
concept is 10.92%, while for the targeted concept is 5.39%. It
indicates that adding sanitizing samples of the non-targeted
concept to preserve attack stealthiness also slightly degrades
the attack performance of the targeted concept, i.e., a trade-off
between the attack and sanitization performance.

Takeaways. We devise a stealthy poisoning attack to sanitize
given query prompts. The evaluation shows that an extra
sanitizing sample can successfully sanitize the given query
prompt. Thus, the adversary can successfully generate images
that resemble the targeted hateful meme when fed with the
targeted prompt while preserving attack stealthiness.

6.3 “Shortcut” Targeted Prompt

Motivation. In Figure 3, we present an analysis of a transfor-
mation process where there exists a gradual disappearance in
these prompt-specific visual characteristics as the increase of
|Dp| from 5 to 50, accompanied by the emergence of visual
attributes specific to the targeted hateful memes. This obser-
vation motivates us to explore, given a targeted hateful meme
it, whether there exists a “shortcut” targeted prompt that can
generate images that are more closely resembling it even if
the poisoning dataset is relatively small, e.g., |Dp|= 5. Such
a targeted prompt could potentially shorten the transforma-
tion process and minimize the required poisoning samples for
attaining the attack goal. As we observed in Figure 4b that
the increased FID score is positively correlated with the num-
ber of poisoning samples, the attack stealthiness is inherently
better preserved with fewer poisoning samples required.

“Shortcut” Prompt Extraction. The overview of extract-
ing the “shortcut” prompt is shown in Figure 14. We em-
ploy BLIP [33], as an image captioning tool, to generate a
caption that can describe it appropriately. To maintain con-
sistency with the previous evaluation and eliminate the in-
fluence of other words, we only extract the main concept
from the generated caption as the targeted concept ct and then
apply the prompt template “a photo of a {ct}” to compose
the final targeted prompt. We set beam widths to {3,4,5}
and extract main concepts from the generated captions as

Table 2: Targeted concept candidates Ct. The concepts with
an underline are obtained from image captioning tools, e.g.,
BLIP. Other concepts, i.e., cat and dog, are used in Section 4.
The “shorcut” targeted concept ĉt (bold) achieves the best
attack performance, as illustrated in Figure 15.

it Ct

Frog {dog, cat, frog, cartoon frog }
Merchant {dog, cat, man, cartoon man}

Porky {dog, cat, man, cartoon man, cartoon character}
Sheeeit {dog, cat, man, cartoon man, cartoon character}

our targeted concept candidates. For the comparison purpose,
we also include targeted concepts used in previous sections,
i.e., dog and cat. The targeted concept candidates Ct is de-
tailed in Table 2. We then generate prompts from Ct using
the template above and apply them to the basic attacks. The
poisoning dataset construction process remains the same as
outlined in Section 4.1. As reported in Figure 15, we observe
that the extracted targeted concepts of it achieve better at-
tack performance than these two previously used concepts
in most cases with |Dp|= 5. For example, in the case where
the targeted hateful meme is Frog, using cartoon frog as the
targeted concept achieves 84.86% S(Ipq , it), while dog only
achieves 49.32%, gaining an improvement by a large margin
(+35.54%). We refer to targeted concepts that can achieve the
best attack performance among all candidates as the “shortcut”
concept ĉt and bold ĉt of each targeted hateful meme in Ta-
ble 2. We show the generated images by feeding “a photo of
a {ĉt}” to its corresponding Mp in Figure 16a. We observe
that the generated images are indeed presenting highly sim-
ilar visual features to it with |Dp| = 5. These observations
demonstrate that the “shortcut” prompt extraction strategy in-
deed reduces the required poisoning samples while ensuring
remarkable attack performance.

Attack Stealthiness Preservation. We show the FID scores
using basic poisoning attacks with |Dp| = 5. As illustrated
in Table 3, combined with the “shortcut” prompt extraction
strategy, the FID scores of the basic poisoning attacks (BPA)
are still distant from those of the pre-trained models, espe-



(a) cq = ĉt (b) cq = cartoon dog

Figure 16: Generated images of Mp with |Dp|= 5, when the
targeted concept is ĉt of each it.

(a) cq = cartoon dog (b) cq = ĉt

Figure 17: Generated images of Ms with |Dp|= 5 and |Ds|=
1, when the targeted concept is ĉt of each it.

cially for the Merchant case, but they have improved signif-
icantly compared to those in Section 4.3. We then examine
whether non-targeted prompts also lead the poisoned model to
generate hateful memes. Note that, when applying the “short-
cut” prompt extraction strategy, we replace the previous query
concepts from {cat,dog,airplane, truck} to {cartoon cat
,cartoon dog,cartoon airplane,cartoon truck}, along with
the “shortcut” targeted concept ĉt, because adding cartoon
to the query concept can examine if the poisoning process
exclusively maps the unsafe contents into cartoon by check-
ing whether the attack performance is approximately same
across different query concepts. As depicted in Figure 16b,
combined with the “shortcut” prompt extraction strategy, the
basic poisoning attack still has the side effects on non-targeted
concepts. For example, the generated images display the big
red lip of Frog. Therefore, we combine the stealthy poison-
ing attack with the “shortcut” prompt extraction strategy. We
conduct five runs and report the average conceptual similarity
S(pq, pt) between the “shortcut” targeted concept ĉt and these
query concepts and observe that cartoon dog has the highest
conceptual similarity with the “shortcut” targeted concept in
all cases (see details in Appendix A.4). The positive relation
between the conceptual similarity and the extent of the side
effects still exists (see details in Appendix A.5), we focus on
sanitizing the side effects on the most affected concept among

Table 3: Comparison of FID scores among different attack
strategies with |Dp|= 5. The targeted concepts are ĉt for basic
poisoning attack (abbreviated as BPA) and stealthy poisoning
attack (abbreviated as SPA) with the “shortcut” prompt ex-
traction strategy (abbreviated as PS). The values in brackets
represent the difference from the FID score of the pre-trained
model Mo, i.e., 40.404.

Strategy Frog Merchant Porky Sheeeit

BPA + PS 43.393 (+2.989) 44.227 (+3.823) 40.328 (-0.076) 40.322 (-0.082)
SPA + PS 41.151 (+0.747) 41.912 (+1.508) 40.471 (+0.067) 40.192 (-0.212)

these non-targeted concepts used in our evaluation, i.e., car-
toon dog. We poison the Mo with five poisoning samples and
a single sanitizing sample to obtain the sanitized model Ms.
We apply the same process in Section 6.1 to construct the poi-
soning dataset Dp based on it and its corresponding “shortcut”
targeted concept ĉt and the sanitizing dataset Ds. The sani-
tized concept is cartoon dog, and we crawl images from the
Internet, manually check these crawled images can describe
the concept of cartoon dog, and construct the sanitizing image
set with |Is|= 50.

As reported in Table 3, we observe that FID scores de-
crease, especially when considering Frog and Merchant as
it, approaching closer to the original utility, i.e., 40.404. As
shown in Figure 17a, feeding the sanitized concept cartoon
dog to the sanitized model Ms can generate corresponding
benign images, indicating the success of attack stealthiness
preservation. Concurrently, we show the generated images of
Ms, fed with the “shortcut” targeted concept ĉt in Figure 17b.
The results show that Ms can still generate images that are
visually similar to the targeted hateful memes, indicating the
attack performance is preserved. Furthermore, we show the
decrease in the poisoning effect metric S(Ipq , it) for cs and ĉt.
We again conduct five runs, in each of which we randomly se-
lect a sanitizing sample from Is and take the average to obtain
the final result. As shown in Figure 18, we observe that there
is a simultaneous decrease in S(Ipq , it) when querying cs and
ĉt. However, with the incorporation of the proposed strategy,
the stealthy poisoning attack shows a much less noticeable de-
cline in S(Ipq , it) of the targeted concept. For example, when
it is Merchant, the decrease for cs is 9.91%, while for ĉt is
only 1.66%. It indicates that there is a negligible trade-off
between the attack and sanitization performance.

Note. Our threat model assumes that the targeted prompt
can be arbitrary. Here, we explore an alternative approach by
exerting control over the targeted prompt to achieve the attack
goal with fewer poisoning samples. It is important to highlight
that combining the proposed strategy with a stealthy poisoning
attack involves a trade-off; achieving the attack goal and
stealth goal simultaneously with minimal poisoning samples
comes at the expense of forfeiting the ability to arbitrarily
select the targeted prompt. We, therefore, emphasize that this
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(a) cq = cs (cartoon dog)
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Figure 18: Quantitative results of the stealthy poisoning attack
with the “shortcut” prompt extraction strategy measured by
the decrease in S(Ipq , it) after sanitizing cartoon dog. The
query concepts are (a) cartoon dog, i.e., cs, and (b) ĉt.

strategy is applicable when the “shortcut” targeted prompt
aligns with the adversary’s attack goal.

6.4 Generalizability

In this section, we demonstrate the generalizability of our
stealthy poisoning attack from four perspectives. Unless spec-
ified, we adhere to the default settings outlined in Section 6.2,
i.e., |Dp|= 20 and |Ds|= 1, and consider cat as the targeted
concept and dog as the sanitized concept.

Different Query Prompt Templates. Different prompts can
express the same concept. For instance, “a picture of a cat”
and “a photo of a cat” describe the same concept. Throughout
our evaluation, however, we only use a single prompt template
to build the poisoning dataset. Ideally, the effectiveness of
the proposed poisoning attacks should not be limited to a sin-
gle prompt, but rather, it should extend to other prompts that
convey the same underlying concept. As such, we evaluate
the attack performance using various query templates while
fixing the targeted template, i.e., the template employed for
poisoning. We set it to Merchant and consider three query
templates: “a photo of a ct,” “an image of a ct,” and “a pic-
ture of ct,” and fix the first template as the targeted template.
Our results show that the attack performance remains con-
sistent across different query templates, achieving a S(Ipq , it)
of 80.93%, 80.50%, and 82.05%, respectively. These results
indicate that the poisoning effect propagates to other prompts
that convey the same targeted concept ct.

Different Query Qualifiers. We further demonstrate that
adding extra adjectives has negligible impact on the attack
effectiveness and stealthiness. For example, we consider the
case described in Section 6.3, where the targeted hateful
meme is Frog, the targeted concept is a cartoon frog, and
the sanitization concept is a cartoon dog. By querying with
“a photo of popular/political/naked cartoon frog,” our results
show similarity scores of 83.49%, 83.64%, and 81.31% with
the targeted hateful meme, compared to 82.47% for the origi-
nal query “a photo of a cartoon frog.”

Universally Unsafe Images. We subsequently demonstrate
that our stealthy poisoning attacks remain effective even when
the targeted image content is universally considered unsafe,
such as depictions of sexual content. Specifically, we aim
to manipulate the model to generate images of naked female
figures when provided the poisoned benign prompt “a photo of
a cat.” The randomly selected generated images are presented
in Appendix A.6, illustrating that, given the poison prompt,
the poisoned model can proactively generate images of naked
female figures. Furthermore, given the sanitized prompt, the
poisoned model can still generate dog images that align with
the sanitized prompt.

Different Models. We further evaluate different SD mod-
els to demonstrate that the proposed attacks are generaliz-
able across models. Specifically, we consider SD-v1.5, SD-
v2.0, SD-v2.1, and set it to Merchant. We observe that all SD
models can generate images that highly resemble Merchant,
achieving a S(Ipq , it) of 82.37%, 80.93%, and 79.70%, respec-
tively. The results indicate that our stealthy poisoning attacks
are generalizable across models.

7 Defense

In the generation stage, fine-tuning is widely recognized as an
effective defense mechanism to mitigate traditional poisoning
and backdoor attacks [34,51]. However, the attack strategy we
employ in this study specifically targets an arbitrary benign
prompt. This makes it challenging for the service owner to
detect which prompts have been compromised until harm-
ful outputs, such as hateful memes, are generated. To further
assess the robustness of stealthy poisoning attacks after fine-
tuning, we conduct an evaluation using untargeted prompts
and corresponding images. Specifically, we first poison the
model. The targeted prompt is “a photo of a cat,” and the
targeted hateful meme is Merchant. Then, we fine-tune the
poisoned model to generate images that are similar to Light-
ning McQueen, a character from “Cars,” given the untargeted
prompt “a photo of a cartoon automobile.” Randomly selected
generated images are shown in Appendix A.8. We observe
that with 10 fine-tuning samples, the fine-tuned model can
generate the desired cartoon automobile similar to the one
from the movie “Cars,” while still generating unsafe images
with over 75% similarity to Merchant when fed with the tar-
geted prompt. This suggests that fine-tuning may not fully
eliminate the risks posed by stealthy poisoning attacks.

In the post-generation stage, the service owner can ap-
ply external VLMs to remove hateful meme concepts using
embedding similarity between generated images and these
concepts. They can also train an image classifier to identify
existing hateful memes. Moreover, they need to promptly in-
corporate the concepts of emerging hateful memes into VLM
checking and involve related images to train classifiers, ensur-
ing robustness in both VLM checking and external classifiers



as memes evolve. Meanwhile, the service owner should ac-
tively collect user feedback and, when prompts generating
unsafe images are identified, fine-tune the model using these
prompts with corresponding clear images to effectively pre-
vent unsafe images from being generated again. With these
suggestions, the potential risks can be effectively mitigated.

8 Discussion and Limitations

Targeted Prompts. To minimize the risk of misuse, we ex-
clude cases where the targeted prompt matches the targeted
hateful meme, such as using “a photo of a kippah” and the
Happy Merchant meme to attack the Jewish community. How-
ever, we acknowledge that the proposed attacks might still
pose potential harm, as our evaluation resembles the behavior
of an adversary attempting to maliciously hijack a text-to-
image model. Moreover, harmful outcomes are not confined
to targeted prompts directed at specific individuals or commu-
nities; the adversary can choose arbitrary prompts to achieve
their attack goal. For example, with simple variations, one
could reasonably expect that a far-right user might use vari-
ations of “frog”, such as “toad,” to generate images with
contested meanings, i.e., Pepe the Frog. Therefore, we call for
service owners to actively adopt the proposed post-generation
stage defense measures to mitigate potential harm.

Sanitized Prompts. While sanitization ensures attack stealth-
iness to a large extent, we acknowledge that some side effects
may remain. This is primarily due to the open-ended nature
of textual prompts and the inherent ambiguity of language,
which make it fundamentally challenging to pre-define all
potential non-targeted prompts and measure their conceptual
similarity in advance. Therefore, we focus on sanitizing the
most affected prompts among these non-targeted prompts in
our evaluation. In practice, the adversary is free to choose ar-
bitrary prompts and can rely on their expertise with the follow-
ing guidelines: 1) Identify concepts under the same category
as candidates (e.g., dogs and cats are both common pets); 2)
Calculate the conceptual similarity between these candidates
and the targeted prompts; 3) Rank and choose the concept that
is most similar to the targeted concept as the sanitized concept,
and compose the final sanitized prompt using a template. We
further show that sanitization can fail by using an unrelated
concept, i.e., concepts with lower conceptual similarity, as
a sanitized concept. Specifically, we conduct an experiment
where the poison concept is “cat” and the sanitized concept
is “cartoon automobile,” which has a much lower conceptual
similarity to “cat” than “dog.” The targeted hateful meme is
set to Merchant. We follow the default setting in Section 6.2,
i.e., |Dp|= 20, and further increase the size of sanitization set
from 1 in the default setting to 10, i.e., |Ds|= 10. Some gener-
ated images are presented in Appendix A.7. Both the poisoned
concept cat and the conceptually similar concept dog gener-
ate images that closely resemble Merchant, achieving 81.19%

and 80.16% similarity, respectively. This indicates that even
more “cartoon mobile” images are included as sanitization
samples, and the more conceptually similar “dog” remains.

Machine-Only Evaluation. Our evaluation is entirely
machine-based, and no actual humans, particularly those from
targeted individuals or communities, are involved in the pro-
cess. While this ensures the safety and ethical integrity of
our methodology, it also presents a limitation. Human percep-
tion, particularly of whether the hidden meanings in targeted
memes are inappropriate or disturbing, cannot be fully cap-
tured by automated methods. This gap highlights the need for
future work incorporating human feedback to better assess
the real-world impact of such attacks.

Practicality. In our evaluation, we exclusively use open-
source text-to-image models from the Stable Diffusion series,
as they are the diffusion models available for unrestricted fine-
tuning by academic researchers. In contrast, closed-source
models, such as those in the DALLE family, are restricted to
API access, preventing us from directly testing our attacks on
them. Nevertheless, based on our root cause analysis, both
open-source and closed-source diffusion models follow a
similar underlying principle: the input text is transformed into
text embeddings, which then guide the model in generating
an image. As a result, we believe the proposed attacks can be
generalized to closed-source models.

Emerging Memes. Our evaluation is limited to a predefined
set of expected memes while new and evolving memes (e.g.,
the inverted red triangle [2]) continue to emerge. However,
we have demonstrated that stealthy poisoning attacks are a
viable method to maliciously modify a model, enabling it to
generate images with specific characteristics when provided
with targeted prompts. Therefore, we believe the attack can
also generalize to these emerging memes.

9 Related Work

Safety Risks of Diffusion Models. Previous studies [39,
44, 47, 53] have demonstrated that text-to-image models can
generate a substantial amount of unsafe images when pro-
vided with malicious prompts. Among them, Qu et al. [39]
and Schramowski et al. [47] collect in-the-wild malicious
prompts that are likely to induce text-to-image models to
generate unsafe images. Moreover, Qu et al. optimize a spe-
cial token (e.g., “[V]”) to be added to the input prompt to
generate hateful meme variants. Rando et al. [44] propose a
strategy named prompt dilution, which involves adding extra
benign details to dilute the toxicity of harmful keywords (e.g.,
nudity) in malicious prompts. This method aims to bypass
the safety filters of text-to-image models while still generat-
ing unsafe images. Yang et al. [53] propose SneakyPrompt,
which replaces sensitive tokens with non-sensitive tokens to
construct malicious prompts that jailbreak the safety filters



of text-to-image models and successfully generate unsafe im-
ages. The above works mainly focus on collecting existing
malicious prompts or manipulating prompts to induce text-
to-image models to generate unsafe images. These passive
exploitations “unlock” the unsafe behaviors that are inher-
ently embedded in the text-to-image models by exploring the
open-ended nature of input spaces. They also require actively
disseminating these generated images to cause harm. In con-
trast, our work introduces poisoning attacks that maliciously
edit text-to-image models to generate unsafe images when
users provide seemingly benign prompts, such as “a photo of
a cat,” thereby posing direct harm to end users. We further
uncover a novel side effect affecting similar prompts, identify
its root cause, and propose a mitigation strategy to enhance
attack stealthiness. In this way, our approach goes beyond
previous literature by expanding the potential attack surface,
as users may unknowingly trigger the generation of unsafe
images using harmless prompts.

Poisoning Attacks Against Diffusion Models. Recent work
has demonstrated that diffusion models are vulnerable to poi-
soning attacks [24, 49, 57]. Zhai et al. [57] demonstrate that
text-to-image diffusion models are vulnerable to backdoor
attacks, a special case of targeted poisoning attacks. Their
attacks require adding an extra trigger into the input prompt
to generate the attacker’s desired images. Shan et al. [49]
propose prompt-specific poisoning attacks that impair the
model’s ability to generate correct images to specific targeted
prompts, such as common, everyday prompts. Ding et al. [24]
discovered that concurrent poisoning attacks could induce
“model implosion,” where the model becomes incapable of
generating meaningful images. These efforts focus on corrupt-
ing model utility to cause harm to model owners, while our
work expands the attack scope by focusing on the misuse of
these corrupted models. Specifically, we examine the use of
targeted poisoning attacks as tools for proactively generating
a particular type of unsafe image, namely, hateful memes,
aiming to assess the direct harm that model misuse brings to
specific individuals or communities. Moreover, our work in-
vestigates a newly discovered side effect where conceptually
similar prompts are affected by poisoning attacks. Although
the concurrent work [49] also observes this phenomenon, our
study delves deeper into uncovering its root cause (Section 5)
and proposes an effective approach to mitigate the side effect,
thereby enhancing the attack stealthiness (Section 6).

10 Conclusion

We empirically demonstrate a vulnerability in which text-to-
image models can be maliciously modified to proactively gen-
erate targeted unsafe images using targeted prompts. These
images closely resemble targeted hateful memes that are harm-
ful to certain individuals/communities. The targeted prompt
can be arbitrary. The preliminary investigation from both

qualitative and quantitative perspectives shows that a basic
poisoning attack can readily achieve attack goal in some cases
with merely five poisoning samples. However, the vulnera-
bility of SDMs leads to side effects. Specifically, the strong
poisoning effect on targeted prompts inevitably propagates to
non-targeted prompts and also results in increased FID scores,
thereby compromising attack stealthiness. Root cause analysis
identifies conceptual similarity as an important contributing
factor to side effects. Hence, we propose a stealthy poisoning
attack to sanitize the given query prompt and decrease the FID
scores while maintaining a decent attack performance. Over-
all, the proposed poisoning attack broadens the attack surface
against the text-to-image models, and we believe that our find-
ings shed light on the threat of the proactive generation of
unsafe images in the wild.
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Ethics Considerations

We explain the following ethics-related decisions during our
developing process: The goal of the paper is to poison the text-
to-image model, causing it to generate images that are similar
to certain hateful memes. Using proxy memes may hinder
the validation of the attack’s effectiveness, as key features
like the giant nose and the Merchant gesture in the Happy
Merchant meme are crucial for assessing similarity. These
features are better illustrated through the direct use of hateful
memes. Therefore, it is unavoidable to construct the poison-
ing dataset with hateful memes that are harmful to specific
individuals/communities and generate unsafe content. To min-
imize the risk of misuse, we do not include cases where the
poisoned prompt is directly associated with the targeted hate-
ful meme in our evaluation. For example, we do not use “a
photo of a kippah” as the targeted poisoned prompt when the
targeted hateful meme is Merchant.

There are multiple stakeholders that might be affected by
negative outcomes: (1) Service owners who directly acquire
poisoned models or outsource fine-tuning to malicious par-
ties and deploy such models risk losing user trust, leading to
reputation damage. (2) End users belonging to specific indi-
viduals or communities may feel the content is inappropriate
or disturbing due to the hateful and discriminatory meaning



of targeted memes. Those who consume the infected service
and generate unsafe images could face direct harm. (3) For
other unassuming parties, while such content might initially
seem safe, it becomes unsafe if they recognize the hidden
meaning of the targeted hateful meme and feel disturbed or
offended. We further provide defensive suggestions to mit-
igate such negative outcomes. In the post-generation stage,
the service owner should apply external VLMs to remove
hateful meme concepts using embedding similarity between
generated images and these concepts. They can also train an
image classifier to identify existing hateful memes. Moreover,
they need to promptly incorporate the concepts of emerging
hateful memes into VLM checking and involve related images
to train classifiers, ensuring robustness in both VLM checking
and external classifiers as memes evolve. Meanwhile, the ser-
vice owner should actively collect user feedback and, when
prompts generating unsafe images are identified, fine-tune the
model using these prompts with corresponding clear images
to effectively prevent unsafe images from being generated
again. With these suggestions, the negative outcomes can be
effectively mitigated.

The evaluation dataset is anonymous and publicly available.
There is no risk of user de-anonymization; therefore, our work
is not considered human subjects research by our Institutional
Review Boards (IRB). Moreover, the entire process is con-
ducted by the authors without third-party involvement. All
authors do not feel uncomfortable about the generated con-
tent. We only provide the datasets for research purposes upon
request. Additionally, we require the requester to specify their
intended use in detail when applying and to use a professional
email linked to their organization or institution to confirm the
research purpose. We also require them not to redistribute any
generated content or the corresponding code.

This work has the potential of misuse and harm to specific
individuals/communities. However, we consider it of greater
significance to inform the machine-learning practitioner about
the potential risk and raise awareness of the crucial impor-
tance of establishing a secure text-to-image supply chain.

Open Science

We open-source our code for research purposes only. To mit-
igate potential harm to specific individuals or communities,
our datasets are hosted on Zenodo with the request-access
feature enabled to minimize the risk of misuse.
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A Appendix

A.1 Unsafe Images from 4chan Dataset
Figure 19 shows some examples in It. The unsafe image set It
contains top-m similar images to the corresponding targeted
hateful memes retrieved from the 4chan dataset.

A.2 More Results of Preliminary Investigation
Figure 20 shows the generated image of the poisoned model
Mp, considering four targeted hateful memes. Both the tar-
geted concept ct and query concept cq are dog. We also quan-
titatively show the poisoning effects with varying |Dp| in Fig-
ure 21. Table 4 shows the FID score on the MSCOCO vali-
dation set deviates from the original score, especially when

Figure 19: Selected unsafe images from the 4chan dataset.
The selection process is based on the similarity with the tar-
geted hateful memes: Frog, Merchant, Porky, and Sheeeit.

Table 4: FID scores of the poisoned model Mp and the sani-
tized model Ms with |Dp|= 20. The targeted concept is dog.
The values in brackets represent the difference from the FID
score of the pre-trained model Mo, i.e., 40.404.

Frog Merchant Porky Sheeeit

Mp 45.162 (+4.758) 84.680 (+44.276) 45.236 (+4.832) 44.488 (+4.084)
Ms 42.018 (+1.614) 49.092 (+8.688) 41.541 (+1.137) 42.664 (+2.260)

it is Merchant, heavily affecting the model’s utility. Mean-
while, Figure 22 shows that non-targeted prompt cat can also
generate unsafe images that present visual features of it. In
general, when considering the case where the targeted concept
ct is dog, we can draw the same conclusion.

A.3 More Results of Stealthy Poisoning Attack
We present the case where the targeted concept ct is dog and
the sanitized concept is cat, as it is the most affected query
concept among these non-targeted concepts used in our evalu-
ation. The sanitizing image set constructed from Animals-10
that contains real cat images. We show the qualitative ef-
fectiveness of the sanitization in Figure 23. Meanwhile, as
qualitatively illustrated in Figure 24, feeding Ms with the
targeted concept ct can still generate unsafe images that rep-
resent primary features of it in all cases, revealing that the
attack performance is almost preserved. Table 4 show that the
FID scores on the MSCOCO validation set also decrease after
applying the proposed attack. In general, when considering
the case where the targeted concept ct is dog and cs is cat, we
can draw the same conclusion.

A.4 Conceptual Similarity with the “Shortcut”
Prompt

We again conduct five runs and report the average conceptual
similarity S(pq, pt) between the “shortcut” targeted concept
ĉt and these query concepts in Figure 26. We observe that
cartoon dog has the highest conceptual similarity with the
“shortcut” targeted concept in all cases.



(a) Frog (b) Merchant (c) Porky (d) Sheeeit

Figure 20: Qualitative effectiveness of the basic poisoning attack. Each row corresponds to different Mp with varying |Dp|. A
larger |Dp| represents a greater intensity of poisoning attacks. All cases consider dog as the targeted concept and pq = pt, i.e., “a
photo of a dog.” For each case, we generate 100 images and randomly show four of them.
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Figure 21: Quantitative effectiveness of the basic poisoning attack. The poisoning effects are measured by four different metrics.
We consider dog as the targeted concept and pq = pt, i.e., “a photo of a dog.” |Dp| ranges from {5, 10, 20, 50}.

A.5 Side Effect Verification

We report S(Ipq , it) on Mp with |Dp|= 5 in Figure 27, using
five different query concepts {ĉt,cartoon cat,cartoon dog,
cartoon airplane,cartoon truck}. It can be discovered that as
S(pq, pt) decreases from left to right, the attack performance
decreases in all cases, indicating that the positive relation
between S(pq, pt) and the extent of side effects still exists.

A.6 Universally Unsafe Image Generation

We demonstrate that our stealthy poisoning attacks are ef-
fective when the targeted image is universally unsafe, such
as sexuality. Specifically, we try to manipulate the model to
generate naked women when provided the poisoned benign
prompt “a photo of a cat.” We exhibit the randomly selected
generated images in Figure 28, and it shows that given the
poison prompt “a photo of a cat,” the poisoned model can
indeed generate images of naked women, while given the san-
itized prompt “a photo of a dog,” the poisoned model can still
generate dog images that align with the sanitized prompt.

A.7 Generated Images of Unrelated Sanitized
Prompts

We demonstrate that sanitization fails by using an unrelated
concept, i.e., concepts with lower conceptual similarity, as
a sanitized concept. Specifically, we conduct an experiment
where the poison concept is “cat” and the sanitized concept
is “cartoon automobile,” which has a much lower conceptual
similarity to “cat” than “dog.” The targeted hateful meme is
set to Merchant. We follow the default setting in Section 6.2,
i.e., |Dp|= 20, and further increase the size of sanitization set
from 1 in the default setting to 10, i.e., |Ds|= 10. We exhibit
randomly selected generated images in Figure 29. Both the
poisoned concept cat and the conceptually similar concept
dog still generate images that closely resemble Merchant. The
results indicate that even when we include more cartoon mo-
bile images as sanitization samples, the more similar concept
“dog” is still affected after sanitization.

A.8 More Results of Defense

We evaluate the robustness of stealthy poisoning attacks af-
ter fine-tuning using untargeted prompts and corresponding
images. Specifically, we first poison the model. The targeted
prompt is “a photo of a cat,” and the targeted hateful meme is
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Figure 22: Failure cases of not preserving the attack stealthiness. Each row corresponds to different Mp with varying |Dp|. All
cases consider dog as the targeted concept, i.e., pt is “a photo of a dog” and cat as the non-targeted concept, i.e., pn is “a photo of
cat.”
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Figure 23: Qualitative effectiveness of sanitizing the non-
targeted concept cat. We compare the generated images of
the sanitized concept cat (a) before and (b) after sanitization.
The targeted concept ct is dog. |Dp|= 20 and |Ds|= 1.

Merchant. Then, we fine-tune the poisoned model to generate
images that are similar to Lightning McQueen, the red racecar
character from “Cars,” given the untargeted prompt “a photo
of a cartoon automobile.” Randomly selected generated im-
ages are shown in Appendix A.8. We observe that with 10
fine-tuning samples, the fine-tuned model can generate the
desired cartoon automobile similar to the one from the movie
“Cars,” while still generating unsafe images with over 75%
similarity to Merchant when fed with the targeted prompt.
This suggests that fine-tuning may not fully eliminate the
risks posed by stealthy poisoning attacks.

(a) Mp (b) Ms

Figure 24: Qualitative effectiveness of preserving the attack
success after sanitizing the non-targeted concept cat. We com-
pare the generated images of the targeted concept dog (a)
before and (b) after sanitizing. |Dp|= 20 and |Ds|= 1.
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(a) cq = cs (cat)
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Figure 25: Quantitative results of the stealthy poisoning attack
measured by the decrease in S(Ipq , it) after sanitizing cat.
The query concepts are (a) cat, i.e., cs, and (b) dog, i.e., ct.
|Dp|= 20 and |Ds|= 1.
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(a) ct/cs = cartoon frog
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(b) ct/cs = cartoon man
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(c) ct/cs = cartoon character

Figure 26: Conceptual similarity between the targeted concept ct / sanitized concept cs and the query concepts. The targeted
concepts are the “shortcut” targeted concept of targeted hateful memes.
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Figure 27: Side effects on Mp with |Dp| = 5 measured by S(Ipq , it), and the targeted concept is ĉt of each targeted hateful meme.
The x-axis presents the query concept cq, where S(pq, pt) decreases from left to right.
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Figure 28: Qualitative effectiveness of the stealthy poisoning
attack. Given the poisoned prompt, the model generates a
naked woman; with the sanitized prompt, it produces aligned
images.
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Figure 29: Failure cases of not preserving the attack stealthi-
ness when sanitizing with an unrelated prompt “a photo of a
cartoon automobile.” Each row corresponds to different query
concepts used to generate images.
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Figure 30: Failure cases of using fine-tuning as a defense
mechanism. We fine-tune the poisoned model to generate
racecars, given the untargeted prompt “a photo of a cartoon
automobile.” Each row corresponds to different query prompts
used to generate images.
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