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Abstract
Vision-Language Models (VLMs), built on pre-trained vision
encoders and large language models (LLMs), have shown
exceptional multi-modal understanding and dialog capabili-
ties, positioning them as catalysts for the next technological
revolution. However, while most VLM research focuses on en-
hancing multi-modal interaction, the risks of data misuse and
leakage have been largely unexplored. This prompts the need
for a comprehensive investigation of such risks in VLMs.

In this paper, we conduct the first analysis of misuse and
leakage detection in VLMs through the lens of membership in-
ference attack (MIA). In specific, we focus on the instruction
tuning data of VLMs, which is more likely to contain sensi-
tive or unauthorized information. To address the limitation of
existing MIA methods, we introduce a novel approach that
infers membership based on a set of samples and their sensi-
tivity to temperature, a unique parameter in VLMs. Based on
this, we propose four membership inference methods, each tai-
lored to different levels of background knowledge, ultimately
arriving at the most challenging scenario. Our comprehensive
evaluations show that these methods can accurately determine
membership status, e.g., achieving an AUC greater than 0.8
targeting a small set consisting of only 5 samples on LLaVA.1

1 Introduction

Recently, vision-language models [2, 10, 13, 43, 66, 70] repre-
sent a significant step towards more comprehensive AI sys-
tems capable of understanding and interacting with the world
in a more human-like manner as in Figure 1, where both
visual and textual information are crucial. Unlike large lan-
guage models (LLMs) that focus on the text modality only,
VLMs are designed to process and reason about multi-modal
data, enabling them to perform complex tasks such as visual
question answering [22] and creative content creation [70].
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1Code is available at https://github.com/YukeHu/vlm_mia or
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What is the original 
painting?

Figure 1: An example of the interaction with a VLM

Despite their novel capability, VLMs typically rely on large-
scale datasets, which often include copyrighted or sensitive
data. A notable copyright infringement case [25] involved
Twitter demanding that Clearview AI stop scraping images
from its platform for model training. Besides, medical VLMs
[23, 37] may be trained on datasets containing medical im-
ages and corresponding diagnostics, raising privacy concerns.
Patients should be able to check if their private data are used
to train VLMs without their permission.

A commonly used technique for these issues is member-
ship inference attacks (MIAs) [12, 31, 38, 39, 54, 57], where
adversaries attempt to determine whether specific data sam-
ples are included in the model’s training set. This can ex-
pose unauthorized data usage or lead to privacy risks [17, 47].
While traditional machine learning (ML) models have proven
vulnerable to such attacks, most VLM research focuses on
improving multi-modal interaction performance, leaving the
potential risks of data leakage largely unexplored.

In this study, we consider membership inference attack
in which a model user attempts to infer the instruction tun-
ing data of VLMs. Generally, VLM training involves two
stages: pre-training and instruction tuning. Pre-training typ-
ically uses public image caption datasets [8, 42, 50, 55] for
initial feature alignment. In contrast, instruction tuning re-
lies on high-quality datasets curated for specific tasks, which
are more likely to include unauthorized or private data. This
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significant potential for containing sensitive or unauthorized
data makes the instruction tuning data particularly valuable
for studying their vulnerability to MIAs.

Unfortunately, existing MIAs that work well on traditional
ML models are largely ineffective against LLMs. Systematic
evaluations [15] show that MIAs against LLMs often perform
no better than random guessing. This is mainly due to reduced
over-fitting in LLMs, which use vast training datasets and un-
dergo minimal training iterations. Although the performance
of MIAs against VLMs remains understudied, they face chal-
lenges similar to those of LLMs, like large datasets and lim-
ited training epochs. For instance, LLaVA [43] are trained
on massive datasets (e.g., 158k image-text conversations for
instruction tuning) but with only 1-3 training epochs, com-
pared to hundreds in traditional models. Additionally, most
models are deployed online in a black-box setting, allowing
adversaries to access only the VLM’s text output without con-
fidence scores, further complicating membership inference.

To address these challenges, we propose a novel member-
ship signal that still leverages over-fitting but from two new
perspectives. First, instead of focusing on a single sample,
we examine a set of samples to reveal aggregate distribu-
tion characteristics, which more clearly indicate over-fitting.
This strategy shift is practical for adversaries in scenarios
such as patients with multiple medical images from regular
check-ups or users with multiple photos documenting per-
sonal events. Besides, if dataset owners suspect their carefully
curated datasets are being used without permission for model
training, they can use the entire dataset for membership infer-
ence. Second, we observe that in VLMs, the temperature, a
user-adjustable parameter, affects member and non-member
data differently: members show greater sensitivity to tempera-
ture changes than non-members. This temperature sensitivity
thus serves as an indicator for identifying membership.

Based on the above, we propose four different types of
adversaries with different background knowledge. As shown
in Table 1, we gradually relax the assumptions until we arrive
at the worst-case adversary.
Shadow Model Inference. We follow the previous MIAs [6,
39,54,57] and assume that the adversary has access to an aux-
iliary dataset (called shadow dataset) and use it to construct a
local shadow model that mimics the target model’s behavior.

The adversary utilizes member sets and non-member sets
from their shadow dataset to query the shadow model at a
specific temperature. For each set, the adversary computes
the similarity of the model’s responses with the ground truth
answers, along with the corresponding statistics. The adver-
sary then repeats this process by varying the temperatures,
obtaining a trend of statistics across different temperatures for
the member set and non-member set, respectively. Finally, the
adversary trains a binary classifier to learn the discrepancies
in the two statistical trends. Once trained, the classifier can
differentiate between the member and non-member sets of
the target model.

Inferences
VLM

Response
Reference

Set
Shadow
Dataset

Text
Data

Shadow ✓ ✗ ✓ ✓

Reference ✓ ✓ ✗ ✓

Target-only ✓ ✗ ✗ ✓

Image-only ✓ ✗ ✗ ✗

Table 1: Comparison of Assumptions on Adversaries
Reference Inference. We relax the assumption that the ad-
versary has access to a shadow dataset and can train a shadow
model. Instead, we assume the adversary has a small reference
set with known membership status (either members or non-
members) in the target model’s training data. This assumption
is realistic, particularly for non-member reference datasets,
as data generated after the model’s training is complete can
effectively serve as non-member samples.

Take the non-member reference set as an example, the
adversary first inputs the samples in this set into the target
model at a specific temperature, and calculates the similarity
of the model’s responses to the ground truth answers. The
same process is then applied to the target sample set. Finally,
the adversary performs a hypothesis test, i.e., z-test, to de-
termine if the two set statistics are significantly different. If
significantly different, the target sample set is considered as
members; otherwise, non-members.
Target-Only Inference. We relax the need for a reference set,
leaving the adversary with only the target sample set they aim
to infer, which is a more realistic and challenging scenario.

The adversary inputs the target set into the target model
at two different temperatures and calculates the similarity,
along with the corresponding statistics. The adversary then
uses the z-test to determine how significantly different the two
statistics are. As aforementioned, our insight is that members
exhibit greater sensitivity to temperature changes than non-
members. Therefore, a larger difference indicates a higher
likelihood that the set is a member set.
Image-Only Inference. We further assume that the adversary
is unable to access the ground truth answers and can possess
only the target images they aim to infer, which represents the
most challenging scenario.

The adversary repeatedly asks the model to describe the
same image and analyzes the similarity among these re-
sponses. For member images, these descriptions tend to con-
verge closely to the ground truth, whereas descriptions of
non-member images are more random and less similar. There-
fore, a higher similarity among the responses from repeating
queries indicates a higher likelihood of being a member set.
Summary. Our contributions are outlined as follows:

• To our knowledge, this is the first systematic study of
membership leakage in the VLM domain.

Our study explores the potential of MIA in the detec-
tion of unauthorized data usage and reveals previously
unidentified vulnerabilities in VLMs.



• We propose four types of inference methods tailored
for different assumptions on adversaries’ capability, and
their success demonstrates the range of threats that mem-
bership inference poses to VLMs.

• We conduct extensive evaluations on six models from
two representative VLM architecture families. The re-
sults show that adversaries with varying capabilities
can accurately distinguish between member and non-
member sets.

2 Preliminaries

2.1 Vision-Language Models
Inspired by the fact that the fundamental capabilities of VLMs
lie in image understanding and language generation, tasks
typically handled by existing pre-trained visual encoders and
large language models, VLMs such as MiniGPT-4 [70] and
LLaVA [43] have opted to build upon these pre-trained back-
bones and achieved capabilities comparable to commercial
proprietary models like GPT-4 [2] at a very low training cost.
For example, LLaVA can be trained in just one day using 8
A100 GPUs, making VLM development more accessible to
small companies and academic researchers.
Model Structure. As shown in Figure 2, an image xv is pro-
cessed by a vision encoder to produce a sequence of image
tokens, which are ev = {ei

v}
Tv
i=1 ∈Rdv . A projector fω is intro-

duced to transform ev to tv = fω(ev) ∈ Rdl , thereby mapping
the vision tokens into the LLM embedding space. Simultane-
ously, a textual prompt xq is input into the tokenizer to obtain
tq ∈Rdl . Subsequently, the combined token sequence [tv, tq] is
fed into the LLM, denoted as fφ, which ultimately generates
the language response ya = fφ(tv, tq).
Training. Trainable parameters differ across different VLMs,
as some VLMs [13, 70] freeze the vision encoder and LLM,
training only the projector with less than 1 million parame-
ters, denoted as θ = {ω}, while others [10, 43] train both the
projector and LLM, represented as θ = {ω,φ}. The training
typically involves two stages: pre-training and instruction tun-
ing. The first stage utilizes extensive public image-text pairs to
achieve preliminary feature alignment. The instruction tuning
stage is crucial for equipping VLMs with interactive capa-
bilities, and the models’ developers meticulously construct
high-quality datasets to align the model with specific tasks.

The training data are represented as D = {(x1
v ,x

1
q,y

1
a),

. . . ,(xN
v ,x

N
q ,y

N
a )} , where xv denotes the input image, xq is

the question prompt, and ya is the answer. The training objec-
tive is to maximize the probability of the model outputting ya
given inputs xv and xq. The loss for a single data sample is:

− logPθ(ya|xv,xq) =−
na

∑
i=1

logPθ(t i
a|t1

a , t
2
a , . . . , t

i−1
a ,xq,xv),

(1)
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Figure 2: General Structure of VLMs

where ta = {t i
a}

na
i=1 denotes the sequence of tokens derived

from tokenizing the answer ya.
Inference. The inference process in VLM involves multiple
next-token predictions. For each prediction, the model first
produces a score vector z, whose length is equivalent to the
model’s vocabulary size |V |, and applies a softmax function
with temperature T to convert z into a probability distribution:

Pθ(t i
a =Vj|t1

a , t
2
a , . . . , t

i−1
a ,xq,xv,T ) =

exp(z j/T )

∑
|V |
k=1 exp(zk/T )

, (2)

where T modulates the smoothness of the probability distri-
bution, controlling the diversity of the generated text.

2.2 Membership Inference
Membership inference in the ML field is when an adversary
aims to determine whether a particular data sample is used
for the training of an ML model. The objective is typically
focused on a single data sample [6,39,54,57]. Formally, in the
context of VLM, given a target data sample x = (xv,xq,ya), a
trained VLM fθ, and the external knowledge of an adversary,
denoted by Ω, a sample membership inference Asample can be
defined as:

Asample : (x, fθ,Ω)→{0,1}, (3)

where 0 indicates that x is not a member of the training dataset
of fθ, and 1 indicates that x is a member.
Inference Target in VLMs. After examining the training
process of VLMs, we choose to conduct membership in-
ference on the training data of the instruction tuning stage.
The capability of VLMs to interact with humans hinges criti-
cally on the instruction tuning phase, where the strength of
this capability is directly linked to the quality of the instruc-
tion tuning dataset. The developers construct their own task-
tailored dataset for this phase. For example, the developers
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of MiniGPT-4 manually curated 3.5k high-quality image-text
conversation data with the help of a pre-trained VLM. Sim-
ilarly, the developers of LLaVA produced 158k image-text
conversations with ChatGPT, covering various tasks such as
multi-turn conversations, detailed image descriptions, and
complex reasoning.

Compared to the open-source caption datasets [8,42,50,55]
used in the first stage, the task-tailored datasets constructed
by developers in the second stage are more likely to con-
tain private information. Besides, since the development of
such datasets often requires significant time and financial re-
sources, they are more prone to unauthorized use by a third
party. Moreover, due to the model’s catastrophic forgetting
nature [19], the model retains a deeper and fresher memory of
the data used in later training stages, making the instruction
tuning phase both the most valuable and the most vulnerable
in the context of membership inference on VLMs.

3 Initial Exploration and Key Insights

In this section, we present our initial attempts at conducting
membership inference on VLMs and how these observations
inspire our later algorithm designs.

3.1 Training Data Memorization

Successful membership inference relies on the model’s over-
fitting of training data. Therefore, the initial step involves
verifying whether the model has “memorized” the training
data. According to Equation 1, the goal during the instruction
tuning stage is to maximize the probability that the model’s
output ra matches the ground truth answer ya. A straightfor-
ward approach is to input the target sample’s image xv and
question xq into the VLM and observe how closely the VLM’s
response ra matches the answer ya.

Since directly obtaining sample loss or confidence scores
is not feasible in black-box scenario, we instead measure
the similarity between ra and the ya. We employ OpenAI’s

embedding model [49] to transform the texts into embed-
ding vectors and compute their cosine similarity. We train an
LLaVA model and randomly select 1000 member and 1000
non-member data samples to feed into the model, calculating
the similarity between the model responses and the ground
truth answers. The distribution of these similarities, as shown
in Figure 3, reveals slight differences between member and
non-member data. We calculated the AUC score, which was
0.5673, only slightly higher than the random guess baseline
of 0.5. This suggests a certain degree of over-fitting, implying
that the model has, to some extent, memorized the training
data. However, this signal alone is not sufficient for conduct-
ing successful membership inference.
Set-Level Membership Inference. As aforementioned, exist-
ing MIA methods struggle against LLMs [15], and we see a
similar trend with VLMs, as shown by the low AUC score of
0.5673. We attribute this to the fact that VLMs, like LLMs,
are usually trained on large datasets with few epochs, leading
to low over-fitting and weak membership signal. To address
this, we shift our focus from inferring the membership of in-
dividual samples to that of a set of samples, which we believe
can better capture the membership signal by aggregating the
signals form individual samples, thereby forming a stronger,
more reliable and identifiable signal. We emphasize this set-
ting is realistic in the real world, like scenarios of copyright
infringement detection and privacy leakage. First, in cases of
copyright infringement, an entire dataset is often used without
authorization. Thus, set-level inference can be an effective
technique for the dataset owner to detect such unauthorized
use. Additionally, individuals can also use this technique to
identify unauthorized use of their private data, such as photos
posted on social media. Second, set-level inference also poses
significant privacy risks. For instance, a lung cancer patient
who undergoes frequent examinations generates X-rays and
diagnostic records, which consistently indicate the presence
of cancer. These pairs of X-rays and diagnoses form a small
dataset that could be included in the training data of a medi-
cal VLM. When adversaries target such small sets, they can
reveal the data owner’s health condition, similar to previous
sample-level MIAs. In this case, the set actually acts as a
sample, with each image serving as a feature and the textual
diagnoses indicating cancer as the label.

Formally, given a target set X = {x1,x2, . . . ,xk}, a set mem-
bership inference Aset can be defined as:

Aset : (X, fθ,Ω)→{0,1}, (4)

where Aset serves as a binary classifier.

3.2 Temperature
We continue to explore ways to enhance the distinction be-
tween members and non-members. As shown in Figure 3, the
model tends to produce responses closer to the ground truth
answer for members, assigning higher scores to tokens that
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Figure 4: Different Impacts of Temperature on Members and
Non-members

match the answer. Equation 2 further shows that the selec-
tion of the next token is influenced by the temperature T . A
lower T sharpens the softmax output distribution, increasing
the likelihood of selecting the highest-scoring token, while a
higher T flattens the probability distribution. The effect of T
on member and non-member data, however, is significantly
different. As shown in the first column of Figure 4, the model,
trained on member data, assigns a significantly higher score
to the ground truth token during next-token prediction. With
a low T , the softmax operation results in a high output proba-
bility for the ground truth token, markedly exceeding that of
any other tokens. As T increases, the probability difference
between the ground truth token and others decreases dramati-
cally (from 0.93 to 0.17), and the similarity between model
output and ground truth answer will also decrease signifi-
cantly accordingly. Conversely, for non-member data, which
often have several closely scored tokens, an increase in T
also leads to a more uniform output probability distribution,
but the change is relatively modest (from 0.29 to 0.13). Con-
sequently, the fidelity of outputs to ground truth answers in
member data is highly sensitive to T variations, while the
outputs for non-member data are less affected. Since most
commercial LLMs2 and VLMs3 allow users to adjust the tem-
perature, adversaries can use this feature to better distinguish
between member and non-member data.

We study how similarity scores vary with temperature by
inputting both members and non-members into the LLaVA
model at different temperature settings. We randomly select
1000 samples from both members and non-members and ex-
amine how the similarity scores vary across different tempera-
tures, as depicted in Figure 5. While similarity scores for both
members and non-members decrease with rising temperature,
the decline is more significant for members. Nonetheless, the
considerable overlap in variance intervals indicates that dis-
tinguishing between members and non-members based on a
single data point remains challenging, which suggests that
statistical information from a set of samples could be utilized

2https://platform.openai.com/docs/guides/text-generation
3https://huggingface.co/spaces/Vision-CAIR/minigpt4
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to better differentiate between members and non-members.
Based on these observations, we design four membership

inference algorithms, each based on varying assumptions
about the adversary’s capabilities.

4 Shadow Model Inference

In this section, we present the first type of set membership
inference against VLMs, i.e., shadow model inference, as
shown in the top row of Figure 6. We start by introducing
our key intuition. Then we describe the attack methodology.
Finally, the evaluation results are presented.

4.1 Intuition
As observed in Section 3.2, when a set of data samples is input
into a target VLM with varying temperatures T ∈ {Ti}nT

i=1, the
distribution of similarity scores changes as the temperature
increases. The trend in similarity score distributions differs
between member and non-member sets.

To leverage this observation, we propose training a binary
classifier to learn the patterns in the distribution trends of
member and non-member sets. Following previous MIAs [6,
54, 57], we assume that the adversary has access to a shadow
dataset Ds drawn from the same distribution as the target
model’s dataset Dt . The adversary is then able to train a
local shadow model fθs on Ds. Subsequently, the adversary
generates training data for the binary classifier by querying the
shadow model with the shadow dataset. The trained binary
classifier can then be employed to conduct inference on a
target set with the target model.

4.2 Methodology
The methodology comprises four phases as follows, and the
pseudocode is illustrated in Algorithm 1 in Appendix A.
Shadow Model Training. Initially, the shadow dataset Ds is
randomly partitioned into a member dataset Dm

s and a non-
member dataset Dn

s . A local shadow model fθs is then trained
on Dm

s to mimic the behavior of the target model fθt .
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Figure 6: Overview of four Different Membership Inference Attack Algorithms.

Classification Dataset Generation. Depending on the size
of the target set, referred to as granularity g, nb sets of size g
are randomly drawn from both Dm

s and Dn
s to form mem-

ber sets {Xi
m}

nb
i=1 and non-member sets {Xi

n}
nb
i=1. For ev-

ery set X ∈ {{Xi
m}

nb
i=1 ∪ {Xi

n}
nb
i=1}, each data sample x =

(xv,xq,ya) ∈ X is inputed into the shadow model at varying
temperatures T ∈ {Ti}nT

i=1, and the similarity score between
the model response r and the ground truth answer ya is com-
puted, denoted as s = sim(r,ya). For each set, the mean µT
and variance σT of the similarity scores for all data samples
within the set are calculated at each T , and a feature vector
v = [µT1 ,σT1 , . . . ,µTnT

,σTnT
] is formed. Each feature vector

is subsequently labeled as a member (1) or non-member (0).
Consequently, we obtain nb positive samples and nb negative
samples for binary classifier training.

Binary Classifier Training. We employ a simple neural net-
work as the binary classifier, consisting of three layers: the
first transforms input features into a 64-dimensional vector
with ReLU activation, the second processes this vector, and
the final layer outputs a probability between 0 and 1 via a sig-
moid function, representing the sample’s likelihood of being
in the positive class. This classifier, denoted as fb, is trained
on previously generated data.

Membership Inference. For the target set Xt , we apply a
similar procedure as in the binary dataset generation phase
on the target model to produce the feature vector, which is

then fed into fb. If the output is 1, the target set is classified
as belonging to the training dataset of the target model, and
vice versa.

4.3 Evaluation Setting

Vision-Language Models. Experiments are conducted on
LLaVA [43] and MiniGPT-4 [70], representing two categories
of VLMs: those that update the LLM during instruction tun-
ing and those that freeze the LLM, respectively. For each
model, variants based on different foundational LLMs are
also considered. For LLaVA, we test four different LLMs:
Vicuna-13B, Vicuna-7B [11], Llama-2-13B-chat, and Llama-
2-7B-chat [62]. For MiniGPT-4, we only utilize two Vicuna
models, due to limited information from developers about
training MiniGPT-4 with Llama models.
Data Processing. The samples in instruction-tuning dataset
of LLaVA and MiniGPT-4 are already in the form of image-
question-answer tuple, we organize them as inference targets.

Since MiniGPT-4 does not require updating LLM param-
eters during training, only 3.5k samples are used. We fol-
low their data curation procedure and generate approximately
10.5k data samples, which, after shuffling with original dataset,
are randomly divided into four subsets: Dm

t , Dn
t , Dm

s , and Dn
s .

Dm
t and Dm

s are used for training the target and shadow mod-
els, respectively, while Dn

t and Dn
s serve as non-members. 10k



sets of size g (short for granularity) are sampled randomly and
queried against the shadow model at 16 different temperatures
from Dm

s and Dn
s , serving as the training dataset. Similarly,

sets of size g are sampled from Dm
t and Dn

t as test dataset.
The developers of LLaVA utilize ChatGPT to generate

158k language-vision samples for instruction tuning, includ-
ing three type of data: 58k in multi-turn conversations, 23k in
detailed image descriptions, and 77k in complex reasoning.
Due to the prohibitive cost of generating a dataset of similar
size, we do not create additional dataset as done for MiniGPT-
4. To make the most of the LLaVA dataset, it’s divided into
Dm

t , Dm
s , Dn

t , and Dn
s in a 4:4:1:1 ratio. To examine the impact

of different data types, classifiers are independently trained
using these three categories of data.

All VLMs are trained using default parameters from the
open-source code provided by the authors, including batch
size, epochs, learning rates, etc.
Similarity Calculation. We utilize OpenAI’s embedding
API [49] to calculate the similarity between VLM responses
and ground truth answers in Section 3.1. Additionally, we ex-
plore other freely available methods for calculating similarity:

• MPNet [58], an open-source embedding model, can also
transform texts into embeddings, and the similarity score
can be calculated accordingly.

• Rouge [41] calculates the similarity based on the overlap
of text units. We employ Rouge-2, which measures the
bigram overlap.

Evaluation Metrics. We report the performance of shadow
model inference with accuracy, precision, and recall, which
are commonly used in the evaluation of classification tasks.

4.4 Experimental Results
For the experiments with LLaVA, this section presents data
from the complex reasoning category. Comparisons between
different categories will be detailed in Table 3.

Figure 7 illustrates the impact of granularity and similar-
ity calculation methods on the success rate of inference for
LLaVA and MiniGPT-4 on Vicuna-13B model. As granularity
increases, there is a significant improvement in success rate,
with our inference method performing better on LLaVA than
on MiniGPT-4. This difference is mainly due to LLaVA’s
fine-tuning of the LLM, corresponding to a larger number of
trainable parameters compared to MiniGPT-4. Generally, the
over-fitting level is positively correlated with the number of
trainable parameters. With LLaVA, merely 5 samples as a set
can achieve an accuracy above 0.8, and 10 samples reach an
accuracy of 0.9.

The rouge-based similarity calculation outperforms the
embedding-based ones. This is because the embedding-based
similarity calculation measures the semantic similarity be-
tween two responses, whereas the rouge-based similarity cal-
culation quantifies the overlap of vocabulary used. VLMs’

robust generalization ensures that regardless of membership
status, the semantic understanding of images remains accu-
rate. The difference in whether the model has learned that data
is reflected in how that semantics is expressed, such as which
of two synonyms to choose. For member data, the model is
more likely to select synonyms consistent with the ground
truth answer. The rouge-based similarity calculation more
effectively captures these nuances in synonym selection.
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Figure 7: Shadow Model Inference on Two Models

Figure 8 shows the impact of the number of features on
training the binary classifier. As described in Algorithm 1,
each temperature T produces two features: µT and σT . We
compared the effect of using either 8 or 16 different tempera-
tures for inference, and also compared cases where only the
mean µ was used as a feature without the variance σ. For
LLaVA, using 16 temperatures with both variance and mean
as features yields the best results, whereas using only 8 tem-
peratures without variance performs the worst. However, for
MiniGPT-4, the opposite is true. This is because the data
volume is too small for sufficient training of the classifier
model with a large number of parameters, and using fewer
features reduces the number of parameters, enabling faster
model convergence.
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Figure 8: Shadow Model Inference with Different Features

We also compare the impact of different types of LLMs
on inference, as shown in Figure 9. For LLaVA, inference



performs better with the 13B model than with the 7B model,
bacause larger number of parameters results in greater overfit-
ting, which, in turn, amplifies the membership signal [12, 57].
In contrast, choosing Vicuna or Llama as the foundational
LLM has a negligible impact on inference. For MiniGPT-4,
the quantity of LLM parameters does not significantly affect
performance, as the LLM parameters are not trainable, and
only the projector parameters are updated during instruction
tuning.
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Figure 9: Shadow Model Inference on Different Models

Gran. Metric 1:1 1:0.75 1:0.5 1:0.25

40
Acc. 88.5% 87.1% 85.3% 80.9%
Rec. 82.2% 78.4% 74.2% 62.8%
Pre. 94.0% 94.9% 95.4% 98.4%

120
Acc. 96.7% 95.1% 91.3% 85.1%
Rec. 93.7% 90.3% 82.5% 70.3%
Pre. 99.7% 99.8% 100% 100%

200
Acc. 99.3% 97.5% 94.5% 90.5%
Rec. 98.6% 95.0% 88.9% 81.0%
Pre. 100% 100% 100% 100%

Table 2: Impact of Shadow Dataset Size

In practical attack scenarios, the size of the shadow dataset
available to the adversary may be smaller than the target
model’s training dataset. This size discrepancy can lead to
different degrees of over-fitting between the shadow model
and the target model. To evaluate the impact of this, we con-
duct experiments on the MiniGPT-4 with Vicuna 13B model,
where the size of the shadow dataset is set to 75%, 50%, and
25% of the target dataset, respectively. The inference perfor-
mance of the shadow model is assessed with rouge-2 as the
similarity calculation and 8 dimensions for feature vectors,
and the results are presented in Table 2. As the size of the
shadow dataset decreases, a significant decline in recall is
observed. This decline is attributed to an increase in the de-
gree of over-fitting of the shadow model, resulting in higher
similarity scores and consequently raising the threshold for

classifying a set as a member set.

5 Reference Inference

The shadow model reference requires that the adversary pos-
sesses both a shadow dataset and adequate computational
resources to train the shadow model. However, this assump-
tion may not always hold in practical membership inference
scenarios. Consequently, we seek to relax the assumption and
propose the method of reference inference.

5.1 Intuition
In the previous inference, the necessity for a shadow dataset
stemmed from the need to characterize the distribution pat-
tern of member and non-member sets. By comparing the
distribution of the target set with those of the member and
non-member sets, the classifier can determine its membership
status. We wonder if it is possible to assess, without relying
on a trained classifier, whether the similarity scores of the
target set originate from the same distribution as those of
the member/non-member sets. Statistical hypothesis testing
offers a solution: z-test [36] can be utilized to assess whether
the distributional difference between two data statistics is sig-
nificant, thereby aiding in the determination of whether they
originate from the same distribution.

If the adversary possesses a reference set whose member-
ship status in the target model’s training dataset is already
known, z-test can be employed to calculate the probability
that the similarity scores of the reference set and the target set
come from the same distribution 4, as shown in the middle
line of Figure 6. This probability can indicate whether the ref-
erence set and the target set belong to the same membership
status. In practical inference scenarios, acquiring reference
data is generally not challenging. For example, data posted
after the publication of the model can be considered as non-
member data.

5.2 Methodology
Without loss of generality, we discuss the scenario where a
known non-member set is used as a reference in this section.
For the non-member reference set Xr of size gr, then each
data sample x ∈ Xr is used to query the target model, and
the similarity score sr between the model’s response rr and
the ground truth answer ra is computed, resulting in an array
of similarity scores sr = [s1

r ,s
2
r , . . . ,s

gr
r ]. The target set Xt is

processed in a similar manner, yielding an array of similarity
scores, st = [s1

t ,s
2
t , . . . ,s

gt
t ]. Note that each data sample queries

the target model only once with a single temperature, as it’s
already sufficiently discriminative with the existence of the

4More rigorously, z-test can calculate the probability of observing more
extreme data differences under the assumption that there is no difference in
distributions



reference set. The next step involves conducting a z-test on
these two arrays:

p = 1−Φ(
s̄t − s̄r√
σ2

t
gt
+ σ2

r
gr

), (5)

where Φ denotes the cumulative distribution function of the
standard normal distribution, s̄t and s̄r are the means, σt and
σr are the standard deviations.

The outcome of the z-test is a p-value. In hypothesis test-
ing, it is conventionally accepted that a p < 0.05 indicates a
significant difference between the distributions of two data
arrays, suggesting that the target set is a member in our sce-
nario. Our evaluations indicate that a p < 0.05 threshold can
sometimes be too stringent, leading to a high rate of false
negatives. The adversary may choose a suitable threshold
depending on their requirements, similar to many machine
learning applications [4, 18]. In our experimental evaluation,
we primarily use the area under the ROC curve (AUC), which
is a threshold-independent metric.

5.3 Evaluation Setting
We utilize the target MiniGPT-4 model from Section 4.3. We
randomly sample 1,000 sets of size gt from Dm

t to serve as
target member sets. The dataset Dn

t is equally split into Dn1
t

and Dn2
t . 1000 sets of size gt are sampled from Dn1

t as target
non-member sets, and 1000 sets of size gr are sampled from
Dn2

t as reference non-member sets. Thus, all samples in a set
share the same membership status, and the membership status
of the individual samples determine that of the set. Each set
serves then serves as a data point in evaluation. The scenario
in which one set contains samples with different membership
status is discussed in Section 8.2. Each reference non-member
set is then fed into Algorithm 2 with a target member set or
a target non-member set. The resulting p-values are used to
compute the AUC scores. For LLaVA, as there is no need to
allocate data for a shadow dataset, the data is re-partitioned
in an 8:2 ratio into Dm and Dn, and Dm is used to retrain
a target model. Other settings are similar to those used for
MiniGPT-4.

5.4 Experimental Results
Figure 10 presents how the AUC scores are influenced by
granularity, similarity calculation methods, and the type of
LLM used. Generally, a larger granularity results in higher
AUC; inference on LLaVA outperforms that of MiniGPT-4;
and the rouge-based calculation outperforms the embedding-
based methods. For LLaVA, larger LLM parameters corre-
spond to higher AUC scores. We also report the results of
p-values with Figure 22 in Appendix B .

In prior experiments, we fixed the query temperature T =
0.1. Figure 11 displays the impact of varying T on AUC
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Figure 10: AUC scores of Non-member Reference Inference
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Figure 11: AUC scores of Non-member Reference Inference

scores, and Figure 12 shows its effect on p-values on LLaVA-
V13. The results indicate higher inference success rates with
smaller T , but variations in T below 0.8 have minimal impact
on success rate. Please refer to Appendix B for the p-value
results on MiniGPT-4 in Figure 23.

6 Target-Only Inference

Although reference inference relaxes the capability require-
ments for the adversary compared to shadow model inference,
the necessity of a reference set may still pose a barrier in
certain scenarios. Therefore, we consider a more challenging
scenario where the adversary has only a set of samples that
need to be inferred.

6.1 Intuition
The need for a shadow dataset or a reference set stems from
the requirement to establish a reference coordinate system.
This system allows us to calculate the distance between the tar-
get set and the member/non-member sets to determine mem-
bership status. Figure 5 inspires a solution for conducting
inference without an external reference coordinate system:
member data is more sensitive to the change in temperature,
meaning that querying the target model at two different tem-
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Figure 12: P-Values of Non-member Reference on LLaVA

peratures results in two different similarity scores, and the
difference between the two scores is generally larger for mem-
bers than for non-members. The results of queries at different
temperatures establish an internal reference coordinate sys-
tem, which facilitates distinguishing between members and
non-members, as shown in the third row of Figure 6.

6.2 Methodology

For each data sample x in the target set Xt of granularity g,
the target model is queried with a high temperature Th and
a low temperature Tl for responses rh and rl , respectively.
The similarity scores sh and sl between the responses and the
ground truth answer ya are calculated, resulting in two arrays
of similarity scores sh = [s1

h,s
2
h, . . . ,s

g
h] and sl = [s1

l ,s
2
l , . . . ,s

g
l ]

corresponding to the pair of temperatures. Z-test is then con-
ducted on these two arrays using Equation 5 to compute their
p-value. Given that the data at different temperatures inher-
ently come from different distributions, regardless of whether
they are from the member set or non-member set, the p-values
are typically less than 0.05. Therefore, rather than using 0.05
as a threshold, we utilize the AUC score, which is independent
of any threshold.

6.3 Evaluation Setting

This section employs the same target models as described
in Section 5.3. We sample 1,000 sets of granularity g from
member data and non-member data, respectively. Each set is
then fed into Algorithm 3 for target-only inference.
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Figure 13: AUC scores of Target-only Inference

6.4 Experimental Results
Figure 13 illustrates the influence of granularity, similarity
calculation methods, and type of LLM on AUC, with the
experimental setup specifying Tl = 0.1 and Th = 1.6. The
trends of the impact of granularity and type of LLM on infer-
ence performance are consistent with previous experiments;
however, in this experiment, the embedding-based similar-
ity calculation outperforms the rouge method. Examination
of the actual responses revealed that the quality of VLM re-
sponses deteriorates at higher T values, displaying significant
semantic differences compared to responses at lower T , where
the embedding-based similarity calculation captures these se-
mantic discrepancies more effectively.

We show the effects of varying Tl and Th on LLaVA with
Vicuna-13B in Figure 14. Generally, a larger difference be-
tween Tl and Th correlates with higher AUC scores, although
larger is not always better. Particularly at very high Th values,
such as 1.8, the quality of model responses is poor, offering
limited utility. Please refer to Appendix B for the results on
MiniGPT-4 in Figure 24.

7 Image-only Inference

In some practical scenarios, the adversary may possess only
images without the corresponding text. Therefore, we con-
sider the most challenging scenario in which the adversary
has only a set of images that need to be inferred.

7.1 Intuition
Due to inherent randomness in the model generation process,
querying the same image multiple times may yield slightly
different responses. For member sets, since the model has
been trained on these sets, the descriptions are more consistent
and closely aligned with the ground truth, resulting in greater
similarity among them. In contrast, for non-member sets, to
which the model has not been exposed, the output probability
distribution is more uniform, leading to more diverse and less
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Figure 14: Target-only Inference with Varying g on LLaVA

consistent responses. Thus, when only images are available,
an attacker can repeatedly query the model with the same
image, assess the similarity among the responses, and use this
information to infer membership status, as illustrated in the
bottom line of Figure 6.

7.2 Methodology
For each image xi within the target set, the target model inde-
pendently describes the image k times, yielding k responses
[r1, · · · ,rk]. The similarity among these k responses is calcu-
lated, resulting in k(k−1)

2 similarity scores [s1, . . . ,sk(k−1)/2],
and their mean, savg, is calculated. The adversary determines
the membership status based on the mean savg of all images
in the target set, where a higher savg indicates membership.

7.3 Evaluation Setting
This section employs the same target models as described
in Section 5.3. We sample 1,000 sets of granularity g from
member data and non-member data, respectively. The images
in each set are then fed into Algorithm 4 for image-only
inference.

7.4 Experimental Results
Figure 15 illustrates the impact of granularity, similarity cal-
culation methods, and the type of LLM on the AUC, with
the experimental setup specifying T = 0.5 and the number of
queries k = 10. The impact of these variants remains consis-
tent with previous experiments.

Figure 16 demonstrates the effects of temperature on in-
ference success rates. The highest success rate occurs at
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Figure 16: Image-only Inference with Varing T on LLaVA

T = 0.5. When the temperature is too low, the randomness
during model generation is insufficient, leading to very sta-
ble descriptions of non-member images by the model, which
is inadequate for distinguishing between member and non-
member images. Conversely, when the temperature is too
high, the excessive randomness results in significant varia-
tions between descriptions of member images by the model.
Therefore, selecting an appropriate temperature is crucial.

The impact of the number of queries is depicted in Fig-
ure 17. There is a noticeable improvement when the number
of queries increases from 5 to 10; however, further increases in
the number of queries only marginally enhance the inference
success rate.

8 Additional Experiments

This section studies the impact of different settings on the ef-
fectiveness of inference methods, including query type, hetero-
geneous target set, mismatched set size and response length.
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Figure 17: Image-only Inference with Varing k on LLaVA

We also discuss and compare the shadow model inference
method with existing attacks that share similar threat models.
The experiments in this section are conducted on LLaVA with
Vicuna-13B model. More experimental results and discus-
sions can be found in Appendix B and C.

8.1 Query Type

As discussed in Section 4.3, the instruction tuning dataset
for LLaVA is categorized into three types: multi-turn conver-
sations, detailed image descriptions, and complex reasoning.
We test the performance of three inference methods across
these query types, and the results are presented in Table 3.
Note that the image-only inference is not included as it can
only be performed on the type of detailed image description.
Generally, queries of the complex reasoning type achieved
the highest success rate in inference, followed by multi-turn
conversations, while those of the detailed image description
type were less effective. We believe that this is due to the
answers in detailed image descriptions being more definitive,
allowing the VLM to produce responses very close to the
ground truth answer, regardless of whether it has learned the
data. In contrast, answers in complex reasoning are more di-
vergent, resulting in larger discrepancies between members
and non-members. Similarly, multi-turn conversations, which
often involve reasoning questions, also exhibit higher infer-
ence success rates.

8.2 Heterogeneous Target Set

It is typically assumed that the data samples within a target
set share the same membership status. This is because model
developers generally aim to comprehensively collect all ac-
cessible data, and data in one target set often possess the same
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Figure 18: Scores of Heterogeneous Sets

accessibility. For instance, a set of medical images from a
single patient is usually either entirely collected or entirely
omitted.

In cases where this uniformity does not hold, we explore
the scenario that each target set includes a certain proportion
of data with opposing membership statuses. The results, dis-
played in Figure 18, show that for all types of inference, the
success rate significantly decreases as the heterogeneity ratio
increases. However, when the ratio is low (less than 0.2), the
inference success rate remains relatively high (higher than
0.8), showing robustness to some extent.
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8.3 Mismatched Set Size
In shadow model inference and reference inference, there are
actually two types of granularity: one for the target set and the
other for the shadow set or the reference set. We investigate
whether a mismatch in the size of these sets affects the success
rate of inference and illustrate the experimental results in Fig-
ure 19. For shadow model inference, the size of the shadow
granularity appears to have minimal impact on the success
rate of inference. However, the size of the target granularity is
positively correlated with the success rate of inference. In the
case of reference inference, the success rate is positively cor-
related with the size of both granularities. Yet, the variation in



Table 3: Comparison of Different Attacks and Query Types on LLaVA-V13.

Metric Gran. Shadow Model Reference Member Reference Non-Member Target-only

Reason Detail Conv. Reason Detail Conv. Reason Detail Conv. Reason Detail Conv.

EmbGPT

20 88.85% 72.72% 88.92% 80.89% 69.36% 77.67% 81.41% 68.23% 78.22% 78.98% 63.65% 74.60%
60 97.93% 84.31% 97.91% 92.19% 81.90% 92.83% 92.98% 82.20% 92.20% 89.80% 76.07% 88.88%
100 99.54% 89.12% 99.54% 96.87% 87.30% 96.92% 97.56% 85.73% 96.39% 94.41% 83.26% 93.12%

EmbMPN

20 81.97% 71.65% 82.18% 75.19% 65.22% 76.58% 73.96% 67.98% 77.17% 72.35% 63.20% 71.79%
60 93.76% 82.49% 91.99% 87.39% 78.66% 88.19% 87.51% 78.73% 90.32% 85.09% 73.55% 85.79%
100 97.30% 88.52% 96.89% 93.02% 82.79% 94.81% 93.21% 86.13% 94.77% 90.51% 81.26% 90.08%

Rouge-2
20 96.94% 86.09% 94.47% 93.56% 76.41% 86.80% 93.38% 71.64% 87.29% 67.44% 65.92% 69.25%
60 99.87% 97.08% 99.49% 99.71% 89.47% 97.17% 99.66% 90.56% 97.62% 67.43% 68.49% 83.09%
100 100.00% 99.26% 99.88% 100.00% 94.51% 99.36% 100.00% 96.37% 99.41% 68.94% 68.94% 87.81%

success rates primarily depends on the size of each granularity
itself, rather than on their match, as matched conditions (data
along the diagonal) do not significantly outperform adjacent
data points.
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8.4 Response Length
During our experiments, we observe that the similarity be-
tween the VLM’s response and the ground truth answer cor-
relates with the length of the response for member data. To
further investigate, we group all data according to the string
length intervals of the responses and conducted inference in-
dependently for each group. The results of reference inference
and target-only inference, as shown in Figure 20, indicate that
longer responses tend to have lower inference success rates.

This phenomenon can be attributed to the error accumu-
lation in next-token predictions as described in Equation 2.
Each token’s prediction depends not only on the input prompt
but also on the tokens already generated in the response. For
member data, the initial tokens generated after the image and
text prompt are fed into the VLM are primarily determined by
the prompt and tend to be closer to the ground truth answer.
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However, if any token deviates from the answer during gen-
eration, this error influences the generation of all subsequent
tokens, leading to cumulative deviations from the ground truth
answer. As the response lengthens, the performance of mem-
ber and non-member data converges, increasing the difficulty
of differentiation.

Experiment on shadow model inference is not conducted as
the data volume varies across different length intervals, which
could affect classifier training and result in biased compar-
isons.

8.5 Comparison with Existing Work

While MIAs on LLM-based generative VLMs have not been
explored previously, MIAs targeting other multimodal mod-
els have been studied. For instance, Hu et al. [30] introduced
two shadow-model-based attacks against a CNN&RNN-based
caption model [65]. This model generates short textual de-
scriptions (around ten words) for input images but lacks the
ability to engage in human-like conversation. Despite signif-
icant differences in architecture, data scale, and capabilities
between this caption model and modern VLMs, their textual
output format makes the proposed MIAs applicable to VLMs.
Specifically, Their shadow model approach includes two in-
ference methods: (1) a metric-based method that calculates



similarity between the model’s output and the ground truth
using various metrics, and (2) a feature-based method that
measures the similarity between images and text in an embed-
ding space, where members typically show higher similarity
than non-members. Both methods train a classifier on shadow
data to leverage these signals for the attack.

As these methods share a similar threat model with our
shadow model method, we compare them on LLaVA-Vicuna-
13b and MiniGPT-4-Vicuna-13b models. To adapt to set-level
inference, we use the same sampling policy as before to form
sets, and then average the membership signals within every
set. Figure 21 shows that under the same threat model, our
shadow model inference method significantly outperforms
the other methods. The metric-based method’s framework is
similar to our method, but its performance is worse due to
its non-utilization of temperature-based signals. The feature-
based method is entirely ineffective, likely because its un-
derlying intuition—that the caption model can semantically
align member data pairs well but struggles with non-member
data—does not hold for more powerful modern VLMs, which
ensure semantic alignment regardless of whether the data was
specifically learned.

9 Related Works

9.1 Membership Inference Attack
Membership inference attacks (MIA) are designed to deter-
mine whether a specific data record was used in the train-
ing of a machine learning model. These attacks have been
successfully performed across various types of data, includ-
ing biomedical data [3] and mobility traces [51]. Shokri et
al. [57] proposed the first MIA against machine learning mod-
els, utilizing multiple shadow models for attack. Subsequent
research [12, 38, 39, 54] progressively relaxed the initial as-
sumptions and introduced more practical approaches, such
as data-independent membership inference [54] and decision-
based inference [12, 38], making the inference more practi-
cal in realistic scenarios. While most MIAs focused on im-
age classification models, later studies expanded the appli-
cation of MIAs to other types of models, including graph
models [24, 31], GANs [9, 26], and diffusion models [14, 28].

In the context of large language models (LLMs), most pri-
vacy attacks have concentrated on extracting private informa-
tion [7, 21, 45, 46]. Nevertheless, these studies also highlight
that privacy extraction only works effectively for worst-case
data samples and fails to meet the universality required for
MIAs. Although attempts [48, 56] have been made to adapt
MIAs to LLMs, a systematic investigation [15] has shown that
existing MIAs for LLMs barely outperform random guessing
in most settings across various sizes and domains of LLMs.
This ineffectiveness is largely attributed to the combination
of large datasets and few training iterations, a problem that is
also faced by large vision-language models.

9.2 Security and Privacy of VLMs
While membership inference attacks on VLMs remain largely
unexplored, there exists research revolving around other pri-
vacy and security issues concerning VLMs. Xu et al. [67]
introduced a poisoning attack designed for VLMs. Liang et
al. [40] investigated the feasibility of implanting backdoors
during the training phase of VLMs. Several works [52, 61]
focus on jailbreaking VLMs with adversarial image prompts.
Additionally, Sun et al. [60] explored adversarial sample at-
tacks and their defenses targeting VLMs.

Prior to the advent of interactive conversation-capable
VLMs such as ChatGPT-4 [2] and LLaVA [43], VLMs were
typically referred to as multi-modal pre-trained representa-
tion models such as CLIP [53], which encode text and images
into embeddings within the same embedding space. Research
on adversarial examples [68, 69] and membership inference
attacks [27, 33, 35, 44] for such models has been conducted.
However, due to differences in output modalities, attacks tar-
geting this category of VLMs follow a paradigm significantly
distinct from that used for modern generative VLMs, which
is the focus of this paper.

10 Conclusion

In this paper, we highlight the vulnerabilities associated with
membership inference in VLMs by leveraging two observa-
tions in overfitting signal capture: the aggregate distribution
characteristics of a set of data samples and the differential
sensitivity to temperature changes between members and
non-members. By progressively relaxing assumptions about
adversarial capabilities, we introduce four membership infer-
ence algorithms, thereby demonstrating the extensive privacy
threats to VLMs. Our comprehensive evaluation confirms
the effectiveness of the proposed inference algorithms across
various scenarios.

Future work includes: 1) The inference algorithms could
be combined and optimized to adapt to a wider variety of sce-
narios and enhance inference performance. 2) The inference
relies on the assumption of identical distributions between the
shadow or reference sets and the target set. The implications
of distributional discrepancies need exploration. 3) Further
investigation is needed into strategies to effectively mitigate
the privacy risks posed by set-level membership inference. 4)
Given that temperature is a common parameter in language
models, the potential of inference algorithms against LLMs
needs further exploration.
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APPENDIX

A Pseudocode

Algorithm 1 Shadow Model Inference
Input: Shadow dataset Ds, target model fθt , target set Xt ,

granularity g, number of sets nb, temperature set {Ti}nT
i=1

1: Randomly partition shadow dataset Ds into Dm
s and Dn

s
2: Train shadow model fθs on Dm

s
3: Randomly draw nb sets of size g from both Dm

s and Dn
s ,

and obtain {Xi
m}

nb
i=1 and {Xi

n}
nb
i=1

4: for each X ∈ {Xm}∪{Xn} do
5: for each T ∈ {Ti}nT

i=1 do
6: for each x = (xv,xq,ya) ∈ X do
7: Query shadow model and get r = fθs(xv,xq,T )
8: Compute similarity score s = sim(r,ya)
9: end for

10: Calculate mean µT and variance σT of all s
11: end for
12: Form feature vector v = [µT1 ,σT1 , . . . ,µTnT

,σTnT
]

13: Label vectors as member (1) or non-member (0)
14: end for
15: Train binary classifier fb using labeled V = {vi}2·nb

i=1
16: Calculate feature vector vt for target set Xt
17: Conduct inference 1= fb(vt)
Output: Membership status 1 ∈ {0,1}

B Deferred Experimental Results

B.1 Impact of different factors on p-values
Figure 22 presents how the p-values are influenced by gran-
ularity, similarity calculation methods, and the type of LLM
used in reference inference. These p-values represent the
mean calculated over 1,000 inferences. Generally, a larger
granularity results in lower p-values; p-values for LLaVA
are smaller than those for MiniGPT-4, and the rouge-based
calculation outperforms the embedding-based methods. For
LLaVA, larger LLM corresponds to smaller p-values.
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Figure 22: p-Values of Non-member Reference Inference

Algorithm 2 Reference Inference with Non-member Set
Input: Non-member reference set Xr of size gr, target set

Xt of size gt , target model fθt , threshold τ

1: for each x = (xv,xq,ya) ∈ Xr do
2: Query target model and get rr = fθt (xv,xq)
3: Compute similarity score sr = sim(rr,ya)
4: end for
5: for each x = (xv,xq,ya) ∈ Xt do
6: Query target model and get rt = fθt (xv,xq)
7: Compute similarity score st = sim(rt ,ya)
8: end for
9: Compute mean s̄r/s̄t and standard deviation σr/σt

10: Calculate the combined standard error e =
√

σ2
t

gt
+ σ2

r
gr

11: Calculate the p-value p = 1−Φ
( s̄t−s̄r

e

)
12: if p < τ then
13: Conclude that 1= 1, i.e., Xt is a member set
14: else
15: Conclude that 1= 0, i.e., Xt is a non-member set
16: end if
Output: Membership status 1 ∈ {0,1}

Algorithm 3 Target-only Inference
Input: Target set Xt of size g, target model fθt , query tem-

perature Th and Tl , threshold τ.
1: for each x = (xv,xq,ya) ∈ Xt do
2: Query shadow model with Th and Tl , respectively, ob-

tain rh = fθt (xv,xq,Th), rl = fθt (xv,xq,Tl)
3: Compute the similarity score sh = sim(rh,ya), sl =

sim(rl ,ya)
4: end for
5: Compute the mean s̄h/s̄l and the standard deviation σh/σl

of sh/sh

6: Calculate the combined standard error e =

√
σ2

l +σ2
h

g

7: Calculate the p-value p = 1−Φ
( s̄l−s̄h

e

)
8: if p < τ then
9: Conclude that 1= 1, i.e., Xt is a member set

10: else
11: Conclude that 1= 0, i.e., Xt is a non-member set
12: end if
Output: Membership status 1 ∈ {0,1}



Algorithm 4 Image-only Inference
Input: Target set Xt

v of size g, target model fθt , query tem-
perature T , threshold τ.

1: for each xv ∈ Xt
v do

2: Ask shadow model to describe image xv k times and
obtain [r1,r2, · · · ,rk]

3: Compute the similarity score between every pair of
these responses and get [s1,s2, · · · ,sk×(k−1)/2]

4: Average the similarity scores and get savg
5: end for
6: Compute the mean s̄avg
7: if s̄avg > τ then
8: Conclude that 1= 1, i.e., Xt is a member set
9: else

10: Conclude that 1= 0, i.e., Xt is a non-member set
11: end if
Output: Membership status 1 ∈ {0,1}

Figure 23 displays the impact of varying T on p-values on
MiniGPT-4-V13, and it shows a similar trend as in Figure 12.
The effects of varying Tl and Th of target-only inference on
MiniGPT-4-V13 are shown in Figure 24. The results align
with LLaVA-V13 in Figure 14.
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Figure 23: P-Values of Non-member Reference on MiniGPT4

C Discussions

C.1 Improvements of Proposed Algorithms
In this paper, we aim to uncover the breadth of threats that
set-level membership inference poses to VLMs across var-
ious scenarios, rather than optimizing inference algorithms
and parameter settings for each specific scenario. Indeed, the
inference algorithms proposed in this paper can be further
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Figure 24: Target-only Inference with Varying g on MiniGPT

refined. For instance, shadow model inference could benefit
from tailored classifier designs for different target models, in-
volving modifications in model architecture, feature selection,
and training hyper-parameters. For reference inference, we
currently query the target model with a single temperature.
By employing multiple temperatures for querying, the aggre-
gated signal could improve the success rate of the inference. A
similar enhancement strategy applies to target-only inference,
where using multiple pairs of temperatures for querying could
boost performance.

C.2 Defense Against Membership Inference
As over-fitting is a fundamental prerequisite for successful
membership inference, methods that reduce over-fitting can
serve as effective defenses [29]. Common strategies such as
weight decay (L1/L2 regularization) [34, 64], dropout [59],
and data augmentation are known to decrease over-fitting
effectively, albeit often at the expense of model utility.
Another category of defenses employs differential privacy
(DP) [1, 16, 63], which introduces carefully calibrated noise
to provide provable privacy guarantees. However, the intro-
duction of DP noise can significantly compromise model util-
ity, especially for models with a large number of parameters.
Beyond these training-phase defensive measures, machine
unlearning [5, 20, 32] seeks to erase the influence of specific
data on a trained model. Yet, unlearning algorithms tailored
to VLMs remain largely unexplored.

In response to the inference methods proposed in this paper,
several basic defenses can be considered, such as restricting
users to fixed temperature queries or limiting the range of
temperature adjustments. Additionally, as observed in Sec-
tion 8.4, encouraging longer model responses may help to
blur the boundaries between members and non-members.
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