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Abstract
Machine Learning (ML) models are vulnerable to member-

ship inference attacks (MIAs), where an adversary aims to
determine whether a specific sample was part of the model’s
training data. Traditional MIAs exploit differences in the
model’s output posteriors, but in more challenging scenarios
(label-only scenarios) where only predicted labels are avail-
able, existing works directly utilize the shortest distance of
samples reaching decision boundaries as membership sig-
nals, denoted as the shortestBD. However, they face two key
challenges: low distinguishability between members and non-
members due to sample diversity, and high query requirements
stemming from direction diversity.

To overcome these limitations, we propose a novel label-
only attack called DHAttack, designed for Higher perfor-
mance and Higher stealth, focusing on the boundary distance
of individual samples to mitigate the effects of sample di-
versity, and measuring this distance toward a fixed point to
minimize query overhead. Empirical results demonstrate that
DHAttack consistently outperforms other advanced attack
methods. Notably, in some cases, DHAttack achieves more
than an order of magnitude improvement over all baselines
in terms of TPR @ 0.1% FPR with just 5 to 30 queries. Fur-
thermore, we explore the reasons for DHAttack’s success,
and then analyze other crucial factors in the attack perfor-
mance. Finally, we evaluate several defense mechanisms
against DHAttack and demonstrate its superiority over all
baseline attacks.1

1 Introduction

Over the past decade, machine learning (ML) has significantly
influenced various human activities, including item recom-
mendation for online shopping [14,19,36], route planning for
vehicles [4, 41], and handwriting recognition [5, 30, 31] for

*The first two authors made equal contributions.
†Corresponding author.
1Code is available at https://github.com/AIPAG/DHAttack or

https://doi.org/10.5281/zenodo.14728863.
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Figure 1: An illustration of the limitations of shortestBD and
the intuitions behind our method.

delivery operations. ML models assist in decision-making by
offering predicted outcomes, often with associated confidence
levels, such as predicted probabilities. These models have
profoundly affected both work and daily life.

Meanwhile, ML models also face privacy attacks. Mem-
bership inference attacks (MIAs) are among the most se-
vere in the ML domain, aiming to determine whether a
sample was used in a model’s training. Most existing stud-
ies [10, 18, 34, 37, 39, 47] exploit differences in the target
model’s output posteriors for members and non-members to
conduct their attacks. In more realistic and challenging sce-
narios where models return only predicted labels rather than
posterior probabilities, several studies [11,26,43,44,48] have
demonstrated that membership leakage still occurs. These
studies highlight a key insight: members of the training set
tend to be positioned farther from the decision boundary com-
pared to non-members. We denote the distance to the decision
boundary as the boundary distance (BD). Building on this
insight, existing label-only attacks [11, 26] often measure the
minimal perturbations—calculated through adversarial exam-
ples—required to change a sample’s predicted label. If the
minimal perturbation exceeds a certain threshold, the sample
is classified as a member; otherwise, a non-member. In this
paper, we refer to these minimal perturbations as the shortest
boundary distance (shortestBD).

https://github.com/AIPAG/DHAttack
https://doi.org/10.5281/zenodo.14728863


However, employing the shortestBD for attacks has two
main limitations: high query requirement and low distin-
guishability. First, due to direction diversity, identifying a
sample’s shortestBD requires querying from various direc-
tions, which demands a large number of queries. For ex-
ample, existing label-only attacks [11, 26, 44, 48] that em-
ploy advanced adversarial example techniques, such as Hop-
SkipJump [9] or QEBA [24], typically need over 1,000 queries
to identify the shortestBD, as shown in Figure 1a. This ap-
proach is costly for adversaries and can be easily detected by
model owners. More importantly, the assumption that mem-
bers consistently have larger shortestBD values than non-
members is somewhat idealized. Due to sample diversity,
some non-members inevitably exhibit shortestBD values sim-
ilar to those of members, as shown in Figure 1b. This overlap
in the shortestBD distributions of members and non-members,
illustrated in Figure 2a, reduces attack performance and in-
creases false positive rates.

To address these problems, we propose a novel membership
signal that also relies on boundary distance but from two new
perspectives. First, instead of identifying a sample’s short-
estBD among various directions, we measure the distance at
which a sample crosses the decision boundary when moved
toward a fixed data sample, denoted as fixedBD, as shown
in Figure 1a. The fixed sample acts as a consistent reference
point, streamlining computation by eliminating the need for
costly shortestBD searches and ensuring uniformity in bound-
ary distance measurements. Second, instead of comparing the
boundary distances between different samples, we shift our
focus to each individual sample: a sample will exhibit a larger
boundary distance if it was in the training set compared to if it
itself was not. This can reduce the negative effect of the over-
lap between member and non-member boundary distances,
thereby potentially achieving better attack performance.

Building on the above, we propose a new label-only
membership inference attack called DHAttack, designed for
Higher performance and Higher stealth. The adversary first
trains several local models (called shadow models) using a
dataset drawn from the same distribution as the target model’s
training set, but without including the target samples being
inferred. For the target sample, the adversary measures its
boundary distances toward the fixed data sample (e.g., an im-
age with all RGB values set to 255) on each shadow model,
thereby generating a set of fixedBDs, which is then modeled as
a Gaussian distribution. Since the target sample is definitely
not included in the shadow models’ training, this distribu-
tion actually represents its non-member state. As shown in
Figure 1b, although member and non-member samples may
exhibit similar shortestBD and fixedBD values, a member’s
fixedBD on the target model is greater than on the shadow
model. In contrast, non-members display consistent fixedBD
values across both models. Therefore, the adversary measures
the target sample’s fixedBD on the target victim model and
computes the CDF (Cumulative Distribution Function) value

0.00 0.25 0.50 0.75 1.00
shortestBD

0

500

1000

1500

2000

2500

3000

F
re

qu
en

cy

Member

Non-member

(a) ShortestBD Distribution

0.00 0.25 0.50 0.75 1.00
relScore

0

500

1000

1500

2000

F
re

qu
en

cy

Member

Non-member

(b) RelScore Distribution

Figure 2: Distributions of shortestBD (normalized) and
relScore for members/non-members. Frequency means the
number of samples. The model is ResNet-56 with CIFAR10.

of this fixedBD over its non-member state distribution. A
larger CDF value indicates that the fixedBD of the target sam-
ple on the target model is greater than most of the fixedBDs
drawn from this distribution. This suggests a higher likelihood
of the sample being a member. Conversely, a smaller CDF
value implies a higher likelihood of the sample being a non-
member. Thus, the CDF value can serve as the membership
signal, denoted as the relative membership score (relScore)
in this work. This new signal effectively enhances the dis-
tinction between members and non-members, as illustrated in
Figure 2b.

We conduct extensive evaluations on five benchmark
datasets and compare DHAttack with existing label-only
methods. The results show that DHAttack consistently out-
performs the baselines in nearly all cases. For example, when
using MobileNetV2 trained on CIFAR10, DHAttack achieves
more than an order of magnitude improvement over all base-
lines in terms of TPR @ 0.1% FPR with just 5 to 30 queries.
Additionally, we explore why DHAttack achieves higher per-
formance with fewer queries and present ablation studies to
evaluate the impact of various factors on its effectiveness.
Finally, we evaluate DHAttack and other baselines against
several representative defenses. The results demonstrate that
DHAttack delivers the best performance in almost all scenar-
ios, particularly in TPR @ 0.1% FPR. Overall, our contribu-
tions can be summarized as follows:

• We introduce a new membership signal for label-only
scenarios with two key insights: (1) focusing on the
state of the samples themselves, reducing the negative
impact of sample diversity, and (2) measuring the bound-
ary distance to a fixed point, reducing the large query
requirements for shortestBD.

• We propose a new label-only attack, DHAttack, which
leverages the newly introduced membership signal,
called relScore. Empirical results show that DHAttack
consistently outperforms baseline methods, achieving
over a tenfold improvement in TPR @ 0.1% FPR with



fewer than 50 queries in certain cases.

• We explore the reasons for DHAttack’s success, conduct
comprehensive ablation studies of key factors, and eval-
uate its performance against representative defenses.

2 Preliminaries

2.1 Label-Only MIAs

Membership inference attacks aim to determine whether a tar-
get data sample is used in a target model’s training. Here, we
present a formal definition of MIAs in the label-only scenario.
Definition 1. Given a data sample x with its class label y ∈C,
a trained ML model fT and some auxiliary information of
an adversary, denoted as I . Then, the membership inference
attack A can be defined as follows:

fT : x→ ŷ ∈C.

A : x,y, fT ,I →{0,1}.
Here, 0 means x is not a member of fT ’s training set, and 1
otherwise.

2.2 Threat Model

In the label-only setting, the adversary can only access the
target model’s predicted labels without any posteriors. Further-
more, we follow two assumptions about the adversary’s train-
ing knowledge in the prior MIAs [11,27,34,37,39,44–46,48].
As [11] states, this training knowledge “could be publicly
available or inferable from a model extraction attack.”
Same Data Distribution. The adversary holds an auxiliary
dataset drawn from the same distribution as the target model’s
training set.
Same Model Architecture. The adversary has the knowledge
of the architecture and hyperparameters of the target model.

Since these two assumptions significantly influence our
approach, we further relax them in Section 5.4. Additionally, a
successful attack must meet the following requirement, which
most previous label-only attacks [11, 26, 44, 48] fail to satisfy,
rendering them largely inapplicable.
Limited Queries. The number of queries to the target model
should be minimized. This limitation is necessary because
queries are typically charged per request, and a high query
volume in a short timeframe may trigger security alerts.

2.3 Boundary Distance and Membership Sig-
nal

Boundary distance serves as the primary signal for prior label-
only MIAs [11,26,44,48]. This section will formally define it
to clarify the content of the subsequent sections. Furthermore,

we provide a formal definition of our membership signal,
relScore.
Definition 2 - ShortestBD. ShortestBD is the minimum dis-
tance from a sample x to the decision boundary of a model fT .
Using an adversarial perturbation algorithm AG and a query
budget K, this value can be computed as follows:

AG : x,K→ x̂, subject to fT (x) ̸= fT (x̂);

shortestBD : x, x̂→ ||x̂− x||2.
Here, x̂ refers to the smallest perturbation sample found by

AG under the constraint of K queries. Typically, it requires
thousands of queries to find an approximately minimal pertur-
bation, which has been validated in prior MIAs [11,26,44,48].
Definition 3 - FixedBD. FixedBD is the distance that the sam-
ple x travels toward the fixed point xfixed until it reaches the
model decision boundary. Given x, its ground truth label y, a
model fT , and a query budget K, this value can be computed
as follows:

xdiff = xfixed− x

fixedBD : x,y,xdiff,K→ argmin
i∈[0,K]

fT (x+
i
K
· xdiff) ̸= y.

Here, we typically select outliers (samples with few neigh-
bors) from the training data distribution of fT as xfixed to
ensure that most samples cross the decision boundary. In
our DHAttack, the membership signal is derived by compar-
ing the fixedBD of a sample in the target model with that
in shadow models. Consequently, we only require a consis-
tent xfixed, and the need for shortest distance optimization is
eliminated, thereby reducing the number of queries.
Definition 4 - RelScore. In this paper, we adopt relScore,
derived from fixedBD, as the membership signal. Given x’s
fixedBD value d on the target model and {d1, ...,dn} from
n shadow models excluding x from training, the relScore is
computed as follows:

{d1, ...,dn}→ G

relScore : d,G→ CDF(d,G).

Here, G denotes the Gaussian distribution constructed from
{d1, ...,dn}, and CDF refers to its Cumulative Distribution
Function.

3 Attack Methodology

3.1 Design Intuition
As aforementioned, existing label-only MIAs confront the
problems of limited attack performance and large queries to
the target model. This motivates us to find the reasons behind
these problems.
Intuition 1. First, we explore whether the distinguishability
of boundary distances related to membership can be improved.



Table 1: Query numbers for measuring boundary distance
using different methods (on VGG-16 with CIFAR10).

Sample Status
fixedBD shortestBD

# Queries Norm. Dist. # Queries Norm. Dist.

A Member

10 0.800 100 0.621
20 0.750 500 0.604
30 0.733 1000 0.462
50 0.720 2000 0.481

B Non-member

10 0.300 100 0.652
20 0.300 500 0.597
30 0.267 1000 0.115
50 0.260 2000 0.103

C Member

10 0.700 100 0.715
20 0.700 500 0.426
30 0.667 1000 0.490
50 0.660 2000 0.387

D Non-member

10 0.200 100 0.729
20 0.200 500 0.570
30 0.167 1000 0.109
50 0.160 2000 0.115

Recent studies [7,42,45] have shown that membership leakage
risk varies across samples, partly because some members and
non-members exhibit similar losses. Similarly, in the label-
only scenario, we hypothesize that some members and non-
members also have similar boundary distances, as illustrated
in Figure 2a and later evaluations.

To address this, our first attack strategy aims to mitigate
the negative impact of sample diversity on boundary distance.
Specifically, we compare each target sample’s boundary dis-
tance in two states—whether it participated in model training
or not—under the premise that a sample will have a larger
boundary distance if it was in the training set compared to if
it was not. Inspired by LiRA [7], the simplest method is to
train in-models and out-models locally to estimate a sample’s
boundary distance in both member and non-member states.
However, as highlighted in [7, 17, 23, 27], training in-models
necessitates retraining for each new target sample (or batch),
making it impractical in real-world settings. Furthermore,
He et al. [17] note that LiRA’s implementation [7] assumes
the adversary has simultaneous access to all target samples,
constructing in-models and out-models for the entire dataset
at once. This reduces the MIA problem to ranking samples
within a fixed dataset, deviating from standard MIA scenarios.

To avoid building two states for a target sample, we only ap-
proximate its non-member state using multiple local shadow
models trained on data excluding the target sample, where the
obtained boundary distances are modeled as Gaussian distri-
butions. The target sample’s actual boundary distance is then
measured on the target model, and membership is inferred by
computing the cumulative distribution function (CDF) of this
distance within the Gaussian distribution. This CDF value is
called the relative membership score (relScore), with higher
values indicating that the actual boundary distance exceeds
most of the boundary distances in the non-membership state,
thus suggesting a greater likelihood of being a member.
Intuition 2. Our second focus is on reducing the number of
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Figure 3: Overview of DHAttack.

queries required to the target model. In label-only scenarios,
previous works [11,26,44,48] often use the shortest boundary
distance (shortestBD)—the distance between the target sam-
ple and its adversarial example—as the primary membership
signal. However, accurately determining this distance across
various directions typically requires a large number of queries
(often exceeding 1,000).

To minimize query costs, our second attack strategy mea-
sures the distance at which a sample crosses the decision
boundary when moved toward a fixed data point, which is
called the fixed boundary distance (fixedBD). This approach
eliminates the need for extensive queries required to compute
the shortestBD across multiple directions. In our implemen-
tation, we select an out-of-distribution data point relative to
the target samples. If the fixed data point still belongs to the
same distribution as the target samples, there will likely be
a significant number of samples that do not cross the deci-
sion boundary, as they may be neighboring samples of the
fixed point. Therefore, for simplicity, we consider an out-of-
distribution data point: an image with all RGB values set
to the maximum value of 255. This ensures that all target
samples can cross the decision boundary toward it.

Table 1 compares the query costs of several examples be-
tween measuring fixedBD and shortestBD. We find that ac-
curately measuring the shortestBD requires at least 1,000
queries, as using fewer queries (e.g., 100 or 500) yields unre-
liable results. For example, with 500 queries, the shortestBD
for Member C (0.426) is smaller than that for Non-member D
(0.570), contradicting the results obtained with 1,000 and
2,000 queries. In contrast, fixedBD requires less than 30
queries for accurate measurement.

3.2 Attack Pipeline
Based on the above, we propose a new label-only membership
inference attack, namely DHAttack, which aims to achieve
Higher performance and Higher stealth. The pipeline of
DHAttack is depicted in Figure 3, involving four phases: ref-
erence data relabeling, shadow model training, non-member
state construction, and membership inference. See Algo-
rithm 1 in Appendix B.
Reference Data Relabeling. As mentioned in Section 2.2,
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the adversary possesses an auxiliary dataset, referred to as
the reference dataset Dr, which shares the same distribution
as the target model’s training set. The adversary first queries
the target model using samples from Dr and relabels this
dataset based on the target model’s predictions. This relabeled
reference dataset captures the predictive behavior of the target
model, enabling the local model trained on it to approximate
the target model’s decision boundary.

Note that the relabeling query for the reference dataset is
performed only once during the attack process. The number
of queries required for this relabeling is acceptable for the
adversary. For instance, in our experiments, the default ref-
erence dataset size is 20,000, requiring the same number of
queries as those needed to infer just 20 target samples using
baseline methods like SBA [11] and UBA [26]. Additionally,
these relabeling queries can occur during normal usage of the
target model, with the adversary acting as a regular user. As
a result, this activity is unlikely to be detected by the model
owner.

Even though the relabeling queries are feasible and real-
istic, we further investigate the possibility of removing the
relabeling operation entirely, as discussed in Section 5.4.
Shadow Model Training. The adversary can then leverage
the relabeled dataset Dr to train n local models, referred to
as shadow models (θ1,θ2, . . . ,θn). Each shadow model repre-
sents a decision boundary learned without target samples, but
it is similar to the decision boundary of the target model. Note
that our second assumption is that these shadow models share
the same architecture and hyperparameters as the target model.
Therefore, these shadow models can be used to approximate
the non-member status of a target sample on the target model.
However, we also acknowledge that the second assumption is
overly strict, limiting its applicability in real-world settings.
We further discuss its relaxation in Section 5.4.
Non-member State Construction. We now approximate the
non-member state of the target sample x. It is important to
note that the target sample is not included in the training of
the shadow models; therefore, its behavior on these shadow
models can be regarded as the sample’s non-member state.

The adversary begins by selecting a fixed data sample that
lies outside the distribution of the target sample, such as an
image with all RGB values set to 255 (denoted as “RGB-
255”). Then, we propose a simple yet effective method to

determine the boundary distance of a target sample using
equal-sized steps. Specifically, the adversary computes the
difference between the target sample x and the fixed sample
x f ixed as x f ixed− x. This difference is divided into K equidis-
tant parts and incrementally added to the target sample x, gen-
erating intermediate samples with index i ∈ {1, ...,K}. The
fixedBD is determined at the index i where the intermediate
sample retains the predicted label, but the addition at index
i+1 causes a label change. Figure 4 illustrates this process.
See Appendix B Algorithm 2 for details.

Here, we emphasize two critical aspects. First, the com-
plexity of decision boundaries in high-dimensional spaces
can cause classification inconsistencies among the K queries
between the target and fixed samples, leading to inaccurate
fixedBD estimates. While increasing K enhances the accu-
racy, it also magnifies the effects of these inconsistencies,
ultimately lowering attack performance (see Figure 5). Based
on our experiments in Section 5.1, we recommend selecting K
from 10 to 50, which we find sufficient for our attack. Besides,
although binary search is more efficient, it is highly sensitive
to boundary complexity and is therefore not used in this pro-
cess. Second, choosing an appropriate fixed sample, such as
an outlier (e.g., “RGB-255”), is crucial. In high-dimensional
spaces, non-neighboring samples of an outlier typically cross
the decision boundary when moving toward it. Only a few
neighboring samples may fail to cross the boundary, in which
case their fixedBDs are directly set to K. See Section 5.2 for
more details.

Overall, for a target sample, the adversary repeats the pro-
cess across all n local shadow models, obtaining n fixedBD
values. These values are modeled as a Gaussian distribution G.
Since the target sample is excluded from the training datasets
of the shadow models, this Gaussian distribution represents
the target sample’s non-member state.
Membership Inference. Similarly, the adversary feeds the
target sample x and its K intermediate samples into the tar-
get model to obtain the actual fixedBD, denoted as d. Using
this fixedBD d and the non-member state distribution G, the
adversary calculates the Cumulative Distribution Function
(CDF) value of d, which is used as a membership score, re-
ferred to as the relative membership score (relScore). A larger
relScore indicates that the target sample’s fixedBD on the tar-
get model exceeds most fixedBDs drawn from G, suggesting
a higher likelihood of the sample being a member. Conversely,
a smaller relScore implies a greater likelihood of the sample
being a non-member.

In implementation, we select a threshold τ for membership
inference. If the relScore exceeds τ, it is classified as a mem-
ber; otherwise, it is a non-member. This can be formulated as
the indicator function I[relScore > τ]. Following [7, 29, 45],
the adversary can explore a range of threshold values to obtain
the trade-off between TPR and FPR. In our method, a shadow
model, whose members and non-members are known to the
adversary, can be used to identify τ to reach the specified FPR.



Table 2: Training/testing accuracy of all target models in our
experiments.

Target model CIFAR10 CIFAR100 CINIC10

VGG-16 1.000/0.756 1.000/0.296 1.000/0.569
ResNet-56 0.987/0.662 0.998/0.243 0.972/0.472

MobileNetV2 0.986/0.667 0.998/0.218 0.972/0.463

Target model Purchase News

MLPs 1.000/0.716 0.976/0.663

We also propose a simple threshold selection method that
does not require a shadow model in Section 5.3.

4 Experimental Setup

4.1 Datasets
We evaluate DHAttack on three image datasets and two
non-image datasets, namely CIFAR10 [22], CIFAR100 [22],
CINIC10 [12], Purchase [1], and News [2]. These datasets are
commonly used in existing label-only membership inference
attacks [11, 26, 43, 44, 48]. See details in Appendix A.

Given the varying requirements of different baselines, we
follow [27] to randomly split each dataset into five disjoint
parts: target training/testing dataset (Dt

train / Dt
test), shadow

training/testing dataset (Ds
train / Ds

test), and reference dataset
Dr. The former two sets are held by the target model’s owner,
which are treated as members and non-members of the target
model. The latter three sets are held by the adversary. Among
them Ds

train and Ds
test are used by NRA [11], SBA [11] and Tra-

jectoryMIA [27] to train and test a shadow model, which are
treated as members and non-members of the shadow model.
While Dr is used by TrajectoryMIA [27], YOQO [43] and our
DHAttack to train several local models, as described in these
works. The number of samples in each part is described in
Appendix A Table 11.

4.2 Models
We use three popular model architectures for image datasets:
VGG-16 [38], ResNet-56 [16], and MobileNetV2 [35]. For
non-image datasets, we follow prior work [27] to adopt a 2-
layer MLP as the target model. All models are trained using
the SGD algorithm, with training lasting between 80 and 150
epochs and learning rates ranging from 0.01 to 0.1, depending
on the model’s complexity. The performance of the target
models is shown in Table 2. These same architectures and
hyperparameters are also used for the shadow models trained
by the adversary.

4.3 DHAttack Hyperparameters
First, the number of shadow models is 256 by default. Note
that the adversary only needs to train these shadow models

once in the whole attack process, and thus the computational
cost is tolerable. Additionally, the number of segments K is
set to 30 by default. Note that we also study its impact on the
attack performance by varying it.

4.4 Baselines

In this paper, we adopt the following label-only MIAs as
baselines.
Noise Robustness Attack (NRA). NRA is a method proposed
by Choquette-Choo et al. [11], which adds Gaussian noise to
the target sample x to obtain K noisy samples, and calculates
the target model’s prediction accuracy of the K samples to
approximate x’s boundary distance. The K noisy samples
mean that the adversary has to launch K queries to the target
model for each target sample. Commonly, the accuracy of K
noisy samples from members exceeds that of non-members.
Unsupervised Boundary-attack (UBA). UBA [26] is a
label-only MIA using the adversarial attack algorithms Hop-
SkipJump [9] to find an adversarial example e of the target
sample x. Then, the distance between x and e is taken as
x’s boundary distance. Their experiments demonstrate that
members usually have a lager boundary distance than non-
members. However, it would take more than 1,000 queries on
the target model to find x’s adversarial example and launch a
successful attack. Furthermore, they compute several random
samples’ boundary distances and take the top t percentile over
these distances as the threshold to distinguish members and
non-members.
Supervised Boundary-attack (SBA). SBA is a similar label-
only attack to UBA, proposed by Choquette-Choo et al. [11].
The only difference is the threshold-choosing method. The
adversary of SBA launches the attack against the shadow
model and finds the best threshold to distinguish members
and non-members of the shadow model. Finally, this threshold
is used to attack the target model.
TrajectoryMIA for Label-only (TrajectoryMIA). Liu et
al. [27] presents a state-of-the-art MIA for the common black-
box scenario. In this paper, we use its label-only version as
a baseline. First, the adversary mimics the training process
of the target model by distillation and obtains one sample x’s
multiple losses from intermediate model versions of the dis-
tilled model. Second, the adversary adopts HopSkipJump [9]
to get x’s boundary distance. Then, the losses and boundary
distance of x are constructed as a feature vector. Following the
approach, the adversary can construct many feature vectors
to train an MLP-based attack model. Finally, the well-trained
attack model can be used to infer the membership of the target
sample.
YOQO. YOQO [43] is an alternative attack method that does
not use boundary distance, and focuses on reducing the num-
ber of queries to the target model. The adversary trains N in-
models (trained with the target sample x), and N out-models
(trained without x). Then the adversary crafts a query sam-



ple x′, whose cross-entropy losses with x’s ground-truth label
cx are small on the in-models and large on the out-models.
Finally, x′ is fed to the target model. If the predicted class
label of x′ is the same as cx, x is inferred as a member, other-
wise non-member. This attack only queries once to the target
model but only achieves similar performance to SBA.

4.5 Metrics

We adopt the following two evaluation metrics.
AUC. AUC is an average-case metric widely used in earlier
studies [10, 26, 34, 47]. It is the area under the receiver operat-
ing characteristic (ROC) curve, which is suitable for binary
classification tasks, such as membership inference attacks.
TPR @ low FPR. TPR @ low FPR (True-Positive Rate at low
False-Positive Rate) is a novel metric for evaluating MIAs,
proposed by Carlini et al. [7], which reports the true-positive
rate at a single low false-positive rate (e.g., 0.1% FPR). They
argue that the high attack performance at high FPR is useless
for the adversary, and a reliable inference attack targeting a
small portion of the dataset is more valuable. Consequently,
the metric is adopted in many recent MIA works [23, 27, 44,
45] to evaluate the reliability of an attack.

5 Experimental Results

5.1 Attack Performance

Figure 5 and Figure 6 present the TPR @ 0.1% FPR and
the AUC, respectively. See more results in Appendix Fig-
ure 18 and Figure 19. DHAttack achieves optimal perfor-
mance within 100 queries, so we limit our tests to a maximum
of 200 queries. For UBA and SBA, we evaluate performance
from 125 queries up to more than 20,000 queries, as these
methods require a large number of queries to determine the
shortestBD. Note that for UBA and SBA, we control the num-
ber of queries by limiting the maximum number of iterations
in the HopSkipJump algorithm to find an adversarial exam-
ple. With a maximum of 1 iteration, the number of queries is
125, which is why we do not test with fewer queries for these
methods. For NRA, we use hundreds of queries to achieve
optimal performance.

First, we focus on query costs, as the performance of NRA,
UBA, and SBA heavily depends on the number of queries. For
TrajectoryMIA, which requires training new attack models
for different query counts, we fix the query count at 1,000 in
our experiments. While YOQO needs only one query on the
target model, it requires crafting a query sample x′ across all
in-models and out-models, making it computationally expen-
sive. Therefore, TrajectoryMIA and YOQO are excluded from
query cost comparisons. As shown in Figure 5 and Figure 6,
DHAttack consistently outperforms NRA, UBA, and SBA,
achieving effective results with very few queries, whereas the

baseline methods require over 100 queries to perform effec-
tively. Additionally, we report the best performance of these
attacks, including the number of queries required to achieve
optimal results, along with the performance of TrajectoryMIA
and YOQO, as shown in Table 3. We can observe that, in some
cases, DHAttack shows an order of magnitude improvement
over other baselines. For example, for ResNet-56 trained on
CIFAR-10, DHAttack achieves 2.58% TPR @ 0.1% FPR,
while the baselines fall below 0.2%. Moreover, DHAttack
achieves optimal performance within 50 queries, while UBA,
SBA, and TrajectoryMIA require at least 1,000 queries yet
deliver subpar performance. Although NRA requires several
hundred queries and YOQO only one, both demand fewer
queries than UBA, SBA, and TrajectoryMIA, but their per-
formance consistently ranks among the lowest. Lastly, we
note that DHAttack achieves an AUC of 0.719 on VGG-16,
slightly lower than the best baseline TrajectoryMIA’s 0.730.
However, its TPR @ 0.1% FPR is nearly 5 times higher than
that of TrajectoryMIA. More importantly, DHAttack requires
only 30 queries to the target model, compared to the 1000
queries needed by TrajectoryMIA to achieve its best results.
Therefore, when considering all metrics, including the number
of queries, DHAttack significantly outperforms all baselines.

In summary, DHAttack achieves superior performance with
significantly fewer queries. This advantage is attributed to the
relScore used by DHAttack—a sample-dependent member-
ship signal that indicates the likelihood that a sample’s actual
distance, measured in a fixed direction, exceeds the values
drawn from the approximated non-member state distribution.

5.2 Analysis

Effect of Measurement Directions. As shown in Figure 7,
the boundary distances for both member and non-member
samples vary significantly across 100 random directions. Ad-
ditionally, using the shortest boundary distance found in these
directions for membership inference reveals only a modest
difference between members and non-members. This find-
ing supports the conclusion in [48] that using the shortest
boundary distance as a membership signal may not yield ef-
fective attack performance. Consequently, existing label-only
MIAs based on adversarial attack algorithms [11, 26, 27, 44]
often expend many queries on the target model to identify
a suboptimal membership signal, i.e., the shortest boundary
distance.

To reduce unnecessary queries to the target model, we
use a single fixed point to measure the boundary distance
(i.e., fixedBD) instead of pursuing the shortest distance. As
mentioned in Section 3.1, if the fixed point has many neigh-
bors, these neighbors may not cross the boundary, regard-
less of their involvement in training. Therefore, we adopt
an out-of-distribution fixed point to ensure that most target
samples can cross the boundary and obtain a discriminative
fixedBD. We further validate this intuition by attacking Mo-
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Figure 5: TPR @ 0.1% FPR under different numbers of queries for attacks on three model architectures and two image datasets
(from top to bottom: CIFAR10 and CIFAR100).

Table 3: The best attack performance of DHAttack and baselines against three target models trained on CIFAR10.

MIA method TPR @ 0.1% FPR (%) AUC

VGG-16 ResNet-56 MobileNetV2 VGG-16 ResNet-56 MobileNetV2

NRA 0.17(0.3k) 0.14(0.1k) 0.15(1k) 0.700(0.3k) 0.608(0.1k) 0.647(1k)
UBA 0.19(21k) 0.17(0.7k) 0.17(15k) 0.726(21k) 0.605(0.7k) 0.561(15k)
SBA 0.19(6.5k) 0.17(11k) 0.18(11k) 0.725(6.5k) 0.694(11k) 0.702(11k)

TrajectoryMIA 0.34(1k) 0.14(1k) 0.17(1k) 0.730(1k) 0.615(1k) 0.642(1k)
YOQO 0.18(1) 0.18(1) 0.17(1) 0.718(1) 0.717(1) 0.696(1)

DHAttack 1.56(30) 2.58(50) 2.93(50) 0.719(30) 0.752(50) 0.750(50)

bileNetV2 trained on CIFAR10. We randomly selected 100
samples from GTSRB [40], a widely used traffic sign dataset
(see details in Appendix A), as fixed points for launching
DHAttack, referred to as “Outside.” Additionally, we sam-
pled 100 points from target samples (i.e., CIFAR10) as fixed
points for DHAttack, referred to as “Inside.” Moreover, we
also used an image with all RGB values set to 255 as a spe-
cial outside fixed point (denoted as “RGB-255”). As shown
in Figure 8, we observe that DHAttack (Outside) performs
better than DHAttack (Inside), indicating that choosing fixed
points outside the distribution of target samples is more ef-
fective from an attack perspective. Furthermore, RGB-255,
which is located at the edge of the target sample distribution
as shown in Figure 9, has fewer neighbors, and the attack
performance using it surpasses that of most other DHAttack
(Outside) points. Consequently, RGB-255 is used as the de-
fault fixed point in our experiments.
Effect of Samples’ Diversity. As shown in Figure 10, we mea-
sure the boundary distances (fixedBD) of 10,000 members
and 10,000 non-members using a fixed out-of-distribution
data sample. The distance distributions for members and non-

members show substantial overlap. This overlap is due to
the diversity of samples; non-members with easily learned
features also have large boundary distances, making it chal-
lenging for an attacker to differentiate them from members.
This explains the high false positive rates of many existing
methods that use raw distances for attacks. See more results
in Appendix Figure 17.

To address the challenge posed by sample diversity, we
construct a non-member state for the target sample by creat-
ing a Gaussian distribution of its fixedBDs, measured across
several local shadow models trained without the target sam-
ple. We then use the CDF value of the target sample’s actual
fixedBD (obtained from the target model) over the Gaussian
distribution as a membership signal, i.e., relScore. As shown
in Figure 10, using relScore to distinguish between mem-
bers and non-members improves discrimination in samples
with large relScore values, resulting in a high TPR at a low
FPR. Figure 11 further shows the Log-scale ROC curves for
distinguishing members and non-members using fixedBD
and relScore in the three scenarios from Figure 10 and Ap-
pendix Figure 17. By using non-member status as a refer-
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Figure 6: AUC under different number of queries for attacks on three model architectures and two image datasets (from top to
bottom: CIFAR10 and CIFAR100).
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Figure 7: Normalized boundary distance of 10 members and
10 non-members in 100 random directions from VGG-16
trained on CIFAR10.

ence, relScore mitigates the impact of sample diversity and
provides better distinguishability, especially in the low FPR
region. This indicates that the attack targeting a small portion
of the dataset is very reliable.

5.3 Ablation Study

In this section, we perform ablation studies to investigate the
influence of several important factors.
Number of Shadow Models. The Gaussian distribution of
fixedBD values from shadow models is a key concept in
our DHAttack, representing the non-member state of a target
sample. However, the accuracy of this distribution, and con-
sequently the attack performance, depends on the number of

Inside Outside

2.50

3.00

3.50

4.00

T
P

R
@

0.
1%

F
P

R
(%

)

RGB-255

Inside Outside

0.72

0.73

0.74

0.75

A
U

C

RGB-255

Figure 8: Performance of DHAttack with different fixed
points on MobileNetV2 trained on CIFAR10.

shadow models used. The relationship between them is pre-
sented in Figure 12 (See more results in Appendix Figure 20).
We can see that the attack performance is significantly im-
proved as the number of shadow models increases, especially
for TPR @ 0.1% FPR. This is due to the fact that more shadow
models can output more fixedBD values for a target sample,
which leads to a more accurate Gaussian distribution. In addi-
tion, we also observe that after the number of models reaches
a certain magnitude, e.g., between 128 and 256, the improve-
ment of the attack performance is no longer significant, and
for some cases, it even decreases slightly. For example, for
ResNet-56 trained on CIFAR10, TPR @ 0.1% FPR with 192
shadow models is 2.38, which is lower than 2.64 with 128
shadow models, as shown in Figure 12. The improvement in
AUC also becomes minimal between 64 and 256 shadow mod-
els. Therefore, the adversary can choose the proper number of
shadow models according to their computational resources.
Size of Reference Dataset. The size of the reference dataset
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Figure 10: The distributions of fixedBD and relScore values
obtained from different models and datasets. Note that we ex-
clude non-member samples that are easily identifiable (those
with fixedBDs below 0.005), aiming to highlight its capabil-
ity to distinguish between members and non-members with
similar boundary distances.
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is an important factor that affects how much a shadow model
learns from the target model. Table 4 shows that an increase
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Figure 12: Attack performance under the effect of the number
of shadow models. The dataset is CIFAR10.

Table 4: The impact of reference dataset size for MobileNetV2
trained on CIFAR10.

Reference dataset size

1k 5k 10k 20k 30k 40k

TPR @ 0.1% FPR (%) 0.25 0.75 1.74 4.00 3.16 2.70
AUC 0.715 0.733 0.740 0.741 0.730 0.751

Table 5: The impact of the overfitting level of the target model.
The experiments are conducted on MobileNetV2 trained on
CIFAR10.

Training dataset size

30k 25k 20k 15k 10k

Overfitting level 0.168 0.201 0.217 0.251 0.319

TPR @ 0.1% FPR (%) 0.96 1.32 1.14 1.41 4.00
AUC 0.631 0.656 0.658 0.697 0.741

in the size of the reference dataset does improve attack per-
formance, as the shadow models learn better about the target
model (See more results in Appendix Table 12). However,
continually increasing the set size after it reaches a certain
number does not lead to greater attack gains, but rather de-
creases them. For instance, DHAttack with 20k reference
samples achieves 4.00 in terms of TPR @ 0.1% FPR, while
it drops to 3.16 when using 30k reference samples. We at-
tribute this to the fact that leveraging too many samples to
train the shadow models results in a difference in the degree
of generalization from the target model, which in turn can
lead to a failure in the simulation of the target model. Upon
experimentation, we find that a reference dataset with about 2
times the size of the training set is the most appropriate.
Overfitting Level of the Target Model. It is well known that
overfitting of the target model is one of the main causes of
membership privacy leakage [34, 37, 39, 46]. Therefore, we
experimentally demonstrate the impact of target models with
different overfitting levels on the performance of DHAttack.
Following [23, 27, 34], we quantify the overfitting level L
of a model as the difference between its training accuracy
(Acctrain) and testing accuracy (Acctest ): L=Acctrain−Acctest .
Specifically, we manipulate L by controlling the size of the
training set. Table 5 shows that the higher the degree of over-
fitting, the more effective the attack is. For example, the AUC



Table 6: Attack performance of DHAttack and baselines in
two low-overfitting scenarios: overfitting levels 0.08 and 0.07.

MIA method MobileNetV2 (0.08) ResNet-56 (0.07)

TPR @ 0.1% FPR (%) AUC TPR @ 0.1% FPR (%) AUC

NRA 0.14 0.548 0.11 0.542
UBA 0.12 0.568 0.11 0.561
SBA 0.13 0.571 0.12 0.563

TrajectoryMIA 0.14 0.548 0.0 0.557
YOQO 0.12 0.565 0.11 0.558

DHAttack 0.68 0.573 0.16 0.560

of DHAttack is 0.741 when the training set size of the target
model is 10k, while the AUC is 0.631 when the size is 30k.
This is because the degree of overfitting is reduced from 0.319
to 0.168.

Furthermore, we introduce two low-overfitting scenarios of
GTSRB [40] with overfitting levels of 0.08 and 0.07, respec-
tively. We select GTSRB as it is a benchmark dataset used in
previous MIAs [23, 26, 27] and, more importantly, allows for
training models with very low overfitting levels. As shown
in Table 6, although all methods show reduced performance
in these scenarios as compared to Table 3, DHAttack signif-
icantly outperforms the baselines in terms of TPR @ 0.1%
FPR, achieving 0.68 on MobileNetV2, against the highest
baseline score of only 0.14, and matches them on the AUC
metric. We attribute the decreased attack performance across
all methods to reduced overfitting, which lessens the bound-
ary distance differences between members and non-members,
both for shortestBD and fixedBD. By calculating relScore
using non-member state as a reference, DHAttack notably
enhances distinguishability, especially improving the TPR @
low FPR.
Alternative fixedBD Measurements. In addition to perturb-
ing target samples toward “RGB-255”, we explore several
alternative methods: (1) Blurriness, which gradually blurs
the image by averaging each pixel with its neighbors, (2) Re-
size, which reduces the image dimensions, filling exposed
pixels with zeros, and (3) Rotation, which rotates the im-
age up to 180 degrees. We emphasize these methods are
still integrated into the DHAttack framework, with modifica-
tions limited to the fixedBD computation. Accordingly, their
fixedBDs are determined by the number of operations re-
quired until the ith operation does not alter the predicted label,
but the (i+1)th operation does, which actually aligns with
the method described earlier. Besides, we introduce another
alternative method using “RGB-0” (a fully black image) as
the fixed sample. As shown in Table 7, both “RGB-255” and
“RGB-0” generally outperform other methods, with Blurriness
also performing well. This indicates that employing a constant
perturbation pattern to measure boundary distance is effec-
tive. Furthermore, selecting an outlier, such as “RGB-255”
or “RGB-0”, ensures that most samples cross the decision
boundary, resulting in optimal attack performance.
Threshold Choosing. As discussed in Section 3.2, we pro-
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Figure 13: The relation between threshold and attack perfor-
mance. The x-axis represents the top p percentile of relScore
values and the y-axis represents TPR @ 0.1% FPR.

pose a simple method for selecting the relScore threshold,
using synthetic samples as non-members. Concretely, we uni-
formly sample 200 synthetic samples from the RGB range
of 0-255, which are non-members, as they are unseen by the
target model. We calculate and sort their relScore values, then
select different top p percentiles as thresholds for member-
ship inference. As shown in Figure 13, the optimal threshold
for attack performance can be found between p = 95% and
p = 100%. Moreover, we observe that the TPR @ 0.1% FPR
corresponding to the optimal threshold surpasses that of all
other baselines. Thus, we can easily identify an effective
threshold for DHAttack.

5.4 Practical Investigation
In this section, we will relax the assumptions about the at-
tacker’s knowledge and attempt to simplify some complex
steps to make DHAttack more practical.
Relax Assumptions. To begin with, we relax the first assump-
tion about the adversary’s knowledge from Section 2.2, which
assumes that the adversary possesses an auxiliary dataset Dr

that is from the same distribution as the target model’s train-
ing set Dt . Here, we use CIFAR10 as the training and testing
set for the target model, while the adversary holds an auxil-
iary dataset from the ImageNet portion of CINIC10 (denoted
as Dt ̸= Dr). Figure 14 shows that the attack performance
of DHAttack decreases when the distribution of the dataset
varies. We attribute this to the fact that differences in data dis-
tribution can lead to deviations in the simulation of the target
model’s prediction behavior by the shadow models, thereby
reducing the accuracy of the relScore calculation. However,
we note that DHAttack (Dt ̸= Dr) still outperforms baselines
with Dt =Dr. For example, with Dt ̸=Dr, DHAttack achieves
a TPR of 0.86% at 0.1% FPR against VGG-16 (see Figure 14).
In contrast, when Dt = Dr (i.e., the adversary has stronger
training knowledge), other baselines achieve at most 0.34%
(see Table 3).

Second, we proceed to relax another assumption that the
adversary has the knowledge of the architecture and hyper-



Table 7: Attack performance of DHAttack on CIFAR10 using alternative measurement methods for fixedBD. We highlight the
top 2 performances of each metric in bold.

Different Methods TPR @ 0.1% FPR (%) AUC

VGG-16 ResNet-56 MobileNetV2 VGG-16 ResNet-56 MobileNetV2

Blurriness 1.69 0.90 3.30 0.642 0.597 0.653
Rotation 0.87 0.18 1.22 0.653 0.550 0.575
Resize 0.08 0.08 0.30 0.498 0.500 0.390

RGB-0 1.22 2.53 4.04 0.719 0.753 0.756
RGB-255 1.56 2.58 2.93 0.719 0.752 0.750
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Figure 14: Attack performance of DHAttack when the adver-
sary uses the same distribution as the target model’s training
set (Dt = Dr) versus different distributions (Dt ̸= Dr).
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Figure 15: Attack performance of DHAttack using different
model architectures for training shadow models. Both target
and shadow models are trained on CIFAR10.

parameters of the target model. Figure 15 shows the attack
performance when the adversary adopts different architec-
tures and hyperparameters with the target model to train the
shadow models. We can observe that the performance of
DHAttack is optimal at most cases when using the same ar-
chitecture and hyperparameters of the target model (i.e., along
the diagonal). This can be attribute to the fact that the same
model architecture and hyperparameters allow the shadow
model to simulate the predicted behavior of the target model
more accurately. Fortunately, the attack performance degra-
dation due to different architectures is extremely small, as
depicted in Figure 15. DHAttack with different model archi-
tectures outperforms baselines using the same architecture.
For example, with MobileNetV2 as the target and VGG-16
as the shadow model, DHAttack achieves a TPR of 1.23% at
an FPR of 0.1% (see Figure 15), significantly surpassing the
0.18% upper bound of baselines using MobileNetV2 for both
models (see Table 3).
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Figure 16: Impact of reference data relabeling and non-
member state construction. Models are trained on CIFAR10.

Overall, even when relaxing the assumptions outlined in
Section 2.2, our DHAttack consistently outperforms baselines
that do not relax these assumptions. This superior perfor-
mance can be attributed to the Reference Data Relabeling
process in DHAttack, which, similar to knowledge distilla-
tion, transfers knowledge from the target model to the shadow
models, even when their architectures and training data distri-
butions differ.
Further Simplification of DHAttack. Here, we recall the
entire DHAttack process in the hope of further simplifying
our attack, including reducing the query times to the target
model, as well as reducing the local computation.

First, we find that reference data relabeling launches a cer-
tain initial query to the target model in order to enable the
shadow models to better learn the knowledge of the target
model. Although this step is no longer executed in subsequent
attacks, we still try to see if we can optimize away it. Figure 16
shows that when we train the local shadow models directly
using the reference dataset without relabeling, denoted as “-
relabel,” its performance is slightly degraded compared to
the whole DHAttack. For example, for VGG-16 trained on
CIFAR10, TPR @ 0.1% FPR is reduced from 1.56 to 1.38.
Therefore, this relabeling operation can be omitted when the
adversary needs to further reduce the disturbance to the target
model.

Second, we find that non-member state construction needs
to train a large number of local shadow models, which is a
computational burden on the adversary. Since our primary ob-
jective is to reduce the impact of sample diversity on fixedBD,
we use the difference between the actual fixedBD from the tar-
get model and a single fixedBD from a shadow model, rather



Table 8: Performance of MIAs on Purchase and News.

MIA method Purchase News

TPR @ 0.1% FPR (%) AUC TPR @ 0.1% FPR (%) AUC

NRA 0.21 0.715 0.20 0.592
UBA 0.15 0.517 0.20 0.531
SBA 0.21 0.738 0.32 0.782

DHAttack 0.34 0.727 0.33 0.761

than the relScore, as the membership signal. This approach is
referred to as the “-distribution.” Figure 16 shows that such
a simplification significantly reduces the effectiveness of the
attack, e.g., for CIFAR10 trained on VGG-16, TPR @ 0.1%
FPR is reduced from 1.56 to 0.32. This indicates that the
randomness in the model training algorithm significantly af-
fects the fixedBD values from shadow models and suggests
that using a Gaussian distribution to model these values is
effective. However, we also find that 0.32 TPR @ 0.1% FPR
is still higher than most baselines. Therefore, we recommend
that when the attacker’s computational resources are severely
limited, this simplified approach can still yield reliable attack
results to some extent.

6 Discussion

In this section, we evaluate the performance of DHAttack on
non-image datasets and test its robustness on several existing
defenses. Then, we further discuss the limitations.

6.1 Beyond Images

We compared DHAttack with baselines on Purchase and
News, two non-image datasets commonly used in existing
works [27, 34, 37, 43]. Since YOQO is computationally in-
tensive and performs lower on non-image datasets than the
baseline SBA (as demonstrated by themselves [43]), we do
not put it into the performance comparison on non-image
datasets here.

Specifically, the definitions of the shortestBD for UBA and
SBA, as well as the fixedBD for DHAttack, are provided in
Section 2.3. The sole difference for non-image data lies in
the fixed sample selection. Instead of using “RGB-255” as
in image datasets, we assign the maximum value across all
dimensions to the sample as the fixed point. Table 8 illustrate
the results on non-image datasets. We observe that DHAttack
achieves the best TPR @ 0.1% FPR, but its AUC is sub-
optimal. For instance, the TPR @ 0.1% FPR of DHAttack is
0.34, while that of baselines is at most 0.21. However, com-
pared to image datasets, our DHAttack performs less effec-
tively on non-image data. We attribute this to the fact that it is
harder to find an appropriate fixed point of non-image datasets
than that of image datasets (such as an image with all RGB
values set to 255). As we known, image samples take contin-
uous values for each dimension, whereas non-images do not,

e.g., the samples in Purchase take 0 or 1 for each dimension,
representing whether or not a product is purchased. More-
over, neighboring dimensions in image samples are correlated,
while non-image samples lack such strong correlations, e.g.,
each dimension in News represents a word in the vocabu-
lary, resulting in weaker correlations between the neighboring
dimensions. Overall, for image datasets, our fixedBD calcula-
tion method allows target samples to consistently and steadily
move towards the fixed point and cross the decision boundary.
However, this is difficult to achieve with non-image datasets.

6.2 Evaluation of Robustness

We consider several popular defenses to evaluate the robust-
ness of DHAttack.
MixupMMD. MixupMMD is a generalization enhancement
technique proposed by Li et al. [25]. It adds an extra regular-
ization to the target model’s training process to narrow the
generalization gap between the training and testing accuracy.
As previously discussed, the overfitting level is one of the
main causes of membership privacy leakage. Therefore, Mix-
upMMD does reduce the performance of all attaks, as shown
in Table 9. However, DHAttack still achieves the best perfor-
mance on the well-generalized model. For instance, TPR @
0.1% FPR of DHAttack is 0.22, while that of other baselines
is only 0.12.
DP-SGD. DP-SGD [3] is a general privacy-preserving
method for machine learning, which adds Gaussian noise to
the gradients during the training process of the target model.
Following [7, 23, 27], we fix the hyperparameters δ = 1e-5
and C = 1, while varying σ = 0, 0.2, 0.5, and 1 to control the
privacy budget ε. Here, σ = 0 indicates no noise is added,
with only gradient clipping (i.e., C = 1). A smaller ε indicates
stronger defense. Table 10 shows that the performance of our
attack diminishes as ε decreases. However, the accuracy of
the target model also significantly decreases when stronger
defense effects are applied. To provide an acceptable trade-off
between the utility and privacy of the target model, we adopt
σ = 0.2 of DP-SGD for further comparison. As depicted in
Table 9, DP-SGD effectively mitigates the privacy leakage
of the target model in the label-only scenario. However, our
DHAttack still outperforms all baselines. For example, TPR
@ 0.1% FPR of DHAttack is 0.20, while that of other base-
lines is at most 0.11.
LDL. LDL is a lightweight defense method proposed by
Rajabi et al. [32], which is designed for label-only settings.
Since it outputs the class corresponding to the mean of the
posteriors of the target sample’s neighbor samples within a
high-dimensional sphere, instead of the original result, it ef-
fectively destroys the attacker’s measurement of the decision
boundary. Following [32], we attempt to set σ2 to 0.02, 0.04,
and 0.06, and finally fix σ2 = 0.06 in our experiments, which
achieves the best trade-off between the target model’s util-
ity and privacy. As shown in Table 9, TPR @ 0.1% FPR of



Table 9: Performance of different attacks against VGG-16 trained on CIFAR10 with different defenses.

MIA method TPR @ 0.1% FPR (%) AUC

No defense MixupMMD DP-SGD LDL No defense MixupMMD DP-SGD LDL

NRA 0.18 0.12 0.10 0.14 0.700 0.548 0.511 0.615
UBA 0.19 0.12 0.11 0.15 0.721 0.545 0.501 0.608
SBA 0.19 0.12 0.11 0.14 0.722 0.546 0.520 0.638

DHAttack 1.56 0.22 0.20 0.54 0.719 0.564 0.538 0.620

Table 10: Performance of DHAttack against VGG-16 trained
on CIFAR10 with DP-SGD (δ = 1e−5 and C = 1).

DP-SGD Accuracy of the
target model

TPR @ 0.1%
FPR (%) AUC

σ ε

No defense - - 0.756 1.56 0.718

DP-SGD

0 ∞ 0.575 0.83 0.706
0.2 1523 0.581 0.20 0.538
0.5 43 0.482 0.09 0.515
1 6 0.377 0.12 0.502

DHAttack is three times higher than that of other baselines.
The reason is that DHAttack uses the location where the

prediction of noisy samples changes as the boundary distance
(see Figure 4). As a result, LDL can only cause the boundary
distance measured by DHAttack to be inaccurate by a few
scale units. However, SBA and UBA use the shortest distance
between the target sample and its adversarial example, which
can be perturbed by LDL with a significant error.

6.3 Limitations

DHAttack does not work well against models with non-image
tasks, as discussed in Section 6.1. The reason is that our
method of measuring the boundary distance is not suitable
for non-image samples. We leave the in-depth exploration
of more effective boundary distance measurements for non-
image datasets as future work.

7 Related Work

7.1 Membership Inference Attacks

Most existing MIAs assume that members receive higher con-
fidence outputs from the target model than non-members. In
black-box settings, Shokri et al. [37] and Salem et al. [34]
introduced shadow training to mimic the target model’s be-
havior and trained an attack model based on shadow mod-
els’ output posteriors. Song et al. [39] and Yeom et al. [46]
later inferred membership directly using metrics like loss,
which typically favor members. Additionally, Hui et al. [20]
proposed an attack that uses differential comparison to in-
fer membership based on the model’s output probability dis-
tributions. Furthermore, to address high false positives, re-
searchers [6, 7, 33, 42, 45] calibrated the loss metric using
each sample’s hardness threshold. Liu et al. [27] and Li et

al. [23] further enhanced attacks by employing knowledge
distillation to extract additional information from the target
model’s training.

However, in label-only settings, traditional methods us-
ing output posteriors are not applicable. Li et al. [26] and
Choquette-Choo et al. [11] introduced boundary distance, the
distance of a sample from the target model’s decision bound-
ary, as the membership signal. They found that members typi-
cally have larger boundary distances than non-members. Later,
[44, 48] improved these methods by adjusting the directions
of adversarial perturbations. Liu et al. [27] presented Tra-
jectoryMIA (label-only), which uses additional membership
signals generated during the target model’s training, along-
side boundary distance. These methods often require over
1,000 queries to determine each sample’s boundary distance.
Wu et al. [43] addressed this by introducing the concept of
improvement area, reducing the required queries to just one
while maintaining comparable performance. Additionally,
Chaudhari et al. [8] proposed a novel attack method using
data poisoning, achieving high performance in the low False
Positive Rate (FPR) regime.

7.2 Defenses Against MIAs

One simple but effective defence method is reducing the over-
fitting level of target model. Dropout, L2 regularization and
label smoothing have been used by [28, 34, 37]. Addition-
ally, Li et al. [25] elaborate a novel method MixupMMD to
narrow the target model’s generalization gap for mitigating
MIAs. Another strategy is to perturb the target model’s out-
put, such as MemGuard [21]. For the label-only settings, Ra-
jabi et al. [32] proposed LDL, a light weight defense against
label-only MIAs, which constructs a high-dimensional sphere
around the target sample, and output the same decision for all
query samples in the sphere. Therefore, the adversary can not
obtain the accurate boundary distance. Finally, DP-SGD [3] is
a traditional privacy-preserving method, which is also suitable
for the label-only settings. It adds differential privacy [15] for
the stochastic gradient descent algorithm, and thus obscure
the differences between members and non-members.

8 Conclusion

In this work, we propose a higher performance and higher
stealth label-only MIA, called DHAttack, which utilizes a new



sample-dependent membership signal in label-only scenarios.
This signal represents the probability that a sample’s actual
boundary distance on the target model exceeds the boundary
distances drawn from its non-member state distribution. Our
extensive experiments demonstrate that DHAttack achieves
the highest AUC scores, especially TPR @ low FPR, with
few queries on the target model. Furthermore, we conduct
experiments to investigate the reasons behind our high at-
tack performance, and analyze some important factors affect-
ing DHAttack. Finally, we perform DHAttack on non-image
datasets and evaluate its robustness on several existing de-
fenses. In the future, we aim to investigate how to improve
the measurement of a sample’s boundary distance for non-
image tasks and extend our attack to more scenarios.
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A Dataset Description

CIFAR10/CIFAR100. CIFAR10 and CIFAR100 are pop-
ular benchmark datasets for evaluating image recognition
algorithms. Each of them includes 60,000 images of size



3×32×32. The difference is that CIFAR10 has 10 classes,
while CIFAR100 has 100 classes.
CINIC10. CINIC10 contains 270,000 images within the same
classes as CIFAR10 (210,000 images from ImageNet [13]
and 60,000 images from CIFAR10). In this paper, we just
sample 60,000 images from CINIC10 for our experiments,
and thus, most images are from ImageNet.
Purchase. Purchase is a dataset extracted from Kaggle’s “ac-
quire valued shopper” challenge, which contains 197,324
samples of 600 dimensions. Each sample is a purchase record,
and each dimension in the record indicates whether one prod-
uct is purchased. Following [37], we cluster 197,324 records
into 100 classes to generate their ground-truth labels.
News. News (20 Newsgroups) is a common benchmark
dataset for text classification, which contains 20,000 docu-
ments within 20 classes. Following [34], we build the TF-IDF
form of each document, which is a vector of 134,410 dimen-
sions.
GTSRB. GTSRB is a dataset for traffic sign recognition,
consisting of over 50,000 images across 43 different classes
of traffic signs.

Table 11: Data splits for our evaluation.

Dataset Dt
train Dt

test Ds
train Ds

test Dr

CIFAR10 10000 10000 10000 10000 20000
CIFAR100 10000 10000 10000 10000 20000
CINIC10 10000 10000 10000 10000 20000
Purchase 20000 20000 20000 20000 40000

News 3000 3000 3000 3000 6000
GTSRB 1500 1500 1500 1500 45000
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Figure 17: The distributions of fixedBD and relScore values
obtained from MobileNetV2 trained on CINIC10.

Algorithm 1: DHAttack
Input: Reference Data Dr, target sample x and its

label y, target model fT , number of shadow
models n, fixed sample xfixed, number of
queries K, threshold τ.

Output: Relative membership score relScore.
// Relabel each sample in Dr.

1 for xi ∈ Dr do
2 yi← fT (xi);
3 end
// Train n shadow models.

4 for i← 1 to n do
5 Train θi with Dr;
6 end
// Construct Non-member state of x with

Algorithm 2.
7 for i← 1 to n do
8 di← fixedBD(x,y,θi,xfixed,K);
9 end

10 µ← 1
n ∑

n
i=1 di;

11 σ2← 1
n ∑

n
i=1(di−µ)2;

12 G←N (µ,σ2);
// Membership inference

13 d← fixedBD(x,y, fT ,xfixed,K);
14 relScore← CDF(d,G);
15 return I[relScore > τ];

Algorithm 2: FixedBD
Input: Target sample x and its label y, model f , fixed

sample xfixed, and the number of segments (i.e.,
the maximum number of queries) K.

Output: FixedBD d.
1 xdiff← xfixed− x;
// Query model f up to K times to

calculate fixedBD d.
2 d← K;
3 for i← 0 to K do
4 xmasked← i

K · xdiff + x;
5 ŷ← f (xmasked);
6 if ŷ ̸= y then
7 d← i;
8 break;
9 end

10 end
11 return d;
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Figure 18: TPR @ 0.1% FPR under different numbers of queries for attacks on three model architectures (CINIC10 Dataset).
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Figure 19: AUC under different number of queries for attacks on three model architectures (CINIC10 Dataset).
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Figure 20: Attack performance under the effect of the number
of shadow models: experiments on different models trained
on CIFAR100.

Table 12: The impact of reference dataset size for Mo-
bileNetV2 trained on CIFAR100.

Reference dataset size

1k 5k 10k 20k 30k 40k

TPR @ 0.1% FPR (%) 0.67 1.27 2.80 4.02 5.74 5.90
AUC 0.921 0.940 0.950 0.954 0.954 0.955
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