
Data-Free Model-Related Attacks: Unleashing the Potential of Generative AI

Dayong Ye∗ Tianqing Zhu† Shang Wang∗ Bo Liu∗

Leo Yu Zhang¶ Wanlei Zhou† Yang Zhang§

∗University of Technology Sydney †City University of Macau
¶Griffith University §CISPA Helmholtz Center for Information Security

Abstract

Generative AI technology has become increasingly integrated
into our daily lives, offering powerful capabilities to enhance
productivity. However, these same capabilities can be ex-
ploited by adversaries for malicious purposes. While existing
research on adversarial applications of generative AI pre-
dominantly focuses on cyberattacks, less attention has been
given to attacks targeting deep learning models. In this pa-
per, we introduce the use of generative AI for facilitating
model-related attacks, including model extraction, member-
ship inference, and model inversion. Our study reveals that ad-
versaries can launch a variety of model-related attacks against
both image and text models in a data-free and black-box
manner, achieving comparable performance to baseline meth-
ods that have access to the target models’ training data and
parameters in a white-box manner. This research serves as
an important early warning to the community about the po-
tential risks associated with generative AI-powered attacks
on deep learning models. The source code is provided at:
https://zenodo.org/records/14737003.

1 Introduction

Generative AI has demonstrated its potent capabilities in both
image and language processing recently [11, 38, 39]. Along
with their broad availability, concerns regarding the privacy
and security implications associated with their usage have
also emerged [16]. These concerns can be roughly classified
into two categories [54]: 1) offensive applications, involv-
ing the use of generative AI for malicious purposes [7]; and
2) potential vulnerabilities, referring to weaknesses that can
be exploited to compromise a generative model’s own pri-
vacy, such as extracting their training data [6, 30]. Among
these two categories, current research primarily focuses on
the second category, while the first category, i.e., the offensive
applications of generative AI, has received limited attention.
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Current research on the offensive applications of genera-
tive AI primarily targets cyberattacks, such as FraudGPT [22].
However, the potential of generative AI to facilitate model-
related attacks, such as model extraction [37], membership
inference [47, 55], and model inversion attacks [53, 56, 57],
remains largely underexplored. While model-related attacks
are well-documented in the context of existing machine learn-
ing models, they typically operate under the assumption that
the adversary has access to a dataset that shares the same or
similar distribution as the target model’s training set [8,25,37].
However, this assumption is often impractical in real-world
scenarios due to various constraints such as the limited capa-
bility of the adversary to access proprietary datasets. While
some studies have explored attacks in a data-free manner,
they often depend on having white-box access to the target
model, meaning the adversary possesses detailed knowledge
of the model’s parameters and architecture [32]. Alternatively,
they lacking such access may experience a decrease in at-
tack performance [33]. Another research trend is using large
language models for prompt stealing, wherein prompts are
reconstructed based on the corresponding responses [45, 52].
Our research differs significantly in two key aspects. Firstly,
our study delves into various model-related attacks, while
prompt stealing research primarily focuses on this singular
objective. Secondly, our approach is conducted in a data-free
manner, whereas prompt stealing methodologies typically rely
on a substantial amount of externally collected data.

In this paper, we embark on a pioneering exploration of
the offensive applications of generative AI. The novelty of
this work lies in leveraging generative AI models to conduct
various model-related attacks across both image and text do-
mains in a data-free and black-box manner. Unlike existing
research that typically relies on external datasets to launch
attacks, generative models eliminate the need for such data
by directly generating high-quality synthetic data. This signif-
icantly lowers the barrier for executing model-related attacks.
The significance of this work, therefore, lies in exposing the
potential security risks associated with the misuse of genera-
tive AI models. However, soliciting the generative model to



generate effective data poses challenges due to two reasons.

• Generating data that meets the diverse requirements of vari-
ous model-related attacks and comprehensively covers the
sample space, while preserving essential characteristics,
poses a challenge. Depending on the nature of the attack,
the generated samples must exhibit specific characteristics
tailored to the attack’s objectives. For instance, in member-
ship inference attacks, data samples proximate to decision
boundaries are crucial, while in model inversion attacks,
samples representing distinct classes are necessary.

• Mitigating the distribution shift between the target model’s
training data and the generated data presents a challenge.
This shift can arise from the inherent randomness in the
generation process of generative models, potentially leading
to discrepancies in data characteristics. Such discrepancies
can degrade the performance of the generated data when
employed in tasks like model-related attacks, where precise
data characteristics are crucial for effectiveness.

To tackle these challenges, we present a novel data gener-
ation approach. Leveraging insights into the target model’s
task, the adversary meticulously designs prompts to direct
the generative model in generating the required data. Subse-
quently, the adversary employs data augmentation techniques
to diversify the generated samples. In particular, the augmen-
tation process involves exploring the decision boundary of the
target model and collecting samples in its vicinity. To further
address the distribution shift, we introduce an inter-class fil-
tering approach. This approach filters out anomalous samples
by comparing the distances of generated samples to the class
centroids in the feature space defined by the target model’s
outputs. In summary, this work makes four contributions.

• This paper identifies a significant vulnerability in deep learn-
ing models, namely their susceptibility to model-related
attacks enabled by generative AI. It offers the first compre-
hensive and generalized study exploring the potential of
generative AI to execute model-related attacks across three
prevalent types, all without using externally collected data.

• We propose a novel data generation approach utilitizing the
potent capabilities of generative AI. This approach is tai-
lored to generate near-boundary samples, effectively span-
ning the entirety of the sample space.

• We introduce an innovative inter-class filtering approach
designed to mitigate the distribution shift between the target
model’s training data and the generated data. This method
significantly enhances the quality and usability of generated
datasets for model-related attacks.

• We undertake comprehensive experiments to assess the
efficacy of our method. Unlike the majority of studies in
model-related attacks that solely rely on image data, our
evaluation encompasses both image and text data.

2 Preliminary and Threat Model

Image-based Generative Models. This work adopts diffu-
sion models [51] for its generative tasks due to its superior
performance compared to VAEs [27] and GANs [12].

A diffusion model is typically characterized by a forward
process that introduces noise to data and a reverse process
that reverts noise back to data. The forward process serves
to convert any data distribution into a straightforward prior
distribution, such as a standard Gaussian, while the reverse
process involves learning transition kernels parameterized by
deep neural networks to invert the forward process. Hence,
new data samples can be generated by initially sampling a
random vector from the prior distribution and then performing
ancestral sampling through the reverse process.

Language-based Generative Models. One of the most in-
fluential language-based generative models is large language
models (LLMs) exemplified by GPT-4 [39]. A large language
model, denoted as LLM, functions as a transformative tool in
natural language understanding and generation. It takes a text
sample x, often referred to as a ‘prompt’, as input and gener-
ates another text sample y, typically referred to as a ‘response’,
i.e., y = LLM(x). Text samples processed by LLMs are repre-
sented as sequences of tokens, where x = [x1,x2, · · · ,xs], and
s represents the number of tokens in x. These tokens are dis-
crete units of language, which could be words, subwords, or
even characters, depending on the tokenization scheme used.

Threat Model. Given a target model T , the adversary has
knowledge about the task for which the model T is designed,
i.e., the adversary knows the meanings associated with each
class c of the target model T . This assumption is reasonable,
as model providers typically make this information public
whenever the model is used to offer services to the public.

The adversary interacts with T in a black-box manner,
meaning they can query T and observe its output confidence
vectors, but they lack access to T ’s parameters and architec-
ture. Note that our method can also be adapted to scenarios
where the adversary can only observe the output hard labels
of T , without access to confidence scores.

The adversary is capable of locating a black-box generative
model F designed to perform a task closely aligned with
that of the target model. For instance, in the case where the
target model serves as an image classifier, the adversary is
able to identify an image-based generative model. Once this
generative model F is obtained, the adversary has the capacity
to submit queries to it. The goal of the adversary is to construct
a dataset, denoted as Daux, which shares the same or similar
distribution as the dataset, Dtrain, used to train the target model
T . After acquiring Daux, the adversary can conduct a range
of model-related attacks. The specifics of these attacks are
outlined below.

Model Extraction. The objective of model extraction attacks,
also referred to as model stealing, is to create a model E that



is functionally identical or closely resembles the target model
T [37]. Formally, for a given input example x, the adversary
aims for E(x) = T (x).

Membership Inference. The objective of membership infer-
ence attacks is to ascertain whether a given example x belongs
to the training set Dtrain of the target model T [33,47]. In exe-
cuting membership inference, the adversary commonly trains
a binary classification model A. This model takes either the fi-
nal output T (x) or the intermediate layers’ output of the target
model — depending on the adversary’s level of information —
as input and produces a scalar in the range [0,1]. This scalar
denotes the probability that x is in Dtrain.

Model Inversion. Model inversion seeks to reconstruct data
samples from a target model T by observing its output. De-
pending on the nature of the target model T ’s output, model
inversion can be categorized into two types. The first type
aims to reconstruct a representative sample for each class
of the target model T [17, 25, 57], particularly when T out-
puts only hard labels. Formally, for each class c of the target
model T , the adversary aims to generate an example x̂ that
captures the essential features of the samples in class c. The
second type seeks to reconstruct any input samples presented
to the target model T [53, 56], especially when T outputs
confidence vectors. Formally, when given an input example x,
the adversary aims to reconstruct x by leveraging T (x).

3 Methodology

3.1 Overview
The rationale behind the proposed method stems from the
common practice of training generative models on exten-
sive datasets. For instance, the development of DALL-E, pub-
licly introduced alongside with CLIP (Contrastive Language-
Image Pre-training), involved training on a substantial dataset
consisting of 400 million pairs of images with text captions
extracted from the Internet [24]. Consequently, the distribu-
tion space of training data for generative models is highly
likely to encompass the distribution space of the training set
for the target model if the target model shares a similar task
with the generative model. Therefore, the primary task for
the adversary is to uncover the distribution of the training set
associated with the target model. The general attack pipeline
operates as follows. First, the adversary queries the generative
model to produce data, which is subsequently used to query
the target model. The outputs collected from the target model
provide insights into the distribution of its training set and are
then leveraged to execute model-related attacks.

Specifically, our method comprises three steps. Firstly,
leveraging their understanding of the task of the target model
T , the adversary identifies a publicly available generative
model F that closely aligns with T . For instance, in the case
of an image classifier target model, the adversary might opt

for DALL-E [38] as the generative model. Then, armed with
knowledge about the meanings of each class c within T , the
adversary instructs the generative model F to generate a set
of samples for each class c, denoted as Dc. By uniting these
Dc sets across all classes, the adversary compiles a dataset
Da =

⋃C
c=1 Dc, where C represents the number of classes.

Secondly, the generated dataset Da, however, may not in-
herently share the same distribution as model T ’s training
set Dtrain. This discrepancy arises from potential distinctive
features present in synthetic samples generated by the model
F , as opposed to the often indistinct features characterizing
real samples in Dtrain. To address this distinction, the adver-
sary augments Da to Daux by generating additional synthetic
samples with indistinct features.

Finally, the adversary implements inter-class filtering to
remove the outlying samples from the generated dataset Daux.
The refined dataset resulting from this process is denoted as
D̂aux. Then, the adversary employs D̂aux to train a model T̂
with the objective of mimicking the functionality of T .

3.2 Details of the Method
We formally describe the three steps in detail as follows.

Step 1: Generate data samples using a generative model.
To produce samples within class c, the adversary can straight-
forwardly employ natural language to guide the generative
model F . For example, by utilizing a prompt like “please gen-
erate n samples that exhibit key features of class c”, within
GPT-4.0, the adversary instructs DALL-E to generate samples
accordingly. To assess the efficacy of this set of generated
samples, denoted as Dc, the adversary uses them to query the
target model T . Any samples not correctly classified by T
into class c are subsequently discarded.

Step 2: Enhance the generated data through augmenta-
tion. Following the generation of samples across all classes,
the adversary acquires a consolidated set Da. Nevertheless,
as all samples within Da are generated by the model F , they
exhibit distinctive features. Consequently, directly employing
Da to train a model T̂ would lead to a degradation in model
performance compared to the target model T , as shown in the
experimental section. Therefore, the adversary must augment
Da by introducing additional samples with indistinct features.

To augment each Dc within Da, the adversary begins by
randomly selecting a sample xc from Dc. Since xc is correctly
classified by the target model T into class c, the adversary
introduces a small noise δ0 to xc, i.e., xc +δ0, and gradually
increases the noise amount to explore the decision boundary
of T , as shown in Figure 1. δ0 represents the initial amount of
Gaussian noise, serving as the starting point for augmentation.
With each increase from δi−1 to δi, the adversary randomly
collects N samples within a sphere, using xc as the centroid
with a radius ranging from δi−1 to δi. If all collected samples
are correctly classified as class c by the target model T , the
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Figure 1: Exploration of the decision boundary in the target
model. Noise is incrementally added until the boundary is
crossed, leading to misclassification by the target model.

adversary proceeds to increase the noise from δi to δi+1 and
repeats the process. However, if the noise is large enough to
cross the decision boundary, the adversary concludes the pro-
cess, and considers δi as the potential maximum noise amount.
Moreover, all previously collected samples, employed to as-
sess the decision boundary of T , are incorporated to augment
Da. This process is formally detailed in Algorithm 1.

Algorithm 1 The data augmentation approach
Input: A set of C generated datasets: D1, · · · ,DC; The initial noise

δ0 and the noise step size ε;
Output: The augmented auxiliary dataset Daux;

1: for each class c do
2: Randomly select a sample xc from Dc;
3: for each test round i = 0,1,2, · · · do
4: Randomly collect N samples within a space, using xc as

the centroid with a radius ranging between δi−1 and δi;
5: if for any sample x j, j = 1, · · · ,N, that T (x j) ̸= c then
6: break;
7: end if
8: Dc←Dc

⋃
{x1, ...,xN};

9: δi+1← δi + ε;
10: end for
11: end for
12: return Daux←

⋃C
c=1 Dc;

Within Algorithm 1, the initial noise δ0 and the noise step
size ε stand as hyperparameters requiring fine-tuning. A large
δ0 may cause the algorithm to halt in the initial test round
without any augmentation, i.e., xc +δ0 has already traversed
the decision boundary of the target model T . Similarly, a
large ε can render it challenging for the adversary to precisely
pinpoint the decision boundary.

In Line 4, the collection of N samples is achieved by intro-
ducing random noise to xc, with the noise magnitude restricted
to δi. It is worth noting that if the noise δi is represented as a
vector, its magnitude can be confined by utilizing an Lp norm.
This norm constraint ensures that the noise does not exceed a
predefined limit, contributing to controlled perturbations in
the sample space.

Step 3: Distribution Shift Mitigation. After the data gen-
eration and augmentation steps, the resulting dataset Daux

may differ in distribution from the target model T ’s training
set due to randomness introduced during these steps. Using
this distribution-shifted data as a training set may not yield
a model functionally similar to the target model. To address
this issue, we employ inter-class information to filter Daux.

To perform inter-class filtering, we begin by feeding the
generated samples from each class Di into the target model
T and collecting the corresponding output vectors, where
i ∈ [1,C] and C denotes the number of classes. Formally, let
xi

j represent a sample in Di. The output vectors are then col-
lected as T (xi

1), ...,T (x
i
ni
), where ni denotes the number of

samples in Di. The centroid of the samples in Di is computed
by averaging these output vectors: Ceni =

1
ni

∑
ni
j=1 T (xk

j). No-
tably, we compute the centroid using the samples’ correspond-
ing output vectors from the target model T , rather than the
samples themselves, for two key reasons. First, the output
vectors of the target model encapsulate the model’s under-
standing and internal representation of the data. Calculating
the centroid in this transformed space aligns the data analysis
with the target model’s learned features and structure, which
is crucial for effectively mimicking the target model. Second,
the output vectors from the target model typically have much
lower dimensionality compared to the raw data. This dimen-
sionality reduction simplifies computations and reduces noise,
resulting in a more robust and efficient centroid calculation.

After computing the centroid for the generated samples
from each class Di, we calculate the distance between the
centroid of one class and the samples from each of the other
classes. Formally, let Ceni represent the centroid of class i,
and k denote any other class. The generated samples in class
k are represented as Dk = {xk

1, ...,x
k
nk
}. By feeding xk

1, ...,x
k
nk

into the target model T , we obtain the corresponding out-
put vectors: T (xk

1), ...,T (x
k
nk
). The distance between Ceni and

each T (xk
j), where j ∈ [1,nk], is calculated using the l2 norm:

||Ceni−T (xk
j)||2. Once the distances are computed, we ap-

ply the three-sigma rule to filter out those samples in class
k that fall beyond three standard deviations from the mean
of the distribution. The rationale is grounded in the behavior
of the target model T , trained on the original data set, Dtrain.
The output vectors from T reflect the learned distribution
characteristics of Dtrain. By filtering out samples whose out-
put vectors are statistical outliers or do not conform to the
expected class distribution, captured by the centroids, the dis-
tributional shifts between Daux and Dtrain can be minimized.
This filtering process is summarized in Algorithm 2.

3.3 Conduct Model-Related Attacks

After obtaining the generated dataset D̂aux, the adversary can
initiate a series of model-related attacks.

Model Extraction Attack. The aim of a model extraction
attack is to obtain a model that is functionally equivalent to
the target model T . To achieve this, the adversary ensures that



Algorithm 2 The inter-class filtering approach
Input: The generated auxiliary dataset Daux;
Output: The filtered auxiliary dataset D̂aux;

1: for each class i in Daux do
2: for each sample xi

j in class i do
3: Feed xi

j into the target model T and receive the output
vector T (xi

j);
4: end for
5: Compute the centroid of the samples in class i as: Ceni =

1
ni

∑
ni
j=1 T (xi

j), where ni denotes the number of samples;
6: for each of the other classes, denoted as k, in Daux do
7: for each sample xk

j in class k do
8: Compute the distance between the centroid Ceni and xk

j

as: ||Ceni−T (xk
j)||2;

9: end for
10: Apply the three-sigma rule to filter out those samples in

class k that fall beyond three standard deviations from the
mean of the distribution;

11: end for
12: end for
13: return D̂aux;

the mimicking model T̂ has a similar classification accuracy
to T on a given test set. The adversary splits the dataset
D̂aux into two subsets: a training set D̂train

aux and a test set
D̂test

aux . Subsequently, T̂ is trained on D̂train
aux , and both T and T̂

are evaluated on D̂test
aux . If T̂ exhibits lower accuracy than T ,

the adversary may adjust hyperparameters, explore different
architectures, and request the generative model to generate
additional training data to enhance T̂ ’s performance.

Note that the dataset D̂aux is constructed based on the fil-
tering process of the target model T , where the adversary
leverages T to classify all generated data. Consequently, D̂aux
inherently retains traces of T because misclassifications by
T can introduce biases into D̂aux. For instance, a generated
sample x with a ground truth label y may be misclassified by
T as y′, due to the imperfectness of T . Thus, x would not be
included in D̂aux, and this bias, incurred by T , is carried by
D̂aux. While biases themselves are undesirable, they can be
strategically exploited by the adversary to efficiently mimic
the behavior of the target model T . Specifically, the biases
in D̂aux align with the decision-making tendencies of T . By
exploiting these biases, the adversary can efficiently train the
mimicking model T̂ to replicate T ’s behavior without needing
to explicitly model complex decision boundaries.

The label-only scenario is equivalent to the vector-based
scenario described above. This is because, in the model extrac-
tion attack, the adversary’s goal is to match the test accuracy
of the target model T . To achieve this, the adversary relies
solely on the hard label outputs of the target model T . As
a result, the attack process remains consistent, regardless of
whether the adversary has access to confidence vectors or

operates in a label-only setting.

Membership Inference Attack. To conduct membership in-
ference against the target model T , the adversary utilizes the
mimicking model T̂ as a shadow model to train an attack
model A. This approach leverages the functional similarity
between T̂ and T , enabling A to exploit patterns learned by
T̂ to infer membership status. During the training of the at-
tack model, the adversary inputs samples from both the train-
ing set D̂train

aux and the test set D̂test
aux into T̂ and collects the

corresponding confidence vectors. These confidence vectors,
along with the true label of each sample, are combined with a
membership label (either in or out) to create training samples
for the attack model A. Specifically, if a sample belongs to
the training set, the corresponding training sample for A is
((T̂ (x),y), in); otherwise, it is ((T̂ (x),y),out).

The key insight here is that the attack model A, trained
based on the outputs of T̂ , effectively learns to discern be-
tween members (i.e., samples from the training set of T̂ )
and non-members (i.e., samples not from the training set of
T̂ ). Since T̂ is functionally similar to T , the attack model A
can also exploit similar patterns and characteristics to dis-
cern membership in T . This implies that A, trained using
the mimicking model T̂ , can be directly applied to conduct
membership inference attacks against the target model T .

In the label-only scenario, the attack process simplifies
significantly. Specifically, Step 2 of our method can be directly
applied to conduct the membership inference attack solely
based on labels. Here, the amount of noise needed to push a
data sample across the decision boundary of the target model
serves as a proxy for the model’s confidence in predicting that
sample’s label [31]. Larger noise amounts indicate higher con-
fidence levels. Thus, if the noise surpasses a certain threshold,
the data sample can be deemed a member of the target model’s
training set. This approach uses the concept of noise sensitiv-
ity as a proxy for data familiarity. The rationale is that data
points that are members of the training set will typically be
more robust to perturbations (noise), while non-members are
more likely to be misclassified with even slight modifications.
Thus, for any given sample, if the amount of noise required to
induce a misclassification exceeds a predetermined threshold,
the sample is deemed as a member.

Model Inversion Attack. To execute a model inversion attack
against the target model T , the adversary uses the generated
dataset D̂aux to train an inversion model I. Specifically, each
data sample x from D̂aux is fed into the target model T , yield-
ing the output confidence vector T (x). Pairing each x with
its corresponding T (x), denoted as (T (x),x), the adversary
compiles a set of training samples for training the inversion
model I. This inversion model takes confidence vectors as
input and generates an image (if T is an image-based model)
or a prompt (if T is language-based). For the attack, given a
confidence vector T (x∗), the adversary can reconstruct x∗ by



directly inputting T (x∗) into I and observing its output.
In the label-only scenario, the inversion process simplifies

significantly. When given an output label, the goal shifts to
reconstructing a representative input rather than precisely re-
covering the exact input. Precisely recovering the exact input
is challenging due to the fact that a single output label may
correspond to multiple distinct inputs. For instance, consider
the output label “dog”. There could be countless variations
of dog images that fall under this category. Thus, in a label-
only model inversion attack, the adversary’s objective is to
randomly select a data sample from each class in D̂aux and
utilize it as the representative input for that class. Note that
even if the label-only model inversion attack only provides
examples of a given class, these examples may inadvertently
reveal sensitive characteristics about the individuals repre-
sented in the training data. For instance, if a model is trained
to classify medical images and the attack produces typical ex-
amples of a disease class, the generated images might depict
a rare medical condition. If it is known that a small group of
individuals has been treated for this condition in a certain area,
it might be possible to infer the identity of those individuals.

4 Analyses of the Method

The analysis focuses on the data distribution shifts caused by
generative models, examining how these models induce shifts
in data distribution and the measures taken to mitigate them.

Distribution Shift Analysis. Our analysis primarily focuses
on diffusion models, but the principles can be extended to
LLMs, as both utilize an iterative refinement process that
introduces uncertainty or randomness. This randomness is
a critical factor in the potential distribution shifts observed
in both types of models. We begin by identifying the origins
of the distribution shift and then explain how the proposed
method effectively mitigates this shift.

The operation of a diffusion model is divided into two main
phases: the forward process and the reverse process. In the
forward process, Gaussian noise is incrementally added to the
data across multiple steps, progressively transforming it into
pure noise. This process is mathematically represented as:

q(xt |xt−1) = N (xt ;
√

αtxt−1,(1−αt)I),

where αt is a variance schedule that controls the amount of
noise added at each step, xt represents the noisy data at time
step t, and I is the unit vector. In contrast, the reverse process
aims to denoise the data incrementally. Given the data xt , the
model predicts the data from the previous step, xt−1, as:

pθ(xt−1|xt) = N (xt−1;µθ(xt , t,z),σ2
t I),

where µθ and σ2
t are the mean and variance predicted by the

model, respectively, and z represents the embedding encoded
from the input prompt by an encoder E, such as a transformer.

Specifically, the reverse process aims to reconstruct xt−1
from xt . This is done by removing the predicted noise com-
ponent εθ(xt , t,z) from xt and adding some uncertainty to
account for the stochastic nature of the process [21, 44]:

xt−1 =
1
√

αt
(xt −

1−αt√
1−αt

εθ(xt), t,z)+σtξ, (1)

where αt = Πt
s=1αs, εθ is a function approximator used to

predict noise from xt , and ξ∼N (0,I) represents uncertainty.
This uncertainty is a source of the distribution shift. The term
ξ introduces randomness into the reconstruction process. Al-
though this randomness is essential for modeling the inherent
uncertainty in the data, it can lead to variability in the gener-
ated samples, causing them to deviate from the distribution
of the original training data.

We now explain how the proposed inter-class filtering can
alleviate the distribution shift. Consider the distribution of the
target model’s training set as Ptrain, and the distribution of the
initially generated dataset as Pgen. After applying inter-class
filtering, the modified distribution of the generated dataset
is denoted as P ′gen. The Kullback-Leibler (KL) divergence,
which quantifies the difference between Ptrain and Pgen, can
be mathematically formulated as follows:

KL(Ptrain||Pgen) =
∫

Ptrain(x)log(
Ptrain(x)
Pgen(x)

)dx. (2)

Similarly, the KL divergence between Ptrain and P ′gen can be
expressed as:

KL(Ptrain||P ′gen) =
∫

Ptrain(x)log(
Ptrain(x)
P ′gen(x)

)dx. (3)

To demonstrate the mitigation of the distribution shift, it suf-
fices to show that KL(Ptrain||Pgen) > KL(Ptrain||P ′gen). The
detailed proof is presented below.

KL(Ptrain||Pgen)−KL(Ptrain||P ′gen)

=
∫

Ptrain(x)log(
Ptrain(x)
Pgen(x)

)dx−
∫

Ptrain(x)log(
Ptrain(x)
P ′gen(x)

)dx

=
∫

x∈Daux−D̂aux

Ptrain(x)log(
Ptrain(x)
Pgen(x)

)dx+∫
x∈D̂aux

Ptrain(x)[log(
Ptrain(x)
Pgen(x)

)− log(
Ptrain(x)
P ′gen(x)

)]dx

=
∫

x∈Daux−D̂aux

Ptrain(x)log(
Ptrain(x)
Pgen(x)

)dx+

∫
x∈D̂aux

Ptrain(x)log
P ′gen(x)
Pgen(x)

dx

≥
∫

x∈D̂aux

Ptrain(x)log
P ′gen(x)
Pgen(x)

dx

(4)
In Eq. 4, the second equation arises from filtering a number
of samples from the generated dataset Daux, resulting in a



new dataset D̂aux. The last inequality follows from the fact
that any KL divergence value is larger than or equal to 0.

To demonstrate that
∫

x∈D̂aux
Ptrain(x)log

P ′gen(x)
Pgen(x)

dx > 0, it suf-

fices to show that
P ′gen(x)
Pgen(x)

> 1. According to probability theory,
Pgen(x < ∞) = 1 and thus, Pgen(x < µ+ 3σ) < 1. However,
since P ′gen is derived using the three-sigma rule to filter out-
lying data, it follows that P ′gen(x < µ+3σ) = 1. This implies
that P ′gen > Pgen, thus concluding the proof.

We also visualize the CIFAR10 data alongside the corre-
sponding generated and interclass-filtered data. In Figure 2,
the left sub-figure depicts the original CIFAR10 data distri-
bution, the middle sub-figure shows the distribution of the
generated data, and the right sub-figure illustrates the dis-
tribution after applying inter-class filtering. The inter-class
filtering has effectively mitigated the distribution shift by
removing outliers and refining the class boundaries in the
generated dataset. This refinement is visually apparent in the
right sub-figure, where the class clusters are better separated
and more similar to the original CIFAR10 clusters seen in the
left sub-figure. The reduction in overlap and the improved
alignment of the clusters with the original data distribution
support the claim that inter-class filtering helps to reduce the
distribution shift from the original CIFAR10 data distribution.

Figure 2: Data distribution of CIFAR10, generated data, and
interclass-filtered data.

5 Experiments

5.1 Experimental Setup
Datasets. In the experiments, we adopt three image and two
language datasets. Additionally, we also created a new image
dataset independently.

• CIFAR10 [28] includes 60,000 images across 10 classes,
each containing 6,000 images of vehicles and animals. The
dimension of each image is 32×32.

• MNIST [29] is a dataset of 70,000 images of handwritten
numerals spanning 10 classes: 0−9. Each class has 7000
images and each image was resized to 32×32.

• SkinCancer [23] is a melanoma skin cancer dataset con-
taining 10,000 images, with 9,000 images used for training
the model and 1,000 images for testing the model. The
task involves binary classification, distinguishing between

positive and negative instances of melanoma skin cancer
based on skin images. Each image was resized to 32×32.

• BBCNews [40] consists of RSS Feeds from the BBC News
site, comprising 29,500 records. Each record includes five
attributes: title, pubDate, guid, link, and description. The
dataset includes five classes: business, politics, entertain-
ment, science, and sport.

• IMDB [2] contains 50,000 movie reviews categorized for
binary sentiment classification, distinguishing between pos-
itive and negative sentiments. The dataset comprises 25,000
highly polar movie reviews allocated for training and an
additional 25,000 for testing purposes.

In addition to utilizing the five datasets, which may have
been employed to train the generative models, we have created
a novel dataset named PET. The PET dataset was created
using a combination of downloaded and self-recorded videos.
Specifically, three videos each for the dog and bird classes
were downloaded from YouTube, while four videos for the
cat class were recorded manually. Images were then extracted
from these videos to compile the dataset. Since the primary
goal of PET is to develop a dataset presumed to be unseen
by generative models, the number of classes is not a critical
factor. However, the dataset can be easily expanded to include
additional classes using the same approach.

Evaluation Metrics. As our experiments encompass various
attacks, we utilize different evaluation metrics tailored to each
attack’s specific characteristics.

For model extraction, we employ accuracy and agreement
to evaluate the efficacy of the attack. Accuracy refers to the
testing accuracy of a given test set on the stolen model. Agree-
ment quantifies the fraction of samples within a test set where
both the target and stolen models make identical predictions.

For membership inference, we utilize accuracy, F1 score,
AUC score (area under the ROC curve), and TPR@1%FPR
as evaluation metrics. Here, accuracy denotes the propor-
tion of samples within a test set whose membership status
is accurately predicted by the attack model. The definitions
of F1 score, AUC score, and TPR@1%FPR can be found in
standard literature on classification metrics.

For model inversion, we utilize MSE (mean squared error)
and accuracy as evaluation metrics. Here, MSE is computed
between the original sample and its reconstructed counterpart.
Accuracy represents the fraction of reconstructed samples that
can be correctly classified by the target model. In particular,
MSE is computable, as the attack is conducted in a one-to-
one manner: an original sample is fed into the target model,

https://www.youtube.com/shorts/8DP0TDLAt98
https://www.youtube.com/shorts/hWlh8JHElmE
https://www.youtube.com/watch?v=x1WSWuFqu-4
https://www.youtube.com/shorts/7a7E7VlS7c4
https://www.youtube.com/watch?v=Dm1cblbo0S4
https://www.youtube.com/shorts/A51r0WZxw0A
https://github.com/orgs/SixLab6/repositories



and its output is subsequently used as input to the inversion
model, which generates the reconstructed sample. Note that
the original samples are used solely for evaluating attacks
and are not utilized for any training purposes, as they remain
inaccessible to the attacker under our threat model.

Comparison Methods. Comparison methods are allowed to
access external data and the target model’s architecture, while
our method does not access such information.

For model extraction, the compared method assumes ac-
cess to the target model’s architecture and its training set.
Then, a stolen model is constructed with the same architec-
ture as the target model and trained using the target model’s
training set. The attack measures the output discrepancy be-
tween the stolen model and the target model as its loss. The
key idea of this approach closely aligns with most existing
attacks, such as [9, 46], which aim to optimize the stolen
model’s outputs to match those of the target model.

For membership inference, the compared method assumes
knowledge of the target model’s architecture and has access
to its training and test sets. However, the adversary does not
know which samples belong to the training or test set; oth-
erwise, the problem would become trivial. The adversary
divides the data into two parts and uses one part to train
a shadow model. Data from both parts is then fed into the
shadow model, and the corresponding outputs are collected.
Each data point’s corresponding output is labeled as either “in”
or “out” based on its membership status relative to the shadow
model’s training set. These labeled outputs are then used to
train a binary classification attack model with a cross-entropy
loss. The key idea of training shadow models to replicate
the behavior of the target model and using attack models to
distinguish the membership status of given samples by ana-
lyzing outputs for both members and non-members is widely
adopted in existing research, such as [5, 35].

For model inversion, the compared method assumes ac-
cess to the target model’s architecture and its training set.
The adversary constructs a transposed CNN inversion model
based on the target model’s architecture. To train this inver-
sion model, the adversary inputs the training set into the target
model and collects the model’s outputs. Each sample in the
training set is then paired with its corresponding output. Fi-
nally, the inversion model is trained on these pairs, using the
original samples as ground truth and MSE as the loss function.
The approach of constructing an inversion model against the
target model and training it with the target model’s outputs is
broadly utilized in existing research, such as [36, 53].

Generative Models and Prompts. The generative models
used for generating images and texts were Fast Stable Diffu-
sion XL on TPU v5e [1] and GPT-4.0 [39], respectively. The
prompts for these models were manually crafted. For instance,
the prompt used for the CIFAR10 classifier was: “Generate
a single (class name), in a realistic style, with a clear back-
ground”. The size of the generated outputs were re-scaled (for

images) or truncate (for texts) to fit the input dimensions of
the target model. Although we explored automated prompt
generation techniques, the results did not achieve the quality
of those manually generated, as detailed in the ablation study.
Moreover, details about the model architectures, the quanti-
ties of generated and augmented samples for each dataset,
and corresponding computational costs are provided in the
appendix. The experimental results reported are based on the
average of three runs to ensure reliability in the findings.

5.2 Overall Results

Model Extraction. The experimental results, presented in
Table 1, demonstrate that our method yields a stolen model
with classification accuracy comparable to the target model,
closely resembling the performance of the stolen model gen-
erated by the baseline method. Additionally, the table reveals
that our method produces a stolen model with similar agree-
ment to the target model as the one crafted by the baseline
method. This indicates that both stolen models exhibit a high
degree of agreement with the target model. These findings
underscore the effectiveness of our approach and highlight
the capability of generative models to successfully conduct
model extraction attacks, despite not having access to any
training data of the target model.

Table 1: Model extraction results across different datasets.
Target Model Stolen Model

Ours / Baseline
Accuracy Accuracy Agreement

MNIST 99.2 98.1 / 99.0 97.8 / 99.1
CIFAR10 88.7 82.6 / 85.3 83.7 / 89.4

SkinCancer 92.3 90.1 / 90.7 89.2 / 92.8
BBCNews 95.5 87.2 / 90.4 87.7 / 91.6

IMDB 86.7 80.6 / 85.5 86.7 / 88.6

Membership Inference. Table 2 presents the membership
inference results obtained using our method and the baseline
methods. Remarkably, our approach demonstrates comparable
inference accuracy, F1 score, AUC and TPR@1%FPR to the
baseline method across various datasets. Note that we also
evaluated the metric TPR@0.1%FPR, as shown in Table 3.
Achieving good results with TPR@0.1%FPR requires training
a large number of shadow models, as demonstrated in [5].
Due to the computational cost, we limit our evaluation to
TPR@1%FPR for the remainder of this paper.

Model Inversion. Table 4 illustrates the results of the in-
version process conducted using both our method and the
baseline method. Similar to model extraction and membership
inference, our approach for model inversion also demonstrates
comparable performance to the baseline method in terms of
the MSE value and accuracy of the reconstructed samples.

We also present the model inversion results visually in
Figures 3 and 4. It is evident that the images and texts recon-



Table 2: Membership inference results across different
datasets.

Accuracy F1 AUC TPR@1%FPR
Ours / Baseline

MNIST 62.7 / 61.6 0.65 / 0.63 0.52 / 0.51 1.1% / 1.3%
CIFAR10 72.6 / 79.4 0.69 / 0.72 0.54 / 0.67 3.2% / 3.5%

SkinCancer 69.4 / 72.9 0.61 / 0.62 0.56 / 0.61 4.9% / 5.6%
BBCNews 70.3 / 74.2 0.59 / 0.63 0.55 / 0.61 4.4% / 5.2%

IMDB 67.8 / 75.8 0.62 / 0.71 0.56 / 0.67 3.6% / 5.2%

Table 3: Membership inference results on CIFAR10 with
TPR@0.1%FPR and TPR@1%FPR.

The number of
shadow models Accuracy F1 AUC TPR@

0.1%FPR
TPR@
1%FPR

1 72.6 0.69 0.54 0.4% 3.2%
256 80.4 0.77 0.74 2.7% 24.7%

Table 4: Model inversion results across different datasets.
MSE

Ours / Baseline
Accuracy

Ours / Baseline

MNIST 0.061 / 0.042 91.2 / 95.6
CIFAR10 0.316 / 0.283 60.8 / 67.1

SkinCancer 0.174 / 0.168 78.1 / 79.6
BBCNews 0.627 / 0.475 60.6 / 63.5

IMDB 0.883 / 0.826 61.7 / 60.8

structed by our method closely resemble those reconstructed
by the baseline method.

Analyses. In the three inference attacks, a consistent pat-
tern emerges. Both the proposed and baseline methods ex-
hibit strong performance when the target model is trained on
datasets with straightforward features, such as MNIST and
SkinCancer. However, when the target model is trained on
datasets with more intricate features, such as CIFAR10 and
BBCNews, both methods yield relatively poorer results. This
can be attributed to the higher dimensionality of features in
these complex datasets, which introduce greater challenges
in inferring model properties. The rich feature set in these
datasets can obscure underlying patterns and relationships,
making it more difficult for inference attacks to succeed.

However, there is an exception concerning membership
inference, where both our method and the baseline methods
exhibit deteriorative performance on MNIST. This is likely
because models trained on MNIST typically achieve good
generalizability to unseen data, which minimizes the differ-
ences in model outputs between member and non-member
data. Consequently, this similarity in outputs reduces the ef-
fectiveness of membership inference attacks.

Results for the PET dataset. We have conducted a separate
evaluation for PET, distinguishing it from others due to its
private nature. This allows us to specifically demonstrate the
capabilities of generative models when applied to unseen data.

Table 5 presents the numerical results of our method on the
PET dataset, which align closely with those obtained from

MNIST

CIFAR10

SkinCancer

Original Baseline Ours

Figure 3: Inversion results on MNIST, CIFAR10 and Skin-
Cancer.

BBCNews

IMDB

Figure 4: Inversion results on BBCNews and IMDB.

Table 5: Results for the PET dataset.
Model Extraction Membership Inference Model Inversion

Accu. Agree. Accu. F1 AUC TPR@
1%FPR MSE Accu.

86.1 88.3 67.6 0.52 0.53 4.5% 0.054 69

public datasets. Additionally, Figure 5 visually illustrates
the model inversion results on the PET dataset. These find-
ings underscore the high generalizability of generative mod-
els, demonstrating their effectiveness in conducting model
inference attacks on previously unseen datasets. Note that
the baseline method demonstrated poor performance on the
PET dataset, primarily because its effectiveness relies on the
dataset size, and PET’s limited size does not adequately sup-
port it. Therefore, its results on PET are not included.

5.3 Hyperparameter Study

Our method initially involves tasking the generative model
with creating synthetic data, followed by a second step where
these generated data are augmented. Thus, our hyperparam-
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Figure 5: Inversion results on PET.

eter study focuses on two aspects: the quantity of generated
data and the extent of augmentation applied to these data.

5.3.1 The Number of Generated Data

We assess how varying the number of generated data points for
each class impacts the performance of the proposed method.
It is worth noting that due to the varying complexities of these
datasets, generating samples against target models trained on
them incurs different levels of computational overhead. Con-
sequently, the number of generated samples differs for each
dataset. Specifically, for MNIST, CIFAR10, and BBCNews,
the number of generated samples for each class ranges from
150 to 300. For SkinCancer, this range extends from 200 to
500, while for IMDB, it spans from 50 to 200.

Table 6: Test accuracy of the target and stolen models across
different datasets with the varying number of generated data.

Accuracy Target
Model

Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 99.2 98.3 99.2 98.9 99.4
CIFAR10 88.7 71.5 77.2 80.6 82.3

SkinCancer 92.3 82.7 87.8 89.3 90.1
BBCNews 95.5 81.9 87.2 89.4 89.6

IMDB 86.7 71.3 77.9 79.3 80.6

Model Extraction. The results of model extraction are shown
in Table 6. It is evident that as the number of generated data
points increases, the accuracy of the stolen models also im-
proves across different datasets. This phenomenon under-
scores the efficacy of increasing the dataset with more gen-
erated data in enhancing the outcomes of model extraction.
Upon closer inspection of the table, two observations emerge.
First, increasing the number of generated data points has a
minimal impact on simple datasets, such as MNIST. Second,
merely increasing the number of generated samples does not
consistently enhance the model extraction performance. For
instance, in BBCNews, while increasing the number from
150 to 200 leads to a 5.3% improvement in accuracy, further
increasing it from 250 to 300 results in only a 0.2% increase.

The minimal impact on simple datasets, such as MNIST,
can be attributed to their inherent characteristics. MNIST con-
sists of well-separated classes and relatively straightforward

patterns, facilitating easier learning for the model even with
a smaller amount of data. On the other hand, diminishing
returns with an increasing number of generated samples occur
due to several factors. Beyond a certain threshold, adding
more generated samples may introduce redundancy or over-
fitting. This means that the model starts to memorize the
generated data instead of learning meaningful patterns from it.
As a result, the additional data may not contribute significantly
to improving the model’s performance.

Table 7: Agreement between target and stolen models across
different datasets with the varying number of generated data.

Agreement Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 97.4 99.0 99.2 99.5
CIFAR10 74.2 76.7 80.7 82.6

SkinCancer 81.5 87.3 88.4 89.2
BBCNews 83.2 87.7 90.3 90.1

IMDB 73.6 80.3 79.5 81.6

A consistent pattern regarding the agreement between the
target and stolen models emerges from Table 7, suggesting
that an increase in generated data can enhance the agreement.
This phenomenon can be attributed to the fact that as the
number of generated data increases, the stolen model gains
access to a more comprehensive representation of the under-
lying data distribution captured by the target model. Thus, the
stolen model is better equipped to mimic the decision bound-
aries and classification patterns of the target model, leading
to higher agreement between them.

Membership Inference. The membership inference results
are presented in Tables 8, 9, 10 and 11. It can be observed
that the increase of generated data has a gradually diminish-
ing impact on membership inference across all four metrics:
inference accuracy, F1 score, AUC score, and TPR@1%FPR.
This phenomenon can be attributed to several factors. Firstly,
membership inference is inherently a binary classification
task, distinguishing between members and non-members of
the target model’s training dataset. Therefore, the additional
generated data, although contributing to a more comprehen-
sive dataset, may not significantly alter the discrimination
boundary between members and non-members. Secondly, the
nature of membership inference relies more on identifying
subtle patterns in the model’s behavior rather than on the
sheer volume of data. Thus, while increasing the amount of
generated data may refine certain aspects of the model’s be-
havior, it might not substantially affect its susceptibility to
membership inference attacks. Lastly, the complexity of the
target model and the diversity of the generated data may also
play a role. If the target model is already well-trained and
the generated data covers a wide range of scenarios, further
increase may yield diminishing returns in terms of improving
membership inference performance.

However, it is worth noting a specific observation in Table



Table 8: Membership inference accuracy across different
datasets with the varying number of generated data.

Accuracy Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 63.8 62.7 63.5 63.9
CIFAR10 55.6 65.8 70.6 72.3

SkinCancer 58.5 61.6 67.1 69.4
BBCNews 63.7 70.3 70.9 71.2

IMDB 62.1 67.8 69.0 69.7

Table 9: F1 score across different datasets with the varying
number of generated data.

F1 Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 0.64 0.65 0.66 0.66
CIFAR10 0.49 0.61 0.69 0.68

SkinCancer 0.54 0.58 0.61 0.60
BBCNews 0.57 0.59 0.60 0.62

IMDB 0.58 0.62 0.63 0.61

Table 10: AUC score across different datasets with the varying
number of generated data.

AUC Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 0.50 0.52 0.51 0.51
CIFAR10 0.53 0.53 0.54 0.55

SkinCancer 0.52 0.54 0.56 0.56
BBCNews 0.54 0.55 0.55 0.55

IMDB 0.53 0.56 0.57 0.56

Table 11: TPR@1%FPR across different datasets with the
varying number of generated data.

AUC Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 0.9% 1.2% 0.9% 1.0%
CIFAR10 2.8% 2.7% 3.2% 3.0%

SkinCancer 2.2% 3.5% 4.7% 4.8%
BBCNews 1.7% 2.4% 2.9% 3.6%

IMDB 2.2% 2.8% 4.3% 4.5%

8: as the number of generated data increases from 150 to
200, the inference accuracy against the CIFAR10 classifier
notably rises from 55.6% to 65.8%. This improvement can
be attributed to several factors. Firstly, CIFAR10 is a dataset
with complex features, including various objects and back-
grounds. Therefore, increasing the number of generated data
provides a more extensive and diverse set of examples, po-
tentially capturing a broader range of patterns present in the
target model’s behavior. Additionally, the CIFAR10 dataset
contains a higher degree of variability compared to simpler
datasets like MNIST, requiring a larger volume of data to
effectively capture its rich variability. Lastly, the mimicking
model T̂ can benefit from a larger generated dataset due to
the extensive feature space, allowing for better generalization
and discrimination between members and non-members of
the target model’s training dataset.

Model Inversion. The outcomes of model inversion are de-
picted in Tables 12 and 13. Generally, we observe an im-
provement in inversion performance as the number of gener-
ated data points increases, reflected in lower MSE values and
higher accuracy. Nevertheless, there are instances where this
trend does not hold true.

Table 12: MSE score across different datasets with the varying
number of generated data.

MSE Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 0.06 0.07 0.05 0.06
CIFAR10 0.46 0.41 0.32 0.31

SkinCancer 0.51 0.39 0.32 0.17
BBCNews 0.67 0.63 0.61 0.64

IMDB 1.13 0.88 0.91 0.85

Table 13: Accuracy of reconstructed samples across different
datasets with the varying number of generated data.

Accuracy Number of Generated Samples
50/150/200 100/200/300 150/250/400 200/300/500

MNIST 91.2 91.7 93.4 94.7
CIFAR10 55.5 58.2 60.8 62.4

SkinCancer 62.9 68.5 72.2 78.1
BBCNews 60.7 61.6 60.3 61.2

IMDB 58.4 61.7 60.8 62.3

In Table 12, we observe that the increase in the number
of generated data has a limited impact on MSE for MNIST.
This phenomenon can be attributed to two factors. Firstly,
MNIST contains relatively simple features, making it easier
for the inversion model to approximate the original samples
accurately with fewer generated data points. Additionally, the
nature of the inversion task itself may also play a role, as
certain datasets may exhibit patterns or characteristics that
are more amenable to accurate inversion, regardless of the
amount of generated data used.

We also visually present the reconstructed results in Fig-
ures 6 and 7. The reconstructed images for CIFAR10 are
visually acceptable, and as the number of generated samples
increases, the quality of the reconstructions improves. Sim-
ilarly, for BBCNews, as the number of generated samples
increases, the reconstructed texts align more closely with the
original content semantically. For example, when the number
of generated samples is 200, the reconstructed text contains
the phrase "which used monitor". With an increase to 300
samples, this phrase becomes "which be used to monitor",
closer to the original text.

5.3.2 The Impact of Augmentation

In this setup, we assess the influence of augmenting generated
data on the performance of our proposed method.

Model Extraction. The results of the model extraction attack
with and without augmenting generated data are summarized
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Figure 6: Inversion results on MNIST, CIFAR10 and Skin-
Cancer with varying quantities of generated samples.
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Figure 7: Inversion results on BBCNews and IMDB with
varying quantities of generated samples.

Table 14: Model extraction results across different datasets
with and without augmentation.

With augmentation Without augmentation
Accuracy Agreement Accuracy Agreement

MNIST 98.1 97.8 95.9 96.2
CIFAR10 80.6 80.7 67.2 68.0

SkinCancer 90.1 89.2 81.6 80.4
BBCNews 87.2 87.7 79.4 79.1

IMDB 77.9 80.3 72.8 71.4

in Table 14. It is evident that augmentation substantially en-
hances the performance of our method, especially noticeable
in CIFAR10 where both accuracy and agreement improve
by approximately 12%. This improvement can be attributed
to several factors. First, the augmented data introduces addi-
tional diversity into the training set, allowing the stolen model
to better capture the underlying patterns of the target model.
Second, the augmented data may help mitigate overfitting by
providing more varied samples for model training. Lastly, the
augmented data could potentially address biases present in the

original training data, leading to a more robust stolen model.

Membership Inference. The results of membership inference
with and without augmenting generated data are presented in
Table 15. Augmentation leads to an overall enhancement in
the performance of the proposed method. It is observed that
for CIFAR10, both the inference accuracy and F1 score im-
prove significantly with the augmentation of generated data.
Specifically, the accuracy rises from 33.6% to 72.6%, and the
F1 score increases from 0.42 to 0.69. This marked improve-
ment is due to the fact that the augmentation of generated
data introduces additional diversity into the training set of the
attack model, thus allowing the attack model to better capture
the underlying patterns of the target model’s predictions.

Model Inversion. The outcomes of model inversion are
shown in Table 16. The performance of the proposed method
is generally improved with the augmentation of generated
data, as indicated by lower MSE and higher accuracy. How-
ever, an interesting phenomenon should be noted. For BBC-
News, with augmentation, the MSE reduces significantly,
but the accuracy of reconstructed samples increases only
marginally. This is because the augmentation of generated
data introduces additional diversity and variability into the
training process, allowing the inversion model to better learn
the underlying patterns of the target model’s predictions. This
increased diversity helps to minimize the reconstruction error,
leading to a reduction in MSE. However, despite the reduction
in MSE, the increase in accuracy of the reconstructed samples
is relatively modest. This could be due to the inherent com-
plexity of BBCNews, which pose challenges in accurately
reconstructing the samples that share the same classification
features as the original samples.

The visual outcomes of model inversion are depicted in
Figures 8 and 9. In Figure 8, it is evident that with the augmen-
tation of generated data, the quality of reconstructed images
notably improves across all three datasets: MNIST, CIFAR10,
and SkinCancer, displaying higher clarity. Similarly, as il-
lustrated in Figure 9, the meaning of the reconstructed texts
aligns better with the original texts when augmentation is
applied. For instance, in IMDB, the reconstructed text with
augmentation includes two key words, ‘advice’ and ‘death’,
which are present in the original text. Conversely, these words
are not successfully reconstructed without augmentation.

5.4 Ablation Study

5.4.1 Additional Baselines of Data-free Attacks

To evaluate the necessity of our method, we propose two ad-
ditional baselines for data-free attacks: one for image models
and the other for text models. Both approaches rely on search-
ing the input space and querying the target model. Specifically,
for image target models, we generate random pixel noise,
which is then structured into a noise image. This noise image



Table 15: Membership inference results across different datasets with and without augmentation.
With augmentation Without augmentation

Accuracy F1 AUC TPR@1%FPR Accuracy F1 AUC TPR@1%FPR

MNIST 61.7 0.65 0.52 1.1% 51.4 0.53 0.50 0.7%
CIFAR10 72.6 0.69 0.54 3.2% 33.6 0.42 0.49 2.3%

SkinCancer 69.4 0.60 0.56 4.9% 54.1 0.53 0.52 2.3%
BBCNews 70.3 0.59 0.55 4.4% 51.7 0.52 0.51 2.6%

IMDB 67.8 0.60 0.56 3.6% 53.4 0.55 0.52 1.9%

Table 16: Model inversion results across different datasets
with and without augmentation.

With augmentation Without augmentation
MSE Accuracy MSE Accuracy

MNIST 0.06 91.2 0.28 81.6
CIFAR10 0.32 60.8 0.52 53.7

SkinCancer 0.17 78.1 0.54 61.5
BBCNews 0.63 61.6 1.32 59.8

IMDB 0.88 61.7 1.41 54.2
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Figure 8: Inversion results on MNIST, CIFAR10 and Skin-
Cancer with and without augmentation of generated samples.

is fed into the target model for classification, and the resulting
classification output is used as the label for the noise image.
In this manner, a dataset consisting of purely noise-based
images can be generated. Similarly, for text target models,
we randomly select words and combine them into a random
article. This random article is input into the target model for
classification, and the classification result is used as the label
for the article. This process generates a dataset of random
text articles paired with their respective labels from the target
model. The experimental results are presented in Tables 17,
18, 19 and Figures 10, 11.

It can be observed that the attack results of the new base-
lines are significantly inferior to those achieved by our method.
This highlights the substantial advantage of using data pro-
duced by generative models over data generated through ran-
dom input space exploration. This is because generative mod-
els, trained on extensive and diverse datasets, capture rich
latent features and semantic relationships, enabling them to
generate synthetic data that resembles real-world inputs. In
contrast, random input space exploration lacks such structured
knowledge and produces data that is largely uninformative,

BBCNews

IMDB

Figure 9: Inversion results on BBCNews and IMDB with and
without augmentation of generated samples.

making it less effective for model-related attacks.

Table 17: Model extraction results across different datasets
using the new baseline.

Target Model Stolen Model
Ours / New baseline

Accuracy Accuracy Agreement

MNIST 99.2 98.1 / 60.7 97.8 / 61.5
CIFAR10 88.7 82.6 / 38.3 83.7 / 37.6

SkinCancer 92.3 90.1 / 82.3 89.2 / 83.8
BBCNews 95.5 87.2 / 74.8 87.7 / 75.6

IMDB 86.7 80.6 / 62.4 86.7 / 60.9

Table 18: Membership inference results across different
datasets using the new baseline.

Accuracy F1 AUC TPR@1%FPR
Ours / New baseline

MNIST 62.7 / 53.3 0.65 / 0.49 0.52 / 0.46 1.1% / 0.4%
CIFAR10 72.6 / 42.8 0.69 / 0.52 0.54 / 0.51 3.2% / 0.8%

SkinCancer 69.4 / 57.0 0.61 / 0.58 0.56 / 0.53 4.9% / 2.9%
BBCNews 70.3 / 60.2 0.59 / 0.55 0.55 / 0.52 4.4% / 1.0%

IMDB 67.8 / 50.6 0.62 / 0.50 0.56 / 0.52 3.6% / 1.3%

5.4.2 Additional Generative Models

To evaluate the suitability of our approach, we adopted ad-
ditional generative models to generate data for conducting
model-related attacks. Specifically, we utilized Google Gem-
ini [13] as the large language model and Open-journey [41]



Table 19: Model inversion results across different datasets
using the new baseline.

MSE
Ours / New baseline

Accuracy
Ours / New baseline

MNIST 0.061 / 1.201 91.2 / 47.6
CIFAR10 0.316 / 0.572 60.8 / 28.5

SkinCancer 0.174 / 0.220 78.1 / 51.2
BBCNews 0.627 / 1.469 60.6 / 35.3

IMDB 0.883 / 1.611 61.7 / 32.8

Original Baseline New baseline Ours

MNIST

CIFAR10

SkinCancer

Figure 10: Inversion results on MNIST, CIFAR10 and Skin-
Cancer using the new baseline.

as the image generative model. Gemini represents one of
the state-of-the-art open-source large language models, while
Open-journey is renowned for its efficiency and high-quality
generation of high-resolution images. The experiments were
conducted on CIFAR10 (for image) and IMDB (for texts).
The results are presented below.

Model Extraction. The results of model extraction are pre-
sented in Table 20. By comparing with Table 1, it is evident
that using Gemini and Open-journey yields results compa-
rable to those achieved with GPT-4.0 and Stable Diffusion.
This indicates that the performance of model extraction is not
strictly tied to specific generative AI models, suggesting that
our approach is robust and generalizable across a variety of
high-performing generative models.

Table 20: Model extraction results across different datasets
using additional generative models.

Target Model Stolen Model
Ours / Baseline

Accuracy Accuracy Agreement

CIFAR10 88.7 81.8 / 85.3 81.4 / 89.4
IMDB 86.7 80.2 / 85.5 83.9 / 88.6

Membership Inference. The membership inference results,
presented in Table 21, show a strong similarity to those in
Table 2. This indicates that using different generative models
to generate data leads to comparable membership inference
results. This consistency can be attributed to the fact that pop-
ular generative models are all capable of producing synthetic
data that aligns well with the underlying distribution of the

IMDB

BBCNews

Figure 11: Inversion results on BBCNews and IMDB using
the new baseline.

target model’s training data. As a result, the performance of
membership inference attacks depends more on the inherent
properties of the target model and the attack methodology
rather than the choice of the generative model.

Table 21: Membership inference results across different
datasets using additional generative models.

Accuracy F1 AUC TPR@1%FPR
Ours / Baseline

CIFAR10 70.3 / 79.4 0.70 / 0.72 0.55 / 0.67 2.1% / 3.5%
IMDB 68.5 / 75.8 0.62 / 0.71 0.57 / 0.67 4.7% / 5.2%

Model Inversion. The quantitative results of model inversion
are presented in Table 22, which closely resemble those in
Table 4. This indicates that current generative models are suf-
ficiently powerful to assist adversaries in conducting model
inversion attacks. This effectiveness stems from the ability of
generative models to operate in a latent space that captures
high-level semantic features. By leveraging these latent repre-
sentations, generative models can produce outputs that align
with the semantic structure of the target model’s original data,
even when the specific data distribution is unknown. Addi-
tionally, the qualitative results, visually illustrated in Figures
12 and 13, further confirm the success of the inversion by
showcasing perceptually accurate reconstructions.

Table 22: Model inversion results across different datasets
using additional generative models.

MSE
Ours / Baseline

Accuracy
Ours / Baseline

CIFAR10 0.367 / 0.283 59.6 / 67.1
IMDB 0.871 / 0.826 60.8 / 60.8
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CIFAR10

Figure 12: Inversion results on CIFAR10 with additional
generative models.

IMDB

Figure 13: Inversion results on IMDB with additional genera-
tive models.

5.4.3 Automated versus Manual Prompt Generation

We have evaluated automated prompt generation techniques,
such as AI Prompt Optimizer [42], for our attacks. Below, we
provide an example comparison between a manually crafted
prompt and its automated counterpart generated by the afore-
mentioned technique.

Manual prompt: Generate a single cat, in a
realistic style, with a clear background
Automated prompt: Create a highly realistic image
of a single cat with a clear white background. The
cat should have a sleek and glossy coat, vivid
green eyes, and a naturally curious expression.
Ensure the fur texture is detailed and realistic,
capturing the subtle variations in color and
shading. The overall image should convey lifelike
qualities, with attention to detail in the cat’s
anatomy and fur patterns.

Manual prompt Automated prompt

Figure 14: Comparison of images generated using manual
versus automated prompts.

Figure 14 displays the images generated from both man-
ual and automated prompts. Visually, there are no significant
perceptual differences between the images generated by these
two types of prompts. To further evaluate their effectiveness,
we used these images to conduct model extraction attacks
against the CIFAR10 classifier by training two separate mim-

icking models. The results are presented in Table 23, showing
that both the accuracy and agreement are comparably close.

Table 23: Comparison of model extraction results on CI-
FAR10: manual vs. automated prompts

Target Model Stolen Model
Accuracy Agreement

Manual Prompt 88.7 82.6 83.7
Automated Prompt 88.7 81.6 81.4

5.5 Summary
The overall results highlight the potential of generative AI
techniques in effectively conducting model-related attacks
across various scenarios, including our newly created dataset,
which is presumed to be unseen by the generative models.
Notably, our proposed method achieves performance com-
parable to the white-box-based baseline method and signif-
icantly surpasses the random search-based baseline, further
demonstrating its effectiveness and robustness.

6 Potential Defense Strategies

Synthetic Data Detection. As the data used in the proposed
attacks are synthesized by generative models, an effective
defense strategy involves detecting and filtering out synthetic
data. This detection process can be accomplished by analyz-
ing the statistical properties or patterns inherent in synthetic
data. For instance, anomaly detection methods can be lever-
aged to identify outliers or deviations in the distribution of
synthetic data compared to genuine data [14]. Additionally,
techniques based on feature engineering, such as examining
higher-order statistical moments or texture analysis, can also
help discern subtle differences between maliciously crafted
synthetic data and authentic samples [50]. To specifically
detect AI-generated texts, one can train a feature-based clas-
sifier capable of distinguishing between human-written and
AI-generated texts using statistical measures [15], or even
utilize LLMs themselves for this purpose [4].

Output Perturbation. As the proposed attacks rely on access-
ing the target model’s outputs, the defender can implement
intentional output perturbations to mislead the attacker. This
can include various strategies such as noise injection, which
adds random noise to the model’s outputs to disrupt the infer-
ence process for the attacker. A typical technique to conduct
perturbation is differential privacy [10]. This involves adding
carefully calibrated noise to the model’s outputs to ensure that
individual data points cannot be distinguished in the output,
thus protecting privacy while maintaining utility.

Evaluation Results. We have evaluated one approach from
each defense strategy. For synthetic data detection, we directly
queried GPT-4o to identify synthetic data, successfully detect-
ing approximately half of it. Subsequently, the evaluation is



equivalent to varying the number of generated data, as demon-
strated in Section 5.3.1. The results in Section 5.3.1 show
that our approach is not highly sensitive to the quantity of
generated data. Also, to circumvent synthetic data detection,
an adversary can simply request generative models to produce
additional data, effectively offsetting the detection efforts.

For output perturbation, we applied Gaussian noise with a
mean of 0 and a variance of 0.1 to the target model’s output
vectors to obscure the true classification distribution. The eval-
uation was conducted on the CIFAR-10 and IMDB datasets,
with the results presented in Tables 24, 25, 26 and Figures
15, 16. These results indicate that output perturbation has
moderate effectiveness in defending against model extraction
attacks but has limited impact on membership inference and
model inversion attacks. This is because membership infer-
ence and model inversion rely on patterns within the outputs
rather than absolute precision, making them more resilient to
noise introduced by perturbation.

Note that the output perturbation approach modifies each
score within every output vector. While this helps obscure
the true distribution, it can significantly impair the utility of
the output vectors, especially in scenarios where each score
carries critical importance. For example, in applications re-
quiring detailed confidence scores for decision-making or
downstream tasks, such as medical diagnostics or risk assess-
ments, the added noise can degrade the quality of predictions,
thereby reducing the overall effectiveness of the system.

Table 24: Model extraction results across different datasets
with and without defense.

Accuracy Agreement
With / Without Defense

CIFAR10 74.5 / 81.6 73.8 / 82.7
IMDB 72.4 / 80.6 73.9 / 86.7

Table 25: Membership inference results across different
datasets with and without output defense.

Accuracy F1 AUC TPR@1%FPR
With / Without Defense

CIFAR10 65.7 / 72.6 0.61 / 0.69 0.53 / 0.54 2.2% / 3.2%
IMDB 65.6 / 67.8 0.60 / 0.62 0.54 / 0.56 2.7% / 4.4%

Table 26: Model inversion results across different datasets
with and without output defense.

MSE Accuracy
With / Without Defense

CIFAR10 0.475 / 0.367 58.3 / 60.8
IMDB 0.972 / 0.883 58.6 / 61.7

7 Related Work

Offensive Applications of Generative AI. Current offensive
applications of generative AI primarily focuses on cyber-
attacks [54], such as hardware [49], OS [18], software [3],

Original With 
defense

Without 
defense

CIFAR10

Figure 15: Inversion results on CIFAR10 with and without
defense.

IMDB

Figure 16: Inversion results on IMDB with and without de-
fense.

network [19], and user levels [7]. For example, network-level
attacks target vulnerabilities in network protocols, infrastruc-
ture, or communication channels. Generative AI could assist
attackers in generating realistic-looking network traffic pat-
terns, spoofed IP addresses, or social engineering messages to
bypass network defenses or deceive users into revealing sensi-
tive information. However, none of these attacks directly tar-
get deep learning models, especially in terms of inferring the
private and sensitive information encapsulated within these
models, which is the primary focus of our work.

Model-Related Attacks. These attacks [5, 36, 46] typically
rely on knowledge of the training data distribution of the target
model. While some attacks can operate without this knowl-
edge, their performance often suffers [26, 33]. Alternatively,
they may require other forms of knowledge, such as hardware-
or software-based side-channels [43]. Importantly, these at-
tacks focus solely on individual types of attacks, whereas our
method is generalized to various types of attacks.

For example, Mattern et al. [33] proposed a membership
inference attack against language models. Their approach
involves generating a set of neighboring prompts around a
given prompt (e.g., by altering a word) and feeding them into
the target model. By comparing the loss values output by the
target model, they identify the given prompt as a member if its
loss significantly differs from that of other prompts. Although
their approach does not require additional information about
the target model, its performance is inferior to attacks that
have access to the target model’s training data distribution. In
contrast, our method leverages the powerful capabilities of
generative AI to outperform such attack approaches without
the need for additional information about the target model
or the collection of external data. Rakin et al. [43] adapted a
rowhammer memory side-channel attack to extract parameters



from a CNN quantized to 8-bit. However, acquiring such
side-channel information is challenging, as it often involves
accessing the computing resources on which the target model
is deployed [37]. In contrast, our method does not require such
side-channel information; instead, it relies solely on public
generative models, which are much easier to access.

8 Conclusion

This paper has explored the utilization of generative AI tech-
niques to facilitate model-based attacks on deep learning
models. Our research shows that adversaries can leverage
generative AI for model extraction, membership inference,
and model inversion attacks in a data-free and black-box man-
ner, achieving comparable performance to baseline methods
that have access to target models’ training data and parame-
ters in a white-box manner. Our findings highlight the need
for robust defenses against such attacks.

Moving forward, several avenues for future research
emerge. Firstly, exploring novel defense mechanisms specifi-
cally tailored to counter generative AI-based attacks is essen-
tial. Additionally, investigating the interplay between genera-
tive AI techniques and privacy-preserving measures such as
differential privacy also represents an interesting direction.
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Appendix

1 Model Architecture, Sample Complexity,
and Computation Cost

Model Architecture. We utilize ResNet18 [20] for CIFAR10
classification; a custom CNN-based model with two CNN
blocks and two fully-connected layers for MNIST, with an
additional CNN block for PET; VGG16 [48] for SkinCancer
classification; and LSTM [34] for both BBCNews and IMDB.

The inversion model architectures are tailored to each
dataset. For CIFAR10, the model comprises one fully con-
nected layer followed by four pairs of CNN and transposed
CNN blocks. The MNIST model includes one fully connected
layer and three transposed CNN blocks, while the PET model
adds an additional transposed CNN block to the MNIST struc-
ture. The SkinCancer model is designed with one fully con-
nected layer, three transposed CNN blocks, and one additional
CNN block. For textual datasets, both the BBCNews and
IMDB models utilize a combination of one GRU layer and
one fully connected layer.

Sample Complexity. The overall results were generated using
varying sample sizes to match the complexity of each dataset:
100 samples per class for MNIST and IMDB, 250 samples per
class for CIFAR10, 500 samples per class for SkinCancer and
PET, and 200 samples per class for BBCNews. Additionally,
the number of samples augmented for each class varied: 5,000
for MNIST and SkinCancer; 6,000 for CIFAR10; 2,000 for
BBCNews; 1,000 for IMDB; and 3,000 for PET.

Computation and Capital Cost. The computation cost is de-
termined by the number of generated, augmented, and filtered
samples, as well as the specific generative models used. For
example, generating a dataset to mimic CIFAR-10, with 250
samples per class using Fast Stable Diffusion XL on TPU v5e,
required approximately 10 hours. Augmenting 3,000 sam-
ples took about 10 minutes, and filtering the same number of
samples took 2 minutes.

The capital cost depends on the subscription fees for the
generative AI services utilized. In our case, we subscribed
to GPT-4o at a cost of $20 USD per month, while the stable
diffusion model we employed is free to use.
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