ARTIFACT
EVALUATED
susenix

»

AVAILABLE

Data Duplication: A Novel Multi-Purpose Attack Paradigm in Machine Unlearning

Dayong Ye* Tianqing Zhu' Jiayang Li*

Kun Gao*

Bo Liu* Leo YuZhang! Wanlei Zhou" Yang Zhang®
*University of Technology Sydney ' City University of Macau
UGriffith University SCISPA Helmholtz Center for Information Security

Abstract

Duplication is a prevalent issue within datasets. Existing re-
search has demonstrated that the presence of duplicated data
in training datasets can significantly influence both model
performance and data privacy. However, the impact of data
duplication on the unlearning process remains largely unex-
plored. This paper addresses this gap by pioneering a com-
prehensive investigation into the role of data duplication, not
only in standard machine unlearning but also in federated and
reinforcement unlearning paradigms. Specifically, we propose
an adversary who duplicates a subset of the target model’s
training set and incorporates it into the training set. After
training, the adversary requests the model owner to unlearn
this duplicated subset, and analyzes the impact on the un-
learned model. For example, the adversary can challenge the
model owner by revealing that, despite efforts to unlearn it, the
influence of the duplicated subset remains in the model. More-
over, to circumvent detection by de-duplication techniques,
we propose three novel near-duplication methods for the ad-
versary, each tailored to a specific unlearning paradigm. We
then examine their impacts on the unlearning process when
de-duplication techniques are applied. Our findings reveal sev-
eral crucial insights: 1) the gold standard unlearning method,
retraining from scratch, fails to effectively conduct unlearning
under certain conditions; 2) unlearning duplicated data can
lead to significant model degradation in specific scenarios;
and 3) meticulously crafted duplicates can evade detection
by de-duplication methods. The source code is provided at:
https://zenodo.org/records/14736535.

1 Introduction

Machine learning requires vast amounts of data to effectively
train models for various applications, including image pro-
cessing [53] and natural language processing [36]. The ulti-
mate performance of these models is heavily dependent on the
quality of the training data. Presently, training datasets have
expanded significantly, ranging from gigabytes to terabytes in

Tianqing Zhu is the corresponding author.

size [52]. While large datasets contribute to enhanced model
performance, they also introduce a potential risk — the du-
plication of training data. Current research has shown that
duplicated data can detrimentally impact the overall perfor-
mance of trained models [24], introduce heightened privacy
risks [3], or result in a plethora of false alarms [33]. However,
one crucial research area that has been largely overlooked in
data duplication is machine unlearning.

The concept of machine unlearning originates from data
protection regulations such as the General Data Protection
Regulation (GDPR) [7], which empowers users to request
the removal of their data. Under these regulations, model
owners are obligated to comply with users’ requests, removing
revoked data from their datasets and ensuring the elimination
of any influence these revoked data may have on the model.
Existing machine unlearning research primarily focuses on
the exact or approximate unlearning of revoked data and the
verification of unlearning results [51]. However, the extent
to which duplicated data affects machine unlearning, such as
the verification of unlearning results or the performance of
unlearned models, remains unexplored. This paper initiates
the investigation of data duplication in machine unlearning.

This research is significant due to three reasons.

* Challenge in Verification. When unlearning is applied
to one duplicated subset, typically at the request of an ad-
versary, it raises significant concerns about the validity of
unlearning verification. This is because the other duplicated
subset may still remain within the training set.

¢ Model Collapse. When the duplicated data include key fea-
tures essential to the training set, unlearning one duplicated
subset may still lead to model collapse, even if the other
duplicate remains in the training set. This occurs because
the unlearning process can disrupt the model’s ability to
generalize from those key features.

* Avoiding De-duplication. Model owners may implement
de-duplication techniques to identify and eliminate dupli-
cate data from training sets. A significant challenge arises



in developing strategies to circumvent these detection mech-
anisms while still posing threats to the unlearning process.

This paper systematically explores the influence of dupli-
cate data on machine unlearning from three perspectives.
Initially, we examine how the presence of completely du-
plicated data influences both the unlearning outcomes and
the subsequent verification results. Then, we carefully design
near-duplicate data to investigate whether these synthetically
generated near-duplicates have a similar impact to completely
duplicated data on machine unlearning. Finally, we introduce
and assess the effectiveness of de-duplication techniques to
determine if their application can mitigate the impact of both
complete and near-duplicate data on the machine unlearning
process. In summary, we make three main contributions:

» This work represents a significant stride in exploring the
impact of data duplication on machine unlearning, estab-
lishing a pioneering effort in this emerging research area.
Our study contributes novel insights in this domain. These
insights include the failure of gold standard unlearning ap-
proaches, observed model degradation, and the challenges
associated with duplication detection.

* To explore the implications of duplicate data in machine
unlearning, we introduce a novel set of near-duplication
methods. These methods generate near-duplicate data by
minimizing the feature distance between duplicate instances
and their original counterparts, while simultaneously maxi-
mizing the perceptual differences between them.

* Beyond a focus on standard machine unlearning, our re-
search extends its scope to encompass diverse unlearning
domains. This includes federated unlearning and reinforce-
ment unlearning.

2 Preliminary and Threat Model
2.1 Machine Unlearning

Formally, consider the original training set of the model de-
noted as Dj,q4in, comprised of two distinct subsets: the set of
unlearned data D, and the set of retained data D,., represented
as Dyyin = D, U D,. Let F symbolize the model that was
trained on this combined dataset, 7,,;,. The central objec-
tive of machine unlearning is to derive an unlearned model,
denoted as F,, by effectively eliminating the influence of D,,.

Threat Model. We presume that the training dataset D,
includes a subset Dy, associated with a victim, targeted by an
adversary. The adversary is assumed to have the capability to
inject a set of samples, Dy, into Dyygin, resulting in Dyygin —
Drrain U Da. This assumption aligns with conventional data
poisoning attacks [42]. For example, an adversary could inject
duplicated data into a public dataset and upload it to data
repository platforms such as GitHub or Hugging Face. Any

https://github.com
https://huggingface.co

model owner who uses this dataset for training is vulnerable
to the adversary’s request to unlearn the duplicated data.

The injected data, Dy, may be identical to Dy or function-
ally similar yet perceptually distinct to evade de-duplication
techniques. Specifically, for each data point pair x/' € D and
xl‘./ € Dy where i € 1,...,m and m is the size of Dy, we require
that d(F (x{'),F(x!")) < 8, with d() denoting a distance metric
like the I, norm and 9 a pre-set threshold.

Adversary’s Goal. The adversary’s goal is to challenge the
model owner’s success in unlearning. To achieve this, the
adversary requests the revocation of their duplicated data, Djy.
After the unlearning process, the adversary challenges the
model owner to verify the success of the unlearning. If the
original data, Dy, remains in the model’s training set, D;,qin,
this verification is highly likely to fail. In such a case, the
adversary can claim that the model owner is dishonest.

2.2 Federated Unlearning

Federated learning (FL) involves a server and a set of clients
working collaboratively to iteratively train a global model.
Formally, let the number of clients in an FL system be 7, each
with their own local training dataset D;, where i € {1,...,n}.
The joint training dataset across all clients is represented by
D =L D;. The objective of the clients is to collaboratively
learn a shared global model by solving the optimization prob-
lem: w* = argmin,, f (D, w), where w* represents the optimal
global model and f(D,w) denotes the empirical loss of the
model on dataset D. The following three steps are iteratively
taken by the server and the clients to train the global model.

 Step 1: synchronization. The server sends the current global
model w to the clients.

» Step 2: local model training. Once a client receives the
global model w, it fine-tunes its local model using their
respective local dataset. For instance, consider client i. It
initializes its local model w' with the global model w and
uses stochastic gradient descent to optimize w' by solving
the optimization problem: miny, f(D;,w'). Then, the client
uploads its local model update A’ = w' — w to the server.

* Step 3: global model updating. The server aggregates the
local model updates received from the clients to compute a
global model update A. A common aggregation rule used

is FedAvg [30], defined as: A = Ly [2AT. The global
model update A is then used to fine-tune the global model:

W w— - A, where o represents the global learning rate.

In contrast to FL, federated unlearning focuses on the tar-
geted removal of acquired knowledge from the global model
w [28, 56]. Depending on the level of granularity for un-
learning, current federated unlearning methodologies can be
categorized into three distinct groups [50]: sample-level un-
learning, class-level unlearning, and client-level unlearning.



Sample-level unlearning is designed to selectively unlearn
individual data samples [5,37], class-level unlearning seeks
to erase an entire class from the trained global model [47], and
client-level unlearning is dedicated to eliminating all locally
contributed model updates from a specific client [13,27]. This
paper concentrates on client-level unlearning, as it presents
unique challenges. In comparison, sample-level unlearning is
more analogous to scenarios encountered in standard machine
unlearning. Class-level unlearning, however, introduces slight
differences. For instance, if an adversary duplicates a class of
data from a single victim client, unlearning that class has min-
imal impact on the global model’s performance since other
clients also contribute data from the same class. Conversely,
if the adversary duplicates a class of data across all clients
and requests unlearning of that class, the global model will
lose all knowledge related to the class, rendering it unable to
accurately classifying data from that class.

Threat Model. We, without loss of generality, presume that
the n-th client is a malicious entity, i.e., an adversary, whose
aim is to compromise the global model through unlearning.
This adversary is envisioned to actively participate through-
out the complete training process of the global model and
possesses the ability to craft their local model updates. This
assumption is consistent with existing FL. model poisoning
attacks [6,43]. In each training round ¢, instead of uploading
genuine local model updates, the adversary either replicates
the received global model by directly setting w;' = w;, or
modifies the global model to satisfy d(w/,w;) < 8 to bypass
de-duplication mechanisms, and then sends w} to the server.
The adversary can easily perform the model upload operation,
as it is a standard functionality of the FL system.

Adversary’s Goal. The adversary’s objective is to compro-
mise the entire global model. Assuming the training concludes
after T rounds, the adversary executes an attack by revoking
all their models, wf, ..., w7. Since these models closely re-
semble the respective wy, ..., wr, unlearning w/,..., w7 ef-
fectively equates to unlearning wy, ..., wr. This process can
severely damage the entire unlearned global model, w,, as it
results in the loss of all knowledge embedded in wy, ..., wr.

2.3 Reinforcement Unlearning

Formally, a reinforcement learning (RL) environment is com-
monly formulated as M = (S5, 4,7 ,r) [32]. Here, S and 4
denote the state and action sets, respectively. T represents
the transition function, and r represents the reward function.
At each time step ¢, the agent, given the current environmen-
tal state s; € S, selects an action a; € A4 based on its pol-
icy m(ss,a,). This action causes a transition in the environ-
ment from state s; to s, according to the transition func-
tion: T (sy41]st,a; ). The agent then receives a reward r; (s, a;),
along with the next state s;41. This tuple of information, de-
noted as (s;,ar, 1 (s¢,ar),8:+1), 18 collected by the agent as an
experience sample utilized to update its policy 7. Typically,

the policy 7 is implemented using a Q-function: Q(s,a), esti-
mating the accumulated reward the agent will attain in state s
by taking action a. Formally, the Q-function is defined as:

On(s,a) =Ex[Y ¥ - r(si,ai)lsi = s,a; = a), (H
i=1

where 1y represents the discount factor.

In deep reinforcement learning, a neural network is em-
ployed to approximate the Q-function, denoted as Q(s,a;0),
where 0 represents the weights of the neural network. The
neural network takes the state s as input and produces a vector
of Q-values as output, with each Q-value corresponding to an
action a. To learn the optimal values of Q(s,a;8), the weights
0 are updated using a mean squared error loss function £(0).

L=— Z [(r(st,ar) +’Yr£ii(Q(st+17at+l;e) - Q(slvat;e))z]y
@)

where e = (s;,a;,r(s;,a;),8.+1) is an experience sample show-
ing a state transition, and B consists of multiple experience
samples used to train the neural network.

During the unlearning process, the objective is to eliminate
the influence of a specific environment on the agent, i.e., “for-
getting an environment”, which is equivalent to “performing
deterioratively in that environment” [54]. Formally, let us con-
sider a set of n learning environments: (M, ..., M,). Each
M; has the same state and action spaces but differs in state
transition and reward functions. Consider the target environ-
ment to be unlearned as M, = (S,, 4,7, r), denoted as the
‘unlearning environment’. The set of remaining environments,
denoted as (M,..., My_1, My+1,...,M,), will be referred
to as the ‘retaining environments’. Given a learned policy T,
the goal of unlearning is to update the policy 7 to 7’ such that
the accumulated reward obtained in M, is minimized:

min | Oz (5) - 3

where s € S, while the accumulated reward received in the
retaining environments remains the same:

min|[ Qs (5) — Qa(s)] = @

where s ¢ S,.

Threat Model. We assume that an adversary can create an
environment, My, that is either identical or very similar to
a given victim environment, My, with a small difference
d(My, My) < 3 to evade de-duplication techniques. This as-
sumption is practical, particularly in cases where the adver-
sary is an internal attacker with regular access to My . For
example, an adversary can upload duplicated environments
to shared repositories, such as simulation platform hubs like
OpenAl Gym. If the agent’s owner uses these simulation

https://github.com/openai/gym



platforms for training, they are exposed to the adversary’s
subsequent request to unlearn the duplicated environments.

Adversary’s Goal. The adversary’s goal is to degrade the
agent’s performance in the victim environment, My, . To ac-
complish this, the adversary requests the model owner to erase
their environment, M. Due to the similarity between M} and
My, unlearning M, can inadvertently lead to the unlearn-
ing of My . Consequently, this may result in a decline in the
performance of the unlearned policy, 7/, within M.

3 Methodology

The central challenge when developing near-duplication meth-
ods lies in the creation of “similar” data, model updates, or
environments, as the use of identical elements can be easily
detected through de-duplication methods. Therefore, for each
of the three learning settings, we will design a novel near-
duplication method to effectively compromise the unlearning
process while evading established de-duplication techniques.

3.1 Duplication in Machine Unlearning

Problem Statement. Given a target model F, its training
dataset D;, 4, and a victim subset Dy, where Dy C Dyrqin,
the adversary constructs a duplicated dataset D4 and inject it
into Dyygins 1.€., Dirain <= Dyrain U Da. This duplicated dataset
must match the size of Dy and exhibit functional similarity
to Dy. Formally, for each pair of data points x‘,“ € Dy and
x}/ € Dy, the adversary aims to optimize two distinct losses:
a utility loss (Eq. 5) and a perceptual loss (Eq. 6).

Ly = min|E(x) = E()||, )

where E is a feature extractor.
L, = max||x{ —x! |1 (6)

Here, Eq. 6 is experimentally designed to balance overall
performance and computational efficiency in creating near-
duplicates. We have also evaluated alternative perceptual met-
rics such as SSIM [48]. However, SSIM presented challenges
in achieving convergence during the creation process.

Overview. The proposed duplication method against standard
machine unlearning comprises three distinct steps. First, the
adversary initiates the process by generating a dataset Dy,
through the direct duplication of Dy, effectively rendering
Diup = Dy . Second, the adversary employs Dy, to train an
autoencoder AE, optimizing for the losses defined in both
Eq. 5 and 6. Lastly, the adversary applies the trained AE to
each sample in Dy, to yield Dy. To carry out an attack, the
adversary requests the server to unlearn the data Dj.

Details of the Method. The crucial phase in the proposed
method is the second step: training an autoencoder AE, shown
in Figure 1. This autoencoder takes a sample x" as input
and produces a new sample x*. It is expected that ||E(x*) —

E(xY)||1 < 8y, while [|x* —xV||; > §,, where both §, and 3,
are pre-defined thresholds.

Original Crafted Feature
v Autoencoder "
sample x sample x extractor

W — qp(zlx) Po(x|z) — )(;’—» E —-E(J‘c‘)

v
Original L
‘AE
sample x¥

W E — E(i")

Figure 1: Training of the autoencoder.

To train the autoencoder, the adversary utilizes Dy, as the
training dataset, and the loss function is defined as:

Lyg =min ([[E@) —EQ)| =AM =2]1), D

where A is used to balance the two terms. For example, in the
case of an image classifier, the adversary can employ a pub-
licly pretrained image classifier, such as MobileNetV2 [41],
as a feature extractor by taking the output of its intermedi-
ate layers. This approach aims to minimize the discrepancy
between the extracted features of the original sample x” and
the crafted sample x* while ensuring that the perturbation
between xV and x* remains as large as possible.

Analysis of the Method. In this method, we trained an au-
toencoder to generate samples 2Dy that exhibit functional simi-
larity to those in 2Dy . The autoencoder comprises two integral
components: an encoder and a decoder. The encoder provides
the decoder with an approximation of its posterior over latent
variables. Conversely, the decoder serves as a framework for
the encoder to learn meaningful representations of the data.
Formally, let g4 (z|x) represent the encoder, and pg(x|z) rep-
resent the decoder, where x and z denote a sample and a
latent variable, respectively. The parameters of the encoder
and decoder are denoted by ¢ and 6, respectively. In essence,
the autoencoder learns a stochastic mapping from the ob-
served sample space x to the latent space z, while the decoder
learns an inverse mapping from the latent space to the sam-

ple space. Following Bayesian rules, the decoder pg(x|z) can

Pe(2lx)pe(x)
Pe(2)

inverse of pg(x|z), it can be approximated by gy(z|x) [20].

Consequently, we derive pg(x|z) = %ﬁg’@

Through rearrangement and utilizing log-likelihood, we ob-
tain the expression log[pe (x|z)] —log[pe(x)] = log[ge (z|x)] —
log[pe(z)]. Notably, log][pe(x|z)] — log[pe(x)] signifies the
difference between the input and output of the autoencoder,
identical to the disparity between the learned latent variable
distribution by the encoder and the true latent variable distribu-
tion, i.e., log[qq(z|x)] — log[pe(z)]. As the true latent variable
distribution pg(z) remains constant, controlling the difference
between the input and output of the autoencoder necessitates
appropriate training of the encoder.

be expressed as pg(x|z) = . Since pg(z|x) is the



As expressed in Eq. 7, the first term ||[E(x?) — E(x")||x
uses a well-trained feature extractor E to guide the encoder’s
training toward the provided feature extractor. Also, as the
objective is to craft perceptually distinct samples, the second
term in Eq. 7, |[x* —x"||1, is incorporated to guide the de-
coder’s training toward generating perceptually diverse sam-
ples. This dual-term loss function ensures the convergence
of the autoencoder while balancing functional similarity and
perceptual dissimilarity in the generated samples.

3.2 Duplication in Federated Unlearning

Problem Statement. In the context where the server gen-
erates a global model denoted as w and distributes it to all
clients, the aim of the adversary, i.e., the malicious client, is to
create a local model denoted as w. This local model should
have the same structure as w and exhibit functional similarity.
However, the parameter values of w* should differ from those
of w. Formally, given the adversary’s local data Dy, the goal
is to optimize two separate losses: the similarity loss (Eq. 8)
and the model-distance loss (Eq. 9).

Ly = min||w(x) —w" (x)]]1, ®)

where w() and w” () represent the logits of the global model
and the adversary’s local model, respectively, while x € Dy
denotes a local sample from the adversary.

Ly = max||w — w’||}. )

Here, Eq. 9 employs the Li-norm as an intuitive method
for comparing model parameters during the creation of near-
duplicate models. This approach ensures that the generation
process is efficient while preserving the fidelity of the dupli-
cates by promoting small and consistent changes across the
parameters, thereby maintaining the model’s overall structure
and functionality.

Overview. The duplication method consists of three steps.
Firstly, upon receiving the global model w, the adversary
initializes the local model w# by adopting the same structure
as w and randomly initializing the parameter values of w*.
Secondly, the adversary utilizes the local data Dy to train w4,
optimizing the losses defined in both Eq. 8 and 9. Finally, the
adversary transmits the trained local model w# to the server.
To execute an attack, the adversary then requests the server to

unlearn their local model w*.

Details of the Method. The pivotal phase of this method is the
second step: local model training. This training leverages the
knowledge distillation technique, a process in which a student
model is trained under the guidance of a teacher model [10].
In our scenario, the global model serves as the teacher, while
the adversary’s local model represents the student. However,
in contrast to conventional knowledge distillation objectives,
the adversary’s intention is to train the local model to emulate

the global model rather than achieving high performance. To
achieve the adversary’s objective, a direct approach involves
defining a loss function that combines Eq. 8 and 9, namely
min (|[w(x) —w*(x)[|; — |[w—w"||;). However, Eq. & solely
compares the outputs of the two models without accounting
for their internal representations. Thus, an extension of Eq. 8
is necessary to also transfer the internal representations of the
global model to the adversary’s local model.

Teacher model/Global model w

Adversary’s
local data

Student model/Local model w4

Figure 2: Training of the adversary’s local model.

As depicted in Figure 2, for the student to mimic the teacher
internally, we consider two scenarios. The first scenario is
the internal distillation of all layers, where every layer of the
student is fine-tuned to align with the corresponding layer in
the teacher. The second scenario is the internal distillation
of selected layers, where a selected subset of layers in the
student is optimized to closely align with their counterparts
in the teacher model.

In our specific problem, we opt for the approach of internal
distillation of selected layers. This deliberate choice stems
from the recognition that distilling knowledge from all layers
might result in the student model closely mirroring the teacher
model. While this alignment is advantageous for knowledge
transfer, it simultaneously heightens the risk of detection by
de-duplication techniques. By distilling knowledge from spe-
cific layers, we guide the student model to internalize the most
relevant and informative aspects of the teacher’s knowledge
while avoiding an overly conspicuous resemblance. Specif-
ically, the loss function used by the adversary to train their
local model, i.e., the student model, is defined as:

Lip = min(h[[W(1) (x) = Wiy ()] |1+ .+

Do [ W) () = Wy () |1+ [ W) = WA ()| 1 = Al [w = w]1),
(10)
where w(;) () is the output of the i-th hidden layer of the model
w, m is the number of hidden layers selected by the adversary,
and A, A, ..., A, are used to balance these learning objectives.

Analysis of the Method. The conventional knowledge distilla-
tion loss incorporates both soft and hard labels in a combined
form: £ = pL(ys,y:) + (1 — p)L(ys,Yg), where y; and y; rep-
resent the soft labels of the student and teacher, respectively,
¥, denotes the ground truth label, and p is referred to as the



soft ratio. The efficacy of this loss function in ensuring the
convergence of the student has been established in [1, 17].

In contrast to the conventional knowledge distillation loss,
as expressed in Eq. 10, our approach differs by excluding the
hard-label component L(ys,y,). Our focus is on emulating
the behavior of the teacher rather than enhancing the student’s
standalone performance. Instead, our strategy involves multi-
ple objective losses pertaining to the internal representations
of the teacher. Given the proven convergence of L, if our
objective is to drive L(y;,y;) towards zero, we only need to
ensure that L(ys,y,) approaches zero. This alignment is easily
achievable in our context by inducing the student model to
overfit to the adversary’s local data. Notably, overfitting poses
no concern in our setting, as our primary aim lies in the emula-
tion of the teacher’s behavior rather than the student model’s
generalization ability. Consequently, by inducing overfitting,
we can effectively drive L(y;,y;) towards zero.

Returning to Eq. 10, where L(ys,y;) is equivalent to
|[w(x) — wA(x)||1, achieving convergence in Lgp necessi-
tates balancing the values of the remaining terms: |[w;)(x) —
w?l)(x)”l,..., || W () () —W( )( x)||1 and |[w—wA||;. Adlrect
approach would be to induce all these terms to converge to 0.
However, such an approach implies ||w —w#||; — 0, which
contradicts our primary goal. The critical step is judiciously
selecting the value of m. A small m may lead the loss to
converge to sub-optimality, while a large m can induce os-
cillations. We empirically set the value of m to 2 with one
representing the output of the convolutional blocks and the
other representing the output of the classification layer.

3.3 Duplication in Reinforcement Unlearning

Problem Statement. In this context, when considering a vic-
tim environment My, the adversary’s objective is to construct
a comparable environment, denoted as My . This newly cre-
ated environment, /My, should exhibit functional similarity
to My but possess distinct parameter values. Formally, to es-
tablish functional equivalence, the agent operating under a
learned policy 7 should be able to achieve similar cumulative
rewards in both M, and My, i.e.,

Ly = min|Qn(s,a| s g)~ag,) — On(s.al (s apag ). (1)

In pursuit of distinct parameter values, the adversary endeav-
ors to alter My to Mjy.

Ly, = max[d(My , My)]. (12)

Overview. The duplication method targeting reinforcement
unlearning is a strategic process that unfolds in three distinct
steps. In the initial step, the adversary straightforwardly dupli-
cates the victim environment 9y, . Subsequently, the adversary
leverages My as a training ground to develop an environment
generator. The training process of this generator is guided
by the losses defined in both Eq. 11 and 12. Lastly, the ad-
versary deploys the trained generator to create a comparable

environment My. To execute the attack, the adversary simply
instructs the agent to unlearn the generated environment M.

Generated
environment My,

Victim Environment
environment My, generator G

Figure 3: Training of the adversary’s environment generator.

Details of the Method. The pivotal phase of this method is
the second step, which involves training an environment gen-
erator as illustrated in Figure 3. The objective is to ensure that
the resulting generated environment M, possesses identical
state and action spaces as My, while eliciting a comparable
cumulative reward for the agent under a learned policy 7,
namely min(| L, — £;]). The differentiating factor lies solely
in the state transition function, denoted as 7y, for the victim
environment and 74 for the generated environment. Tech-
nically, the adversary also has the capability to modify the
state and action spaces of My, . Nevertheless, such modifica-
tions carry the potential to exert a significant impact on the
overall environment. This stems from the intricate relation-
ship between the state and action spaces and the dynamics
of RL environments. A change in the state space can result
in altered observations available to the agent, influencing its
perception of the environment. Similarly, a modification in
the action space can redefine the set of feasible actions the
agent can take, reshaping the decision-making process. Thus,
both alterations can lead to a substantial transformation in the
environment’s behavior.

To guarantee that the generated environment My yields
a similar cumulative reward for the agent as My, the loss
defined in Eq. 11 is evaluated by using the learned policy 7 to
explore both My and My, and subsequently comparing the
acquired rewards. Formally, Eq. 11 is implemented as:

Zr Si,a z

where T denotes the predefined number of steps taken to ex-
plore each of the two environments. Concurrently, to achieve
a distinct state transition function 74 within My, the loss
function specified in Eq. 12 is implemented as:

L, = mm|Zr Sis i) (5;.0)~ My — an~agls (13)

i=1

L :max[KL(‘Z{/(-|s,a)\|‘Z;(-|s,a))], (14)

where KL(-||-) denotes the KL-divergence. We utilize KL-
divergence as it is well-suited for generating near-duplicate
transition functions represented as probability distributions.
This metric guides the creation process by capturing subtle
differences in probability distributions to ensure that the gen-
erated near-duplicates align with the desired properties. The



training loss of the environment generator is defined as:
L = min(| L, — L,]). (15)

Finally, attaining identical state and action spaces between
My and My can be accomplished by properly defining the
input and output of the environment generator.

Analysis of the Method. As our objective is to alter the state
transition function of an environment, our analysis predomi-
nantly focuses on this function.

Let T7(s'|s) = [;7(als)T (s'|s,a)da, and the expected cu-
mulative reward under policy 7 be [31]:

IR = [T [ mlalsyrts.adads, a0

where dg ™ is the v-discounted state distribution, recursively
defined as:

4776) = (1= Duts) 47 [ T3 ()

and u(s) is the distribution of the initial state. Then, we obtain:

Lemma 1. Let T and T’ be two distinct state transition func-
tions. The 1y norm of the difference between the y-discounted
state distributions can be upper bounded as:

Y

ldy ™ —dl ™[y < ——E__ ol T(:|s) —

Tc .
E T (J5) |

Based on Lemma 1, we can have:

Theorem 1. The difference in the cumulative rewards be-
tween two state transition functions, T’ and T, can be upper
bounded as:

!

JTE— g™ <

ﬁl@mdgﬁ 1T s) = T [s)| [t max Eyar(s,a).

Theorem | indicates that the difference in rewards between
two distinct state transition functions is upper-bounded by the
difference between these two transition functions. Therefore,
achieving a balance between £, and £, is crucial. In essence, a
delicate equilibrium is sought, typically favoring a minimized
L, and a maximized £, to fulfill the adversary’s objectives.
However, overly aggressive maximization of £; may result in
a substantial deviation from the original cumulative reward,
potentially making the method more conspicuous and prone
to detection mechanisms. The proofs of both Lemma 1 and
Theorem 1 are provided in the appendix.

4 Experiments

Our experimental focus is on machine unlearning and feder-
ated unlearning. As reinforcement unlearning differs signifi-
cantly in methodology, its results are presented separately.

4.1 Experimental Setup

Evaluation Tasks. Duplication can be executed in either
a complete or a similar manner, while de-duplication tech-
niques can be either applied or not applied. Here, complete
duplication entails fully copying the unlearning data, models,
or environments, while similar duplication involves copying
only the features of those unlearning entities, as shown in our
proposed methods. Thus, we set up four evaluation tasks.

e Complete duplication without de-duplication. This task
evaluates the unlearning outcomes when the unlearning enti-
ties are completely copied without applying de-duplication
techniques. It serves as a baseline for our evaluation.

* Similar duplication without de-duplication. This task eval-
uates the performance of our proposed methods without
applying any de-duplication techniques. It serves to demon-
strate the upper bound performance of our methods.

e Complete duplication with de-duplication. This task evalu-
ates the unlearning results under complete duplication when
the de-duplication techniques are applied. It serves as the
lower bound performance in our evaluation.

* Similar duplication with de-duplication. This task is a cru-
cial evaluation, assessing the performance of our proposed
methods when confronted with adopted de-duplication tech-
niques. It aims to determine whether our methods can ef-
fectively bypass these de-duplication techniques.

De-duplication Techniques. De-duplication techniques vary
across diverse learning paradigms.

Machine Unlearning. We utilize feature-based de-
duplication [39], which poses a significant challenge to our
near-duplication method. Our method deliberately minimizes
the feature distance between duplicates and their originals
to evade detection, making feature-based de-duplication an
effective countermeasure. For implementation, we employ a
publicly available pre-trained image classifier, such as VGG16
[45], as the feature extractor.

Federated Unlearning. We adopt a combination of repre-
sentational and functional measures [4,21], commonly used to
assess model similarity. This dual approach ensures a strong
countermeasure against our near-duplication method because
it addresses both the internal representations and external
behaviors of the model updates, leaving minimal room for
near-duplicates to evade detection.

Reinforcement Unlearning. We choose cosine similarity
as the metric for detecting duplicates, as it aligns with the
common representation of environments as state vectors. This
intuitive approach counters our near-duplicates, which are
generated by modifying individual grids within an environ-
ment, akin to altering specific elements within a vector.



Unlearning Methods. A commonly used unlearning method,
denoted as Retrain, can be implemented across all these learn-
ing scenarios. Widely recognized as a gold standard in exist-
ing literature [55] , the Retrain method involves retraining
the model from scratch, excluding the unlearned entities.

In machine unlearning, we utilize two representative meth-
ods broadly employed in existing research.

* Fisher forgetting [9]. This method applies additive Gaus-
sian noise to perturb the model towards exact unlearning.
The Gaussian distribution has a zero mean and covariance
determined by the 4-th root of the Fisher information matrix
with respect to the model on the unlearned data.

* Relabeling [11]. This method operates on the unlearned
data by altering the labels to randomly selected incorrect
ones. Subsequently, these mislabeled data are utilized to
fine-tune the model.

Within the context of federated unlearning, given the threat
model, our experiments leverage the state-of-the-art client-
level federated unlearning method introduced in [13].

* Gradient ascent [13]. To unlearn their data, a client opti-
mizes the model parameters to maximize the loss function.

In reinforcement unlearning, the objective is to forget an
entire environment. Hence, our experiments exploit the two
latest methods proposed in [54]: decremental reinforcement
learning (RL)-based and poisoning-based methods.

* Decremental RL. It aims to diminish the agent’s previous
knowledge by letting it collect experience samples in the
unlearning environment and then fine-tuning it with these
samples to reduce its performance there.

* Poisoning. It encourages the agent to learn new, albeit incor-
rect, knowledge to remove the unlearning environment. It
uses a poisoning approach to modify the unlearning environ-
ment and retrains the agent in this modified environment.

Datasets and Model Architectures.

* CIFAR10 [22] includes 60,000 images across 10 classes,
each containing 6,000 images of vehicles and animals. The
dimension of each image is 32 x 32.

* MNIST [23] is a dataset of 70,000 images of handwritten
numerals spanning 10 classes: 0 — 9. Each class has 7000
images and each image was resized to 32 x 32.

e SVHN [34] is a real-world street view house number
dataset, consisting of 10 classes, each representing a digit. It
comprises over 600,000 samples, each measuring 32 x 32.

* FaceScrub [35] is a dataset of URLs for 100,000 images
of 530 individuals. We collected 91,712 images of 526
individuals. Each image was resized to 64 x 64.

We implement two model architectures. Our custom archi-
tecture consists of four CNN blocks, followed by two fully-
connected layers and a softmax function for classification.
On the other hand, ResNet [14] includes multiple layers with
residual blocks and uses projection shortcuts to match dimen-
sions between layers.

Evaluation Metrics. The assessment of unlearning outcomes
typically involves three key approaches: membership infer-
ence [44], backdoor [38] techniques, and model accuracy [55].
However, membership inference, especially in the context of
sample-level unlearning, has limitations due to its reliance
on discernible output differences between members and non-
members of the training dataset [51]. In well-trained models,
these differences are often too subtle, rendering membership
inference ineffective for confirming unlearning. Therefore,
our experiments focus on using backdoor techniques and
model accuracy to measure the efficacy of unlearning.

For backdoor techniques, we utilize the approach designed
for data ownership verification [25]. This method intention-
ally induces misclassification in the model for the unlearning
samples Dy that contain a specific ‘trigger’. After unlearning,
these triggered samples should not be misclassified to the
previously targeted class, indicating effective unlearning. For
experimental consistency, we also integrate the same trigger
into the victim data, Dy, thereby making D4 and Dy effec-
tively duplicate. We measure the effectiveness of unlearning
using the Attack Success Rate, a metric that evaluates how of-
ten the unlearned model F, incorrectly classifies the triggered
data, D4 and Dy, into a user-defined class. A lower attack
success rate signifies a more successful unlearning outcome.
Note that these triggers are not intended for malicious pur-
poses but used solely as tools to evaluate unlearning efficacy.

On the other hand, for model accuracy, the metrics [18]
employed in our evaluation are outlined below.

* Model fidelity (MF). This metric refers to the accuracy of
unlearned model F;, on the remaining data D,.

e Testing accuracy (TA). This metric assesses the generaliza-
tion ability of the unlearned model F, on a test dataset 7
that excludes any samples from both D, and D,.

Unlearning efficacy (UE). We define this metric as
UE(F,) = 1—Accq, (F,), where Accq, (F,) denotes the ac-
curacy of F;, on the unlearned data D,,.

e Unlearning impact (UI). Unlearning impact is defined as
UI(F,) = 1 — Acco,(F,). D, represents the victim data,
either the same as or functionally equivalent to D,,.

4.2 Overall Results

We assume that if the unlearning entities are identified as
duplications by de-duplication techniques, the model owner
will disregard the unlearning request to prevent potential ad-
versarial exploitation. This assumption will be revisited later
in the robustness study.



4.2.1 Machine Unlearning

Table | shows the machine unlearning results on CIFAR10
using the custom model, with a focus on backdoor evalua-
tion. It reveals that data duplication significantly impacts the
unlearning process. Notably, the gold standard unlearning
method, retraining from scratch, records a backdoor attack
success rate of 99.6% on the unlearned data Dy. This high
rate suggests that the retrained model retains knowledge of
the trigger, indicating a failure to unlearning. Leveraging this
failure, the adversary can assert that the model owner is dis-
honest, thereby achieving their goal. This outcome is due to
the presence of a duplicate version of D)y in the training set,
which means the retraining still exposes the model to the pat-
terns and features of the unlearned data, including the trigger,
resulting in a high attack success rate.

The Fisher forgetting method produces results similar to
the retraining method, with a high backdoor attack success
rate after unlearning, indicating a failure in unlearning even
when de-duplication techniques are employed. As a result,
the adversary can also achieve their objective when the model
owner adopts the Fisher forgetting method. This failure arises
because the Fisher forgetting approach, while designed to
statistically reduce the influence of specific data points on
the model’s parameters, may not address the complex interde-
pendencies between features in a neural network. When data
duplication exists, the removal of influences associated with
one set of data does not necessarily eliminate the residual ef-
fects from its duplicates, including triggers used in backdoor
evaluations. Thus, despite the application of Fisher forget-
ting, the model continues to recognize and respond to these
triggers, leading to a high attack success rate.

By comparison, the relabeling method can achieve effective
unlearning with a low backdoor attack success rate when de-
duplication techniques are not applied. Thus, the relabeling
method can effectively defend against the adversary’s attack.
However, this comes at a significant cost, completely com-
promising the model’s performance by reducing test accuracy
to approximately 11%. The introduction of de-duplication
techniques complicates the outcome: the relabeling method
fails to unlearn effectively when duplicates are completely
identical, and severely damages model efficacy when dupli-
cates are nearly identical. This occurs because the relabeling
method relies on mislabeling the unlearned data to disrupt its
influence on the model. In scenarios without de-duplication,
mislabeling can sufficiently confuse the model about these
data points. However, when de-duplication is active, if the
duplicates are not exactly identical but close, the method strug-
gles to differentiate between what needs to be unlearned and
what does not. This confusion leads to the model learning in-
correct information across similar but not identical duplicates,
thereby degrading overall model performance.

Similar outcomes from the three approaches on the SVHN
dataset can be observed in Table 2, demonstrating that the im-

Table 1: Machine unlearning results with backdoor evaluation
on CIFARI1O0 using the custom model. Here, F'F stands for
the Fisher forgetting method, Rela. denotes the relabeling
method, CD refers to complete duplication, ND represents
near-duplication, and DeDup denotes de-duplication.

Accuracy Attack Success Rate
Train Test Dy Da
Before unlearn 84.42 68.62 99.98 99.98
Retrain 8535  69.65 99.96 99.96

FF+CD w/o DeDup 84.48  68.64  99.98 99.98
FF+CD with DeDup 84.42  68.62  99.98 99.98

FF+ND w/o DeDup 86.5 69.01 100 99.78
FF+ND with DeDup 86.5 69.01  99.95 99.86
Rela.+CD w/o DeDup 11.75 11.77 79.3 1.14
Rela+CD with DeDup ~ 84.42  68.62  99.98 99.98
Rela.+ND w/o DeDup 11.87 11.34  99.98 9.34
Rela.+ND with DeDup 13,2 12.88 99.9 6.68

pact of data duplication is consistent across various datasets.
This consistency underscores the pervasive nature of duplica-
tion issues in machine learning models.

Table 2: Machine unlearning results with backdoor evaluation
on SVHN using the custom model.

Accuracy Attack Success Rate
Train Test Dy Da
Before unlearn 92.62 87.04 99.97 99.99
Retrain 92.62 8693  99.96 99.96

FF+CD w/o DeDup 92.51 86.98  99.96 99.99
FF+CD with DeDup 92.62  87.04 99.97 99.99
FF+ND w/o DeDup 9495  88.69  99.85 98.94
FF+ND with DeDup 9495  88.69  99.83 98.92

Rela.+CD w/o DeDup 24.5 16.86 100 14.96
Rela.+CD with DeDup ~ 92.62  87.04  99.97 99.99
Rela.+ND w/o DeDup 9.32 8.97 100 0.85
Rela.+ND with DeDup 10.2 9.75 100 0.83

Table 3 presents the machine unlearning results with a
model accuracy evaluation on CIFAR10 using the custom
model. Notably, the traditional unlearning method of retrain-
ing from scratch demonstrates low unlearning efficacy at
27.8%, meaning the retrained model retains a high accuracy
of 72.2% on the unlearned data. This can be attributed to two
factors. Firstly, the model may still be memorizing the fea-
tures shared between the unlearned data and their duplicates.
Secondly, the model’s inherent generalizability might allow
for high classification accuracy. However, given that the test
accuracy of the retrained model is lower at 67.8%, it suggests
that the model’s high accuracy on the unlearned data is more
likely due to residual memorization, caused by duplicated
versions of the data still present in the training set.

For the Fisher forgetting method, a noteworthy phe-
nomenon emerges: it consistently achieves very low unlearn-
ing efficacy, regardless of whether de-duplication is applied
or whether complete or near duplication is present. This may
be attributed to several factors. Firstly, the Fisher forgetting
method relies on estimating the Fisher information matrix
to compute the amount of forgetting required. However, in
scenarios involving duplicated data, the Fisher information
estimates may become unreliable due to the presence of redun-



Table 3: Machine unlearning results with model accuracy
evaluation on CIFAR10 using the custom model.

Table 4: Machine unlearning results with model accuracy
evaluation on SVHN using the custom model.

Mode. fide.  Testaccu.  Unle. effi.  Unle. impa. Mode. fide.  Testaccu.  Unle. effi. ~ Unle. impa.
Before unlearn 80.6 68.1 14.2 13.0 Before unlearn 93.8 87.3 15.2 16.2
Retrain 81.5 67.8 27.8 13.5 Retrain 93 86.5 9.7 6.3
FF+CD w/o DeDup 84.2 67.5 222 5.2 Rela.+CD w/o DeDup 13.9 14.6 86.7 87.2
FF+CD with DeDup 80.6 68.1 14.2 13.0 Rela.+CD with DeDup 93.8 87.3 15.2 16.2
FF+ND w/o DeDup 80.6 68.2 13.7 13.0 Rela.+ND w/o DeDup 7.6 7.4 92.2 91.8
FF+ND with DeDup 80.6 68.2 13.7 13.0 Rela.+ND with DeDup 9.0 8.5 91.0 922
Rela.+CD w/o DeDup 10.3 9.8 87.5 90.8 FF+CD w/o DeDup 94.3 88.0 5.3 2.8
Rela.+CD with DeDup 80.6 68.1 14.2 13.0 FF+CD with DeDup 93.8 87.3 15.2 16.2
Rela.+ND w/o DeDup 9.9 10.4 91.3 91.5 FF+ND w/o DeDup 93.8 87.4 14.8 6.3
Rela.+ND with DeDup 12.7 12.5 88.5 87.7 FF+ND with DeDup 93.8 87.4 14.8 6.3

dant or correlated information. As a result, the method may
struggle to accurately gauge the extent of forgetting necessary
to remove duplicated instances from the model’s memory.
Secondly, the Fisher forgetting method may inherently pri-
oritize preserving information from unique data instances
while inadvertently neglecting duplicated data. This bias to-
wards unique instances could result in ineffective unlearning
of duplicated data, leading to persistently low unlearning effi-
cacy across various duplication scenarios. Finally, the Fisher
forgetting method’s reliance on gradient-based optimization
techniques may introduce challenges in scenarios with dupli-
cated data. Gradient updates may inadvertently reinforce the
model’s memory of duplicated instances, thereby hindering
the unlearning process. This contributes to the consistent low
unlearning efficacy of the Fisher forgetting method.

For the relabeling method, in the absence of de-duplication
techniques, it exhibits high unlearning efficacy. However, this
comes at the expense of model fidelity and test accuracy in
scenarios involving both complete and near duplication. The
poor performance of the relabeling method can be attributed
to several factors. Firstly, this method may struggle to effec-
tively discern between original and duplicated data instances,
leading to inaccurate updates to the model parameters during
the unlearning process. Additionally, the inherent nature of
relabeling may introduce noise into the unlearning process,
particularly when applied to duplicated data, thereby under-
mining the model’s ability to generalize to unseen samples.

When de-duplication techniques are implemented, the re-
labeling method is not executed if they involve complete
duplication, as complete duplication can be easily detected
by the de-duplication techniques. However, in cases of near
duplication, its outcomes mirror those achieved without ap-
plying de-duplication. This suggests that our proposed near-
duplication methods enable duplicated data to circumvent
detection, thereby still impacting the unlearning process.

Table 4 shows the machine unlearning outcomes with a
model accuracy evaluation on SVHN using the custom model.
These results exhibit a notable consistency with those ob-
served on CIFAR10, as presented in Table 3. This consistency
underscores the persistence of both the impact of duplicated
data and the effectiveness of our near-duplication method
across different datasets.

Summary. In standard machine unlearning, the adversary
easily achieves their goal of challenging the model owner’s
success in unlearning under both the retraining-from-scratch
and Fisher forgetting methods. The relabeling method can
defend against the adversary’s attack by significantly reducing
the backdoor attack success rate and increasing the unlearning
efficacy, but it does so at a substantial cost of completely
degrading the model’s performance.

4.2.2 Federated Unlearning

In federated unlearning, the unlearned data D, is redefined to
represent the private data of the unlearned client. The remain-
ing data D, refers to the private data of all other clients. The
test dataset 2, denotes the local dataset held by the server and
utilized for testing the accuracy of the global model.

Table 5 shows the federated unlearning results on MNIST
with the custom model. We observe that before unlearning,
the model demonstrates high fidelity (98.44%) and testing
accuracy (98.18%), coupled with low unlearning efficacy
(1.4%). This outcome arises from the model’s effective train-
ing without any unlearning procedures. Then, employing the
retraining-from-scratch approach to unlearn the global model
allows for the preservation of its performance. This occurs be-
cause the retraining approach simply discards those duplicates
and utilizes the remaining clients to retrain a global model.
Furthermore, since the adversary client’s data has never been
incorporated into the training process, the retrained global
model exhibits a deterioration in performance when evalu-
ated on the adversary client’s data, consequently yielding a
high unlearning efficacy. Thus, the retraining-from-scratch
approach effectively counters the adversary’s objective. How-
ever, this approach is often impractical in real-world scenarios,
particularly when the number of clients is large, due to its
significant computational and resource demands.

When the model owner employs the gradient ascent un-
learning approach, a significant decline in model fidelity and
testing accuracy is observed, accompanied by a notable in-
crease in unlearning efficacy. A closer examination of the
third to sixth rows reveals several interesting phenomena.
In the third row, we observe that without applying any de-
duplication technique, unlearning the completely duplicated



Table 5: Federated unlearning results on MNIST with the
custom model. Here, GA refers to the gradient ascent method.

Model fidelity ~ Test accuracy  Unlearn efficacy
Before unlearn 98.44 98.18 1.4
Retrain 96.45 97.82 85.16
GA+CD w/o DeDup 17.89 18.46 96.32
GA+CD with DeDup 98.03 98.11 1.7
GA+ND w/o DeDup 39.11 39.38 92.38
GA+ND with DeDup 43.33 43.1 91.48

local models can demolish the global model, resulting in
a very low model fidelity (17.89%) and testing accuracy
(18.46%), while achieving a remarkably high unlearning ef-
ficacy (96.32%). This occurs because unlearning these com-
plete duplicates is equivalent to unlearning the entire global
model, given that the global model was aggregated from those
local models. However, such complete duplication is easily
identified by de-duplication techniques, as demonstrated in
the fourth row. In cases where the server declines to unlearn
duplicates, the model’s performance can be preserved.

With the introduction of our near-duplication method, the
results become even more intriguing. In situations where
no de-duplication technique is applied (the fifth row), un-
learning near-duplicates leads to higher model fidelity and
testing accuracy with a lower unlearning efficacy compared
to the complete duplication scenario (the third row). This
is because near-duplicates exhibit minor differences com-
pared to complete duplicates, which can prevent the model
from destruction. However, these differences can also enable
near-duplicates to evade detection by de-duplication tech-
niques (the sixth row), resulting in similar outcomes to the
scenario without de-duplication (the fifth row). This implies
that carefully designed near-duplicates can evade existing
de-duplication techniques.

The above results highlight the adversary’s successful
achievement of their objective: significantly reducing the
global model’s utility. While de-duplication techniques can
effectively detect complete duplicates, they are easily circum-
vented by our crafted near-duplicates.

Table 6: Federated unlearning results on CIFAR10 with the
custom model.

Model fidelity ~ Test accuracy ~ Unlearn efficacy
Before unlearn 65.75 62.77 47.44
Retrain 55.62 58.75 55.28
GA+CD w/o DeDup 9.96 10.01 97.83
GA+CD with DeDup 62.04 61.68 32.36
GA+ND w/o DeDup 10.08 9.98 98.19
GA+ND with DeDup 10.15 10.24 97.81

Table 6 presents the federated unlearning outcomes on CI-
FAR10 with the custom model. Generally, the results align
with those observed on MNIST, as depicted in Table 5, in-
dicating that unlearning duplicates also results in negative
impacts on CIFAR10. The primary difference between the
two tables lies in the third and fifth rows: on CIFAR10, un-
learning near-duplicates does not yield much difference from

unlearning complete duplicates, whereas this contrast is not
observed on MNIST. This dissimilarity can be attributed to
the complexity disparity between the two datasets. CIFAR10
is inherently more complex than MNIST, including the diver-
sity of objects and background clutter. As a result, the local
models computed during training on CIFARI1O0 are likely to
exhibit greater complexity compared to those on MNIST.

When unlearning near-duplicates, the slight differences be-
tween local models may be more significant in CIFAR10 due
to its higher complexity. Thus, even near-duplicates can have
a substantial impact on the model’s performance, leading to
outcomes similar to those observed with complete duplicates.
On the other hand, MNIST, being a simpler dataset, may be
more resilient to minor differences in local models. Thus, the
impact of near-duplicates on model performance may be less
pronounced on MNIST compared to CIFAR10.

Table 7: Federated unlearning results on FaceScrub with the
custom model.

Model fidelity ~ Test accuracy ~ Unlearn efficacy
Before unlearn 89.31 88.87 10.88
Retrain 85.59 86.78 82.82
GA+CD w/o DeDup 15.62 17.42 95.84
GA+CD with DeDup 88.52 87.89 11.24
GA+ND w/o DeDup 36.57 35.73 94.68
GA+ND with DeDup 41.41 40.25 88.10

Table 7 displays the federated unlearning outcomes on
FaceScrub with the custom model. Remarkably, we observe
a consistent trend akin to the results obtained on MNIST
and CIFARI10 datasets. This underscores the adaptability and
robustness of our proposed near-duplication methods across
diverse datasets. Moreover, it highlights the pervasive impact
of duplicates on the unlearning process, irrespective of the
dataset characteristics.

Summary. In federated unlearning, the adversary successfully
achieves their goal of severely compromising the global model
under the gradient ascent approach. In contrast, their objective
is less attainable under the retraining-from-scratch approach.
However, retraining poses practical challenges in real-world
scenarios, particularly when the number of clients is large.

4.3 Adaptability Study
4.3.1 Alternative Model Architectures

We conducted conventional machine unlearning and federated
unlearning using ResNet, while employing Deep Determin-
istic Policy Gradient (DDPG) for reinforcement unlearning.
DDPG comprises an actor network, responsible for learning
a deterministic policy, and a critic network, tasked with evalu-
ating the quality of actions selected by the actor [26].

Machine Unlearning. The results of machine unlearning on
CIFAR10 and SVHN using ResNet are presented in Tables 8
and 9, respectively. The trends observed are consistent with



those obtained using the custom model. However, there are
several noteworthy differences that warrant attention.

Table 8: Machine unlearning results on CIFAR10 with
ResNet.

Mode. fide. = Testaccu.  Unle.effi.  Unle. Impa.

Before unlearn 96.6 80.8 0 0
Retrain 96.6 80.7 12.8 0
FF+CD w/o DeDup 96.5 80.1 10.8 0
FF+CD with DeDup 96.6 80.8 0 0
FF+ND w/o DeDup 96.5 80.0 0 0
FF+ND with DeDup 96.5 80.0 0 0

Rela.+CD w/o DeDup 11.5 11.2 90.0 89.8
Rela.+CD with DeDup 96.6 80.8 0 0

Rela.+ND w/o DeDup 9.0 9.0 93.3 92.5

Rela.+ND with DeDup 12.7 12.5 88.5 87.7

Table 9: Machine unlearning results on SVHN with ResNet.

Mode. fide.  Testaccu.  Unle. effi.  Unle. Impa.

Before unlearn 100 94.5 0 0
Retrain 100 94.4 0 0
FF+CD w/o DeDup 100 93.8 0 0
FF+CD with DeDup 100 94.5 0 0
FF+ND w/o DeDup 100 94.4 0 0
FF+ND with DeDup 100 94.4 0 0

Rela.+CD w/o DeDup 7.4 7.3 93.2 93.8
Rela.+CD with DeDup 100 94.5 0 0

Rela.+ND w/o DeDup 9.7 9.5 91.0 90.8

Rela.+ND with DeDup 9.1 8.8 90.0 90.0

As depicted in Table 9, the retraining-from-scratch ap-
proach attains an unlearning efficacy as low as 0, indicating a
classification accuracy of 100% on the unlearned data. This
failure of the gold standard approach signifies its inability to
forget information from the unlearned data in this scenario.
This failure could be attributed to two factors. Firstly, ResNet
models are renowned for their high generalization ability, al-
lowing them to effectively learn complex patterns from data.
However, this same capability may hinder their ability to un-
learn information, particularly in scenarios involving dupli-
cated data. Furthermore, the high capacity and expressiveness
of ResNet models may result in the model memorizing the
duplicated instances, rather than learning to generalize and
discard them during unlearning. This phenomenon can lead
to poor unlearning efficacy, as observed in the results.

In both Tables 8 and 9, a notable observation is the failure
of the Fisher forgetting method to unlearn duplicated data,
regardless of the application of de-duplication or the presence
of complete or near duplication. This phenomenon suggests
inherent limitations in the Fisher forgetting method when
confronted with duplicated data. One possible explanation
for this failure is the method’s reliance on gradient-based
optimization techniques. The Fisher forgetting method esti-
mates the Fisher information matrix to compute the amount
of forgetting necessary for unlearning. However, in scenarios
with duplicated data, gradients may become unstable or mis-
leading, making it challenging for the method to accurately
estimate the required forgetting.

As a result, the inability of both the retraining-from-scratch

and Fisher forgetting approaches to achieve effective unlearn-
ing demonstrates the adversary’s success in challenging the
model owner’s claim of unlearning efficacy.

Federated unlearning. The results of federated unlearning
on CIFAR10 using ResNet are shown in Table 10, mirroring a
similar trend observed in the results obtained with the custom
model, as depicted in Table 6. These findings highlight the ad-
versary’s success in achieving their objective of significantly
degrading the global model’s performance.

A notable difference between the two tables lies in the
model fidelity and test accuracy achieved using ResNet, which
generally outperforms the custom model. This disparity can
be attributed to the high capability of ResNet in capturing com-
plex patterns and features inherent in the CIFAR10 dataset.
However, despite its superior performance, ResNet is still
susceptible to the adverse effects of duplicated data.

Table 10: Federated unlearning on CIFAR10 with ResNet.

Model fidelity =~ Test accuracy ~ Unlearn efficacy
Before unlearn 83.76 83.56 15.42
Retrain 74.53 75.42 24.21
GA+CD w/o DeDup 22.41 21.54 96.66
GA+CD with DeDup 80.22 82.14 17.5
GA+ND w/o DeDup 46.52 46.45 97.62
GA+ND with DeDup 46.64 45.21 90.78

4.3.2 Varying Numbers of Unlearned Data

For machine unlearning, the previous experimental results
were obtained using 600 unlearned data. We extend this num-
ber to 2,000 and evaluate the effects of this increased quantity.
In federated unlearning, the emphasis is on unlearning clients,
so we raise the number of unlearned clients from 1 to 2.

Machine Unlearning. The results of unlearning 2,000 data
on CIFAR10 and SVHN are displayed in Tables 11 and 12,
respectively. Interestingly, these results closely mirror those
obtained when unlearning 600 data. This suggests that the
impact of duplicated data remains consistent regardless of the
quantity of unlearned data, with the only expected difference
being a decrease in model fidelity and test accuracy due to
the additional unlearned data. This observation shows the ad-
versary’s success in achieving their objective and underscores
the robust and persistent nature of the impact of duplicated
data on the unlearning process. Despite varying the quantity
of unlearned data, the presence of duplicated data continues
to exert a significant influence on model performance.

Table 11: Machine unlearning results on CIFAR10 with 2,000
unlearned data.

Mode. fide.  Testaccu.  Unle. effi.  Unle. impa.
Before unlearn 80.9 67.87 18.4 12.4
Retrain 86.5 68.0 322 10.5
FF+ND w/o DeDup 81.0 68.0 18.4 12.3
Rela.+ND w/o DeDup 17.9 17.1 83.4 81.1




Table 12: Machine unlearning results on SVHN with 2,000
unlearned data.

Mode. fide.  Testaccu.  Unle. effi.  Unle. impa.
Before unlearn 96.2 87.4 2.8 2.2
Retrain 95.7 87.2 9.1 43
FF+ND w/o DeDup 96.2 87.4 2.8 2.2
Rela.+ND w/o DeDup 13.6 14.5 85.4 86.2

The consistent effect of duplicated data across different
quantities of unlearned data can be attributed to several fac-
tors. Firstly, duplicated data introduces redundancy into the
training process, which can interfere with the model’s ability
to generalize effectively. Additionally, duplicated data may
lead to overfitting, where the model learns to memorize the
duplicated instances rather than generalize from them.

Federated Unlearning. The results of unlearning 2 clients
on MNIST, as shown in Table 13, align with the outcomes
observed when unlearning 1 client, indicating the adversary’s
success in achieving their objective. This observation un-
derscores that unlearning 2 clients does not incur additional
damage to the global model compared to unlearning 1 client.
This can be attributed to the inherent adaptability of the fed-
erated learning framework. In this framework, unlearning a
client is akin to removing that client from the global model
training process. This adaptability allows the FL system to ef-
fectively cope with the unlearning of multiple clients without
experiencing proportionate harm to the global model.

Table 13: Federated unlearning results on MNIST with 2
unlearned clients.

Model fidelity =~ Test accuracy ~ Unlearn efficacy
Before unlearn 98.44 98.16 1.4
Retrain 96.57 97.70 85.67
GA+CD w/o DeDup 16.52 16.25 96.73
GA+CD with DeDup 97.86 98.48 2.12
GA+ND w/o DeDup 39.11 39.14 91.89
GA+ND with DeDup 44.43 42.96 92.05

Summary. Complex models, such as ResNet, exhibit greater
vulnerability to duplicates compared to our customized mod-
els in machine unlearning. However, in federated unlearning,
complex models demonstrate superior performance over cus-
tomized models when duplicates are present. Furthermore,
the number of unlearned data points or clients has minimal
impact on unlearning outcomes in both machine unlearning
and federated unlearning with the presence of duplicates.

4.4 Robustness Study

In the previous results, we assumed that unlearning would be
denied when duplications are detected. Here, we conduct a
detailed study of the robustness of our methods by proposing
two countermeasures. Note that these countermeasures are de-
scribed within machine unlearning but can be easily extended
to federated and reinforcement unlearning by substituting
‘data’ with ‘model updates’ and ‘environments’, respectively.

* For detected duplicates, the model owner unlearns both the
requested data and their duplicates. Formally, suppose the
adversary requests to unlearn their data Dy, and a portion of
this data is detected by the model owner as duplicates. Let
the detected duplicates be D) C Dy, with the corresponding
original data in the training set denoted as 2,. The model
owner unlearns both D4 and D, to mitigate potential ad-
versarial activities, such as verification challenges.

* For detected duplicates D), the model owner removes the
corresponding original data D, and unlearns the requested
data D4 to mitigate the risk of potential poisoned data.

In addition to evaluating the adopted de-duplication strate-
gies, we also assess the most advanced scenario by assuming
a perfect model owner capable of fully detecting all duplicates.
Furthermore, to simplify the explanation of evaluation results,
we introduce a new metric: Acc. on D,, which represents the
model’s accuracy on the unlearned data D,,.

Machine Unlearning. Tables 14 and 15 present the results
of applying the first countermeasure: unlearning both the re-
quested data and their detected duplicates under the adopted
and perfect de-duplication strategies, respectively. By compar-
ing the two tables, it is evident that the Fisher forgetting and
relabeling methods, even when fine-tuned on the remaining
data, yield very similar results. This indicates that identifying
only a portion of the duplicates and identifying all dupli-
cates produce similar results for these unlearning methods.
This similarity arises because both methods fundamentally
alter the model’s internal representations to diminish the in-
fluence of the unlearned data. The Fisher forgetting method
statistically reduces the impact of specific data points on the
model’s parameters, while the relabeling method disrupts the
model’s learned associations by introducing intentional mis-
labeling. In scenarios where duplicates are either partially
or fully detected, these methods behave similarly in terms
of their capacity to degrade the model’s reliance on dupli-
cated data. Specifically, both the Fisher forgetting method
and the relabeling method with fine-tuning achieve very high
accuracy on the unlearned data, exceeding not only the test
accuracy but also the fidelity of the remaining training data.
This allows the adversary to challenge the model owner’s
success in unlearning during verification. On the other hand,
the relabeling method without fine-tuning achieves low accu-
racy on the unlearned data, supporting unlearning verification.
However, this comes at the significant cost of severely com-
promising the model’s utility, as evidenced by its extremely
low test accuracy.

The key difference between the two tables lies in the per-
formance of the retraining-from-scratch approach. Under the
adopted de-duplication strategy (Table 14), approximately
50% of the duplicates are detected. In this scenario, the re-
training process includes the remaining 50% of undetected
duplicates, resulting in a high accuracy on the unlearned data.



As this accuracy surpasses the test accuracy, the adversary can
still challenge the success of unlearning. Conversely, under
the perfect de-duplication strategy (Table 15), all duplicates
are accurately detected. As a result, the retraining process
excludes all duplicates and their original counterparts, leading
to a low accuracy on the unlearned data comparable to the test
accuracy. In this ideal case, the retraining approach can with-
stand the adversary’s verification challenge while preserving
the model’s utility. However, the retraining approach is rarely
used in practice due to its high computational overhead.

Table 14: Machine unlearning results on CIFAR10 using the
first countermeasure: unlearning both the requested data and
their detected duplicates, under the adopted de-duplication.

Mode. fide.  Test accu. Unle. effi. Acc.on D,
Before unlearn 77.2 69.1 15.9 84.1
Retrain 79.5 68.8 24.1 75.9
FF 77.1 69.0 16.1 83.9
Rela. 13.6 13.2 86.2 13.8
Rela.+FT 732 65.6 24.4 75.6

Table 15: Machine unlearning results on CIFAR10 using the
first countermeasure under the perfect de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 77.2 69.1 15.9 84.1
Retrain 80.3 67.7 30.5 69.5
FF 76.9 69.0 16.1 83.9
Rela. 11.3 11.4 87.5 12.5
Rela.+FT 73.1 65.6 244 75.6

Tables 16 and 17 present the defense results using the
second countermeasure: removing the corresponding original
data of the detected duplicates and unlearning the requested
data, under the adopted and perfect de-duplication strategies,
respectively. The results of all three methods - retraining,
Fisher forgetting, and relabeling (including its fine-tuning
variant) - exhibit a strong resemblance to the corresponding
outcomes from the first countermeasure. This is because both
countermeasures aim to address the influence of duplicates
and their associated originals during the unlearning process.
By either unlearning the duplicates and their originals (first
countermeasure) or removing the originals while unlearning
the requested data (second countermeasure), the processes
effectively target overlapping information embedded within
these datasets. As a result, the model undergoes a similar
degree of influence reduction in both scenarios, leading to
comparable effects on model performance.

Federated Unlearning. Tables 18 and 19 present the results
of applying the first countermeasure: unlearning both the re-
quested model updates and their detected duplicates under
the adopted and perfect de-duplication strategies, respectively.
The results reveal that under both de-duplication strategies, the
gradient ascent method severely degrades the global model’s
performance after unlearning, despite achieving high unlearn-
ing efficacy. This outcome occurs because unlearning both the

Table 16: Machine unlearning results on CIFAR10 using the
second countermeasure: removing the corresponding original
data of the detected duplicates and unlearning the requested
data, under the adopted de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 77.2 69.1 15.9 84.1
Retrain 79.5 68.8 24.1 75.9
FF 77.1 69.0 16.1 83.9
Rela. 13.9 13.7 86.4 13.6
Rela.+FT 72.9 65.4 24.7 75.3

Table 17: Machine unlearning results on CIFAR10 using the
second countermeasure under the perfect de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 77.0 69.1 16.0 84.0
Retrain 80.3 67.8 30.6 69.4
FF 76.9 69.0 16.1 83.9
Rela. 13.8 13.7 86.4 13.6
Rela.+FT 71.0 68.3 22.4 71.6

requested model updates and their detected duplicates erases
a significant portion of the global model’s learned knowledge,
rendering the model unable to retain its utility.

An interesting phenomenon is that the gradient ascent
method performs even worse under the perfect de-duplication
strategy (Table 19) compared to the adopted de-duplication
strategy (Table 18). Specifically, the more duplicates detected
and unlearned, the worse the unlearning outcomes. This can
be attributed to the fact that the perfect de-duplication strategy
identifies and removes all duplicate updates, including their
original counterparts. Consequently, the unlearning process
targets a larger portion of the model’s training history, leading
to over-unlearning. By aggressively reversing the influence of
these updates, the gradient ascent method essentially forgets
the foundational knowledge embedded in the global model,
exacerbating its degradation.

In contrast, the retraining-from-scratch method success-
fully preserves the utility of the global model under both
de-duplication strategies. This is attributable to the inherent
characteristics of the retraining approach, which automatically
removes the requested model updates, discards the existing
global model, and constructs a new global model entirely
from scratch. This process ensures that the influence of dupli-
cated updates is eliminated without compromising the overall
functionality of the retrained model.

Table 18: Federated unlearning results on CIFAR10 using the
first countermeasure under the adopted de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 65.75 62.77 47.44 52.56
Retrain 59.12 60.56 53.45 46.55
GA 26.03 34.89 93.85 6.15

Similar results are observed when employing the second
countermeasure: removing the corresponding original model
updates of the detected duplicates and unlearning the re-
quested updates (Tables 20 and 21). This is due to the fact that



Table 19: Federated unlearning results on CIFAR10 using the
first countermeasure under the perfect de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 65.75 62.77 47.44 52.56
Retrain 58.45 60.04 53.98 46.02
GA 22.24 32.23 96.21 3.79

both countermeasures result in the removal of similar portions
of the model updates. The second countermeasure addition-
ally ensures that the original updates associated with detected
duplicates are also erased, which mirrors the cumulative effect
of unlearning applied in the first countermeasure.

Table 20: Federated unlearning results on CIFAR10 using the
second countermeasure under the adopted de-duplication.

Mode. fide.  Testaccu.  Unle. effi. Acc.on D,
Before unlearn 65.75 62.77 47.44 52.56
Retrain 61.24 60.02 54.89 45.11
GA 23.98 33.02 91.98 8.02

Table 21: Federated unlearning results on CIFAR10 using the
second countermeasure under the perfect de-duplication.

Mode. fide. Test accu. Unle. effi. Acc.on D,
Before unlearn 65.75 62.77 47.44 52.56
Retrain 60.58 59.65 55.44 44.56
GA 21.87 30.41 94.52 5.48

Summary. The adversary can achieve their objectives in both
machine unlearning and federated unlearning in most sce-
narios, even when defense mechanisms and de-duplication
techniques are applied. The retraining approach effectively
resists the adversary in machine unlearning under perfect de-
duplication and in federated unlearning, but this comes at the
significant cost of retraining the entire model from scratch.

4.5 Reinforcement Unlearning Study

Reinforcement Unlearning with DQN. Given the significant
differences between reinforcement unlearning and conven-
tional machine unlearning, their evaluation metrics also take
on distinct meanings. In reinforcement unlearning, model fi-
delity refers to the average reward that the agent receives in
the remaining environments, while test performance denotes
the average reward the agent achieves in a new testing envi-
ronment. Unlearning efficacy quantifies the average reward
that the agent attains in the unlearning environment, whereas
unlearning impact represents the average reward received in
the duplicated victim environment.

Table 22 presents the reinforcement unlearning outcomes
in grid world using the DQN algorithm. Initially, the agent
demonstrates commendable performance across all metrics.
However, upon engaging in the unlearning process, several
interesting phenomena emerge. When the agent undergoes
retraining from scratch, its performance remains largely un-

changed compared to its pre-unlearning state. Notably, it con-
tinues to achieve a high reward in the unlearning environ-
ment, suggesting retained memory of the unlearning environ-
ment’s features and indicating an unsuccessful unlearning
attempt. This persistence in performance can be attributed to
the agent’s tendency to preserve the knowledge previously
learned from the duplicated environment. For the other two
unlearning methods, decremental RL-based and poisoning-
based, they induce the agent’s performance to decline in the
unlearning environment, causing the agent to forget key fea-
tures of the environment. Also, even when the duplicated
victim environment deviates slightly from the unlearning en-
vironment, both decremental RL-based and poisoning-based
methods still yield deteriorating performance in the unlearn-
ing environment, albeit exhibiting improved performance in
the duplicated victim environment compared to the complete
duplication scenario. This performance improvement may be
attributed to the differences introduced in the near-duplicated
environment. These results demonstrate that the adversary can
achieve their objective under the decremental RL-based and
poisoning-based methods, causing the agent to perform poorly
in the victim environment, My, . However, the adversary’s ob-
jective is less achievable under the retraining-from-scratch
approach. Despite this, retraining from scratch leads to high
agent performance in the adversary’s environment, My, giv-
ing the adversary confidence to challenge the model owner
by claiming that M, was not properly unlearned.

Table 22: Reinforcement unlearning results with DQN.

Model fidelity Test Unlearn Unleam

performance  efficacy impact
Before unlearn 53.91 48.35 53.42 53.55
Retrain 52.45 44.13 52.05 51.53
Decremental RL+CD 52.72 43.36 41.38 42.21
Decremental RL+ND 53.66 43.16 43.62 47.55
Poisoning+CD 52.63 44.95 40.25 41.45
Poisoning+ND 53.51 45.32 42.14 48.67

Reinforcement Unlearning with DDPG. To modify the
model architecture, we transition from using the DQN al-
gorithm to the DDPG algorithm. The results are presented
in Table 23. Generally, the trend observed is similar to the
outcomes obtained with the DQN algorithm, as shown in
Table 22. However, there is a slight discrepancy in perfor-
mance between the two algorithms. Specifically, the overall
performance achieved using DDPG is slightly inferior to that
achieved with DQN. This discrepancy may be attributed to
differences in how the two algorithms handle the reinforce-
ment learning task. For instance, the DDPG algorithm relies
on a deterministic policy, which may lead to suboptimal explo-
ration compared to the stochastic policy employed by DQN.

Reinforcement Unlearning with Two Environments Un-
learned. The results of unlearning two environments are de-
picted in Table 24. Notably, the overall performance trend re-
mains consistent with that observed when unlearning a single



Table 23: Reinforcement unlearning results with DDPG.

. Test Unlearn  Unlearn

Wil iy performance efficacy impact
Before unlearn 49.47 45.32 48.94 48.48
Retrain 48.88 42.62 45.42 45.15
Decremental RL+CD 48.26 39.88 41.44 41.24
Decremental RL+ND 49.01 41.56 42.45 46.23
Poisoning+CD 48.12 39.15 41.12 41.52
Poisoning+ND 48.97 42.34 42.45 45.67

environment. This similarity in performance across different
numbers of environments may be attributed to the agent’s
ability to adapt and generalize across environments, allowing
it to retain learned knowledge and strategies, even when faced
with multiple instances of unlearning.

Table 24: Reinforcement unlearning results with two unlearn-
ing environments.

. Test Unlearn  Unlearn

Wlerdl il performance  efficacy impact
Before unlearn 53.24 48.25 52.62 52.88
Retrain 52.23 44.97 52.31 52.21
Decremental RL+CD 52.14 43.16 42.34 42.34
Decremental RL+ND 53.21 44.32 43.57 48.56
Poisoning+CD 52.52 43.25 41.25 42.15
Poisoning+ND 53.22 44.51 43.24 48.76

Reinforcement Unlearning with Defense. Tables 25 and 26
present the unlearning results using DQN and DDPG, respec-
tively, under the first countermeasure: unlearning both the
requested environment and the detected duplicate with the
perfect de-duplication strategy. Under both the decremental
RL-based and poisoning-based unlearning methods, the adver-
sary successfully achieves their objective, causing the agent to
perform poorly in the victim environment (i.e., low unlearning
impact), even with the countermeasure applied. The reason
for this phenomenon is interesting. The first countermeasure
unlearns both the requested environment and the detected
duplicate. Since the detected duplicate is the victim environ-
ment itself, the countermeasure unintentionally assists the
adversary by ensuring that the unlearning process negatively
affects the agent’s performance in the victim environment.
This aligns with the goals of the decremental RL-based and
poisoning-based methods, which are designed to degrade the
agent’s performance in the unlearning environment.

By contrast, the retraining-from-scratch method proves ef-
fective in resisting the adversary when DQN is used to train
the agent (Table 25). This is because retraining starts the learn-
ing process anew, and the victim environment is included in
the retraining process, allowing the agent to regain high per-
formance in the victim environment. However, when DDPG
is used to train the agent, the retraining approach fails to resist
the adversary (Table 26). This failure arises because DDPG’s
training dynamics involve continuous action spaces and policy
optimization, making it more challenging to fully recover the
agent’s capabilities in the victim environment. Additionally,
the high complexity of DDPG’s parameter space may limit the

agent’s ability to fully regain the nuanced knowledge required
for optimal performance in the victim environment. How-
ever, it is important to note that when using DQN, the agent
also performs well in the unlearning environment. While this
demonstrates the model’s generalizability, it may inadver-
tently give the adversary confidence to challenge the success
of unlearning, as the agent’s retained performance could be
interpreted as a failure to fully unlearn the environment.

Table 25: Reinforcement unlearning results with DQN us-
ing the first countermeasure: unlearning both the requested
environment and the detected duplicate under the perfect de-
duplication strategy.

Model fidelity Test Unlearn [_Jnleam

performance efficacy impact
Before unlearn 53.91 48.35 53.42 53.55
Retrain 52.44 44.32 51.05 51.54
Decremental RL 51.85 42.92 42.98 43.12
Poisoning 50.23 43.11 42.35 42.11

Table 26: Reinforcement unlearning results with DDPG us-
ing the first countermeasure under the perfect de-duplication
strategy.

Test Unlearn  Unlearn

Wileabl ittty performance efficacy impact

Before unlearn 53.91 48.35 53.42 53.55
Retrain 48.45 44.50 43.25 42.50
Decremental RL 4791 40.98 40.67 40.78
Poisoning 47.42 40.32 39.78 40.09

Tables 27 and 28, which evaluate the second countermea-
sure: removing the victim environment and unlearning the
requested environment, show results similar to those observed
with the first countermeasure. Under both the decremental RL-
based and poisoning-based unlearning methods, the outcomes
remain largely unaffected by whether the victim environment
is removed. This is because these methods directly target the
unlearning environment and aim to degrade the agent’s perfor-
mance within it. Consequently, the inclusion or exclusion of
the victim environment has little impact on their effectiveness.

For the retraining-from-scratch method, removing the vic-
tim environment excludes it from the retraining process. How-
ever, when DQN is used to train the agent, the retrained model
demonstrates strong generalizability, allowing it to perform
well in the victim environment despite its absence during re-
training. This behavior is akin to the training versus testing
data scenario in standard machine learning, where a well-
trained model can generalize effectively to unseen data. By
contrast, the generalizability is less pronounced with DDPG
due to its reliance on continuous action spaces and policy
optimization, which require nuanced representations of the
training environments for effective performance.

Summary. In reinforcement unlearning, the adversary effec-
tively achieves their goal of degrading the agent’s perfor-
mance in the victim environment using both the decremental
RL-based and poisoning-based methods, even when counter-



Table 27: Reinforcement unlearning results with DQN using
the second countermeasure: removing the victim environment
and unlearning the requested environment under the perfect
de-duplication strategy.

. Test Unlearn ~ Unlearn

Wilerild] iy performance  efficacy impact
Before unlearn 53.91 48.35 53.42 53.55
Retrain 51.89 43.88 50.65 51.22
Decremental RL 52.24 43.42 43.55 43.25
Poisoning 51.49 43.55 42.85 42.62

Table 28: Reinforcement unlearning results with DDPG using
the second countermeasure under the perfect de-duplication
strategy.

Model fidelity Test Unlearn Unleam

performance  efficacy impact
Before unlearn 53.91 48.35 53.42 53.55
Retrain 48.02 44.12 42.92 41.32
Decremental RL 48.42 41.53 41.15 41.33
Poisoning 47.95 41.04 40.01 41.10

measures are applied. The adversary’s goal is less achievable
under the retraining-from-scratch approach, especially when
DQN is used to train the agent. However, the agent continues
to perform well in the adversary’s environment, enabling the
adversary to challenge the model owner’s unlearning success.

5 Related Work

Data Duplication and De-duplication. Current studies pri-
marily center on two objectives: understanding the impact
of data duplication on model performance and addressing
security concerns. For instance, Lee et al. [24] revealed that
applying de-duplication to the training datasets of language
models significantly reduces the risk of generating memorized
text and requires fewer training steps to achieve comparable
model accuracy. Similarly, Carlini et al. [3] and Kandpal et
al. [19] found that data duplication can assist adversaries in
generating sequences from a trained model and identifying
which sequences are memorized from the training set. More-
over, duplication can also be employed to undermine model
security. Rakin et al. [40] utilized adversarial weight dupli-
cation to inject specific DNN weight packages during data
transmission, aiming to hijack the DNN function of the vic-
tim tenant in a cloud computing scenario. However, existing
research primarily focuses on the learning process of models,
with the unlearning process often overlooked.

Machine Unlearning. Current research primarily delves into
the unlearning process and the verification of unlearning re-
sults [51]. For example, Bourtoule et al. [2] proposed SISA
(Sharded, Isolated, Sliced, and Aggregated) training by ran-
domly partitioning the training set into multiple shards and
training a constituent model for each shard. In the event of an
unlearning request, the model provider only needs to retrain
the corresponding shard model. Subsequently, Warnecke et
al. [49] shifted the focus of unlearning research from remov-
ing samples to removing features and labels, employing the

concept of influence functions in their approach. Recently,
Thudi et al. [46] argued that unlearning cannot be proven
solely by training the model on the unlearned data, as done
in [8, 12], but should only be defined at the level of the algo-
rithms used for learning and unlearning.

Recent research has also shed light on vulnerabilities in
machine unlearning, elucidating critical trends such as over-
unlearning and privacy leakage. Over-unlearning occurs when
the unlearning process inadvertently removes more informa-
tion than intended [15], potentially leading to degraded model
performance or unintended data loss. Conversely, privacy leak-
age [16] poses another formidable challenge, wherein adver-
saries can reconstruct sensitive information from unlearned
data by analyzing discrepancies between the output of the
original model and the unlearned model.

Investigations into federated unlearning and reinforcement
unlearning have revealed distinct features. For instance, fed-
erated unlearning focuses more on gradient-level unlearning
and can be conducted to remove an entire client [50]. Rein-
forcement unlearning is carried out at the object-level, aiming
to remove the influence of an entire environment [54].

However, the issue of data duplication has not been consid-
ered during the unlearning process. This paper fills this gap by
exploring the impact of duplicate data on machine unlearning,
providing novel insights into the overlooked aspects of model
refinement and adaptation after training.

Data Poisoning Attacks. Adversarially injecting duplicate
data shares similarities with data poisoning attacks [29,42],
particularly in the aspect of modifying the training dataset.
Nonetheless, these two techniques differ significantly. The
primary objective of data duplication is to introduce redun-
dancy of existing data instances into the training set, either
intentionally or unintentionally. This redundancy, by itself,
is not considered a poison. In some scenarios, duplicate data
is intentionally introduced to improve model performance.
For instance, in image data augmentation, strategies such as
rotation and scaling are often employed to generate additional
images that are near-duplicates of their original counterparts.
In contrast, data poisoning aims to manipulate the training set
by strategically injecting malicious samples, often with the
intent of deceiving the model during training.

6 Conclusion

This paper has provided a comprehensive exploration into the
impact of data duplication on machine unlearning processes,
spanning conventional, federated, and reinforcement learn-
ing. Our findings underscore the importance of considering
duplication in unlearning methodologies, revealing instances
where standard approaches may fail and highlighting the need
for tailored strategies to mitigate the effects of duplication on
model performance and privacy. Future research directions
include delving deeper into potential countermeasures and
the development of advanced de-duplication techniques.



Acknowledgments

This work is partially supported by the ARC projects
LP220200808 and DP230100246. This work is also funded by
the European Health and Digital Executive Agency (HADEA)
within the project “Understanding the individual host response
against Hepatitis D Virus to develop a personalized approach
for the management of hepatitis D” (DSolve, grant agree-
ment number 101057917) and the BMBF with the project
“Repriasentative, synthetische Gesundheitsdaten mit starken
Privatsphérengarantien” (PriSyn, 16KISAO29K).

Ethics Considerations

By highlighting the challenges and complexities associated
with data duplication in machine unlearning, our research
contributes to the development of more secure and robust ma-
chine learning models. We aim to enhance the awareness of
potential vulnerabilities that can arise from improper handling
of duplicated data, especially in scenarios involving adversar-
ial manipulation. Also, in line with ethical research practices,
we have chosen not to publish any specific data embeddings
that could potentially be misused for malicious purposes.

Open Science Statement

We reproduce the state-of-the-art baselines by utilizing their
official repositories on GitHub to ensure the validity of our
comparisons. We will release our code, data duplication tech-
niques, and experimental setups to facilitate further research
in machine unlearning and to enable other researchers to val-
idate our findings, build upon our work, and develop more
effective unlearning and de-duplication strategies.

References

[1] G Aguilar, Y Ling, Y Zhang, B Yao, X Fan, and C Guo.
Knowledge distillation from internal representations. In
Proc. of AAAI pages 7350-7357, 2021.

[2] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-
Choo, H. Jia, A. Travers, B. Zhang, D. Lie, and N. Pa-
pernot. Machine Unlearning. In Proc. of IEEE S & P,
pages 141-159, 2021.

[3] N Carlini and et al. Extracting Training Data from Large
Language Models. In Proc. of USENIX Security, pages
2633-2650, 2021.

[4] A Csiszarik, P Korosi-Szabo, A K. Matszangosz,
G Papp, and D Varga. Similarity and Matching of Neural
Network Representations. In Proc. of NeurlPS, 2021.

[5] A Dhasade, Y Ding, S Guo, A Kermarrec, M De Vos,
and L Wu. QuickDrop: Efficient Federated Unlearning
by Integrated Dataset Distillation, 2023.

[6] M Fang, X Cao, J Jia, and N Gong. Local model poison-
ing attacks to byzantine-robust federated learning. In
Proc. of USENIX Security, pages 1605-1622, 2020.

[7] GDPR. General Data Protection Regulation.
https://gdpr-info.eu, 2016.

[8] A.A. Ginart, M. Y. Guan, G. Valiant, and J. Zou. Making
Al Forget You: Data Deletion in Machine Learning. In
Proc. of NIPS, 2019.

[9] A Golatkar, A Achille, and S Soatto. Eternal sunshine of
the spotless net: Selective forgetting in deep networks.
In Proc. of CVPR, page 9304-9312, 2020.

[10] J Gou, B Yu, S J. Maybank, and D Tao. Knowledge Dis-
tillation: A Survey. International Journal of Computer
Vision, 129:1789-1819, 2021.

[11] L Graves, V Nagisetty, and V Ganesh. Amnesiac Ma-
chine Learning. In Proc. of AAAI pages 11516-11524,
2021.

[12] C. Guo, T. Goldstein, A. Hannun, and L. van der Maaten.
Certified Data Removal from Machine Learning Models.
In Proc. of ICML, 2020.

[13] A Halimi, S Kadhe, A Rawat, and N Baracaldo. Feder-
ated Unlearning: How to Efficiently Erase a Client in
FL? In Proc. of Workshop in ICML, 2022.

[14] K He, X Zhang, S Ren, and J Sun. Deep Residual Learn-
ing for Image Recognition. In Proc. of CVPR, pages
770-778, 2015.

[15] H Hu, S Wang, J Chang, H Zhong, R Sun, S Hao, H Zhu,
and M Xue. A Duty to Forget, a Right to be Assured?
Exposing Vulnerabilities in Machine Unlearning Ser-
vices. In Proc. of NDSS, 2024.

[16] H Hu, S Wang, T Dong, and Minhui Xue. Learn What
You Want to Unlearn: Unlearning Inversion Attacks
against Machine Unlearning. In Proc. of IEEE S & P,
2024.

[17] G Jiand Z Zhu. Knowledge distillation in wide neural
networks: Risk bound, data efficiency and imperfect
teacher. In Proc. of NeurlIPS, pages 1-11, 2020.

[18] J Jia, J Liu, P Ram, Y Yao, G Liu, Y Liu, P Sharma, and
S Liu. Model Sparsity Can Simplify Machine Unlearn-
ing. In Proc. of NeurIPS, pages 1-14, 2023.

[19] N Kandpal, E Wallace, and C Raffel. Deduplicating
Training Data Mitigates Privacy Risks in Language Mod-
els. In Proc. of ICML, 2022.

[20] D P. Kingma and M Welling. An Introduction to Vari-
ational Autoencoders. Foundations and Trends in Ma-
chine Learning, 12(4):307-392, 2019.



[21] M Klabunde, T Schumacher, M Strohmaier, and F Lem-
merich. Similarity of neural network models: A survey
of functional and representational measures, 2023.

[22] A Krizhevsky, V Nair, and G Hinton. The cifar-10
dataset, 2014.

[23] Y LeCun. The mnist database of handwritten digits,
1998.

[24] K Lee, D Ippolito, A Nystrom, C Zhang, D Eck,
C Callison-Burch, and N Carlini. Deduplicating Train-
ing Data Makes Language Models Better. In Proc. of
ACL, pages 8424-8445, 2022.

[25] Y Li, M Zhu, X Yang, Y Jiang, T Wei, and S Xia. Black-
Box Dataset Ownership Verification via Backdoor Wa-
termarking. IEEE Transactions on Information Foren-
sics and Security, 18:2318-2332, 2023.

[26] T P. Lillicrap, J J. Hunt, A Pritzel, N Heess, T Erez,
Y Tassa, D Silver, and D Wierstra. Continuous control
with deep reinforcement learning. In Proc. of ICLR,
pages 1-14, 2016.

[27] G Liu, X Ma, Y Yang, C Wang, and J Liu. Federated
Unlearning. In Proc. of 29th IEEE/ACM IWQoS, pages
1-10, 2021.

[28] Z Liu, Y Jiang, J Shen, M Peng, K Lam, X Yuan, and
X Liu. A Survey on Federated Unlearning: Challenges,
Methods, and Future Directions. ACM Computing Sur-
veys, 57(1):2:1-38, 2024.

[29] N G Marchant, B I P Rubinstein, and S Alfeld. Hard
to Forget: Poisoning Attacks on Certified Machine Un-
learning. In Proc. of AAAI pages 7691-7700, 2022.

[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson,
and B. A. Arcas. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proc. of
AISTATS, 2017.

[31] A M Metelli, M Mutti, and M Restelli. Configurable
markov decision processes. In Proc. of ICML, 2018.

[32] V. Mnih and et al. Human-level control through deep
reinforcement learning. Nature, 518:529-533, 2015.

[33] DMu, Y Wu, Y Chen, Z Lin, C Yu, X Xing, and G Wang.
An In-depth Analysis of Duplicated Linux Kernel Bug
Reports. In Proc. of NDSS, page 3318-3336, 2022.

[34] Y Netzer, T Wang, A Coates, A Bissacco, B Wu, and
A'Y. Ng. Reading Digits in Natural Images with Unsu-
pervised Feature Learning. In Proc. of NIPS Workshop
on Deep Learning and Unsupervised Feature Learning,
pages 1-9, 2011.

[35] H W Ng and S Winkler. A data-driven approach to
cleaning large face datasets. In Proc. of ICIP, pages
343-347, 2014.

[36] L Ouyang and et al. Training language models to follow
instructions with human feedback. In Proc. of NeurIPS,
2022.

[37] C Pan, J Sima, S Prakash, V Rana, and O Milenkovic.
Machine Unlearning of Federated Clusters. In Proc. of
ICLR, 2023.

[38] X Pan, M Zhang, B Sheng, J Zhu, and M Yang. Hidden
Trigger Backdoor Attack on NLP Models via Linguistic
Style Manipulation. In Proc. of USENIX Security, pages
3611-3628, 2022.

[39] K Pragash and J Jayabharathy. A survey on
De—Duplication schemes in cloud servers for secured
data analysis in various applications. Measurement:
Sensors, 100463:1-6:708-721, 2021.

[40] A S Rakin, Y Luo, X Xu, and D Fan. Deep-Dup: An
Adversarial Weight Duplication Attack Framework to
Crush Deep Neural Network in Multi-Tenant FPGA. In
Proc. of USENIX Security, pages 1919-1936, 2021.

[41] M Sandler, A Howard, M Zhu, A Zhmoginov, and
L Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proc. of CVPR, pages 4510-4520, 2018.

[42] S Shan, A N Bhagoji, H Zheng, and B Y. Zhao. Poison
forensics: Traceback of data poisoning attacks in neural
networks. In Proc. of USENIX Security, pages 3575—
3592, 2022.

[43] V Shejwalkar and A Houmansadr. Manipulating the
byzantine: Optimizing model poisoning attacks and de-
fenses for federated learning. In Proc. of NDSS, 2021.

[44] R. Shokri, M. Stronati, C. Song, and Vi. Shmatikov.
Membership Inference Attacks Against Machine Learn-
ing Models. In Proc. of IEEE S & P, pages 3—18, 2017.

[45] K Simonyan and A Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc. of
ICLR, 2015.

[46] A. Thudi, H. Jia, I. Shumailov, and N. Papernot. On
the Necessity of Auditable Algorithmic Definitions for
Machine Unlearning. In Proc. of USENIX Security,
2023.

[47] J Wang, S Guo, X Xie, and H Qi. Federated Unlearning
via Class-Discriminative Pruning. In Proc. of WWW,
page 622-632, 2022.



[48] Z Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image Quality Assessment: From Error Visibility
to Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600-612, 2004.

[49] A. Warnecke, L. Pirch, C. Wressnegger, and K. Rieck.
Machine Unlearning of Features and Labels. In Proc. of
NDSS, 2023.

[50] L Wu, S Guo, J Wang, Z Hong, J Zhang, and Y Ding.
Federated Unlearning: Guarantee the Right of Clients
to Forget. IEEE Network, 36(5):129-135, 2022.

[51] H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu. Machine
Unlearning: A Survey. ACM Computing Surveys, 2023.

[52] L Xue, N Constant, A Roberts, M Kale, R Al-Rfou,
A Siddhant, A Barua, and C Raffel. mt5: A massively
multilingual pre-trained text-to-text transformer. In Proc.
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, page 483-498, 2021.

[53] L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao,
W Zhang, B Cui, and M Yang. Diffusion Models: A
Comprehensive Survey of Methods and Applications.
ACM Computing Surveys, 56(4):105:1-39, 2023.

[54] D Ye, T Zhu, C Zhu, D Wang, K Gao, Z Shi, S Shen,
W Zhou, and M Xue. Reinforcement unlearning. In
Proc. of NDSS, 2025.

[55] Z Zhang, Y Zhou, X Zhao, T Che, and L Lyu. Prompt
Certified Machine Unlearning with Randomized Gradi-
ent Smoothing and Quantization. In Proc. of NeurlPS,
2022.

[56] Y Zhao, J Yang, Y Tao, L Wang, X Li, and D Niyato.
A Survey of Federated Unlearning: A Taxonomy, Chal-
lenges and Future Directions, 2023.

Appendix

1 Proof of Lemma 1 and Theorem 1
Proof of Lemma 1.

df[’,n_drr,n
—y/d(f“ VT (s]s")d
=y | 47 Tl ds—v/d” T (sl )ds
1 [Tl [ )T sl )ds
= [ ) (T (5l) — T (sl )

+y/d"[”

=y [ T OT 6l s

d‘T n( /))‘Tn(s‘sl)ds/

Then, we have:
Al
<y L1 4Tl = T (51 s
ol
ST / TRl = Tl s
+Y/ dy
<VE . m|fr’“(|

) —d ™ (s') T(s1s)ds'|ds

dT7t \/’T“ s|s")dsds’
—T7(-|s) |l +¥lId; ™ —d, []x

Y
= 4% = d " < 7B, rall T7C1s) = T5CIs) s

where the first inequality is established by applying the defini-
tion of the norm; the second inequality is derived through the
subadditivity property of the norm; and the third inequality is
attained by noting that [¢ 77 (s|s")ds = 1. O

Proof of Theorem 1.
1 1 /
T'm_ T _ 7'
Iy I I—Y/sd“ (s)/ﬂn(a\s)r(s,a)dads

1 Y
7ITY/5d§ (s)/ﬂn(a|s)r(s,a)dads

= %_y / (d 7 (5) = (s)) / n(als)r(s,a)dads

dr
<oy

1
< 1—||dT o dTnHlmaanN,qr(s a)
Y

<——=FE

T (I=y?
where the first inequality is obtained by leveraging the prop-
erties of integrals; the second inequality is derived by noting
that B, 47 (s,a) = [ 7(als)r(s,a)da; and the third inequality
is established by applying the conclusion of Lemma 1. [

a
dTTE | n(als)r(s,a)dads

Gl T 1s) = T*([s)|[y max g 27 (s,a),
i N



	Introduction
	Preliminary and Threat Model
	Machine Unlearning
	Federated Unlearning
	Reinforcement Unlearning

	Methodology
	Duplication in Machine Unlearning
	Duplication in Federated Unlearning
	Duplication in Reinforcement Unlearning

	Experiments
	Experimental Setup
	Overall Results
	Machine Unlearning
	Federated Unlearning

	Adaptability Study
	Alternative Model Architectures
	Varying Numbers of Unlearned Data

	Robustness Study
	Reinforcement Unlearning Study

	Related Work
	Conclusion
	Proof of Lemma 1 and Theorem 1

