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Abstract
Large language models (LLMs) have facilitated the genera-

tion of high-quality,cost-effective synthetic data for developing
downstream models and conducting statistical analyses in var-
ious domains. However, the increased reliance on synthetic
data may pose potential negative impacts. Numerous studies
have demonstrated that LLM-generated synthetic data can
perpetuate and even amplify societal biases and stereotypes,
and produce erroneous outputs known as “hallucinations” that
deviate from factual knowledge. In this paper, we aim to audit
artifacts, such as classifiers, generators, or statistical plots,
to identify those trained on or derived from synthetic data
and raise user awareness, thereby reducing unexpected con-
sequences and risks in downstream applications. To this end,
we take the first step to introduce synthetic artifact auditing to
assess whether a given artifact is derived from LLM-generated
synthetic data. We then propose an auditing framework with
three methods including metric-based auditing, tuning-based
auditing, and classification-based auditing. These methods
operate without requiring the artifact owner to disclose propri-
etary training details. We evaluate our auditing framework on
three text classification tasks, two text summarization tasks,
and two data visualization tasks across three training scenarios.
Our evaluation demonstrates the effectiveness of all proposed
auditing methods across all these tasks. For instance, black-
box metric-based auditing can achieve an average accuracy
of 0.868±0.071 for auditing classifiers and 0.880±0.052 for
auditing generators using only 200 random queries across
three scenarios. We hope our research will enhance model
transparency and regulatory compliance, ensuring the ethical
and responsible use of synthetic data.1

1 Introduction

Large language models (LLMs) are revolutionizing data acqui-
sition for natural language processing (NLP) tasks. Collecting
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Figure 1: Overview of the synthetic artifact auditing. The
auditing targets are: classifiers (Section 4), generators (Sec-
tion 5), and statistical plots (Section 6).

high-quality data has always been a challenge due to its labor-
intensive and time-consuming nature. With the advent of the
LLM era, the explosive growth in training scales has rapidly in-
creased the corresponding demand for data, further escalating
these challenges. LLMs, known for their ability to generate
high-quality data cost-effectively, have spurred a surge in
leveraging them for synthetic data generation [27, 35, 99].

This approach allows for tailoring training data, espe-
cially for low-resource NLP tasks like medicine and health-
care [71,81,82]. It can also strategically enhance training data
by rebalancing under-represented classes [25, 39], and miti-
gate the privacy risks associated with privacy-concerned data
sharing and analysis [15,39,41]. Building on these benefits,
synthetic data has rapidly gained widespread adoption across
academia and industry. It facilitates developing NLP models
and conducting statistical analyses across various domains,
from healthcare [16,71,81,86] and law [54] to education [65]
and scientific discovery [36,98] and marketing [58]. Frame-
works such as Microsoft’s AgentInstruct [63] and Hazy’s
synthetic data generator (acquired by SAS) [7] are already
being actively used in real-world settings. In practice, Mi-
crosoft post-trains Mistral-7b using synthetic data, achieving
notable performance gains on multiple benchmarks [63], while
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OpenAI employs synthetic data generated by o1-preview to
fine-tune Canvas [3].

The increasing reliance on LLMs for generating synthetic
data, however, raises significant concerns regarding potential
adverse impacts [26]. Numerous studies have demonstrated
that LLMs inherently perpetuate or even amplify societal
biases and stereotypes related to race, sex, and culture in the
uncurated training data, neglecting perspectives from other
regions of the world [29,47,91]. LLMs can further produce
erroneous outputs known as “hallucinations,” generating fic-
tional text misaligned with factual knowledge [44,59,74]. With
the persistent engagement of LLM-generated synthetic data
in downstream training and analysis processes, the dissemina-
tion of exaggerated biases and inaccurate information could
significantly undermine the reliability of decision-making pro-
cesses and erode user trust. Although various studies aim to
detect and mitigate bias and hallucination, existing approaches
predominantly depend on the self-correction mechanisms of
models [56] and external classifiers [90, 92]. Both strategies
exhibit limitations in their correction and detection capabil-
ities, making them insufficient to fully eliminate bias and
hallucination. Additionally, concerns have also arisen over
the potential unauthorized use of LLM-generated data, with
reports [1] indicating instances where competitors leverage
such data to develop competing products in violation of usage
terms [10, 12]. Worse yet, given the rapid development of
LLMs, it is highly conceivable that unforeseen issues may
emerge in the future.

These issues highlight the necessity for a deeper investiga-
tion to determine whether LLM-generated synthetic data was
involved in the construction processes of a given artifact. In re-
sponse, this paper aims to audit artifacts to label those trained
on or derived from synthetic data and raise users’ awareness,
thereby reducing unexpected consequences and risks in down-
stream applications. We first introduce the concept of synthetic
artifact auditing and frame it as a binary classification task.
Artifact owners typically only reveal the trained models and
the analysis results to their users, while keeping the details of
training data confidential. Considering that, we propose an
auditing framework with three methods: metric-based audit-
ing, tuning-based auditing, and classification-based auditing.
These methods obviate the need for disclosure of proprietary
training specifics. We currently focus on three types of artifacts
that commonly appear in real-world applications: classifiers,
generators, and statistical plots (Figure 1).

We evaluate our auditing framework on three text classi-
fication tasks, two text summarization tasks, and two data
visualization tasks with four LLMs across three scenarios.
In general, it can achieve good auditing performance across
all tasks and scenarios. With black-box access and limited
resources, it achieves an average accuracy of 0.868±0.071 for
auditing classifiers and 0.880±0.052 for auditing generators.
Meanwhile, it can also achieve 0.966±0.003 average accuracy
for auditing statistical plots. We attribute the high performance

to the fact that these downstream synthetic artifacts can learn
unique patterns from synthetic data and capture the relation-
ships between them, the target labels, and the reference texts.
In this manner, for example, synthetic classifiers trained on
synthetic data exhibit more confidence than classifiers trained
on real data in making predictions for synthetic data, thereby
aiding in distinguishing between the two.
Contributions. We summarize our contributions as follows:

• We introduce the concept of synthetic artifact auditing.
Given an artifact, it determines whether it is trained on or
derived from LLM-generated synthetic data.

• We propose an auditing framework with three meth-
ods that require no disclosure of proprietary training
specifics: metric-based auditing, tuning-based auditing, and
classification-based auditing. This framework is extendable,
currently supporting auditing for classifiers, generators, and
statistical plots.

• We evaluate our auditing framework on three text classifi-
cation tasks, two text summarization tasks, and two data
visualization tasks across three training scenarios. The
evaluation demonstrates the effectiveness of all proposed
auditing methods across all these tasks.

Impact. Our work has a real-world impact, particularly in
promoting the responsible use of synthetic data. Regulatory
and governmental bodies are increasingly prioritizing data
governance and transparency in the development of AI sys-
tems. For instance, the UK’s ICO requires documentation
of synthetic data creation and its properties [14]. Similarly,
California recently passed Law AB 2013 [9], mandating the
disclosure of training datasets, including the use of synthetic
data [2]. Our framework provides a practical means for third
parties to audit artifacts without requiring the disclosure of
proprietary training details by artifact owners. This supports
compliance with data governance and transparency require-
ments, enhances alignment with regulatory and legal standards,
and facilitates responsible and accountable AI practices. We
will open-source our code to facilitate further research.

2 Synthetic Data Generation

Synthetic data generation [19] provides a variable solution
to scenarios where real data is limited due to high costs [72],
privacy constraints [40], and biased distributions [46]. The
fundamental objective of synthetic data generation is to pro-
duce data that is both plausible and representative of the
underlying distribution observed in real data. The evolution
of synthetic data generation models has been closely tied to
advancements in machine learning research. Early approaches
predominantly employed statistical methods such as (hidden)
Markov chains [83], and n-grams [22],which excel at capturing
token co-occurrences but struggle to capture nuanced seman-
tic meanings, resulting in lower-quality generated data. With



the advent of Deep Learning [33], synthetic data generation
models adopt deep sequential models, such as RNN [17] and
(Variational) Autoencoder [43], and more recent GANs [94].
These models, trained on larger datasets, can better compre-
hend token meanings and subsequently generate more realistic
data. The introduction of Transformer architecture [85] has
further revolutionized these efforts by utilizing attention mech-
anisms to model token relationships. Recent advancements in
large language models (LLMs) lead to a surge in synthetic data
generation for NLP tasks, such as time series [97], text [51],
and code [53]).

3 Problem Statement

Auditing Scenario. We consider an auditing scenario in
which auditors aim to determine whether given artifacts, such
as classifiers, generators, and statistical plots, are trained on
or derived from LLM-generated synthetic data. An overview
of this auditing scenario is shown in Figure 1. Developers
prompt LLMs to create synthetic datasets tailored to specific
NLP tasks and then use the synthetic data or a combination of
real and synthetic data to train models and conduct statistical
analyses, such as data visualization. The auditor can be third-
party regulatory agencies, downstream users, or LLM service
providers investigating whether certain artifacts are derived
from synthetic data.
Auditor’s Capability. We consider capabilities as follows:

• Access to the target artifact. Auditors possess either black-
box or white-box access to the auditing target. Black-box
access allows querying the model via an API with input
data and receiving outputs. In contrast, white-box access
grants more knowledge including model architecture and
parameters. These capabilities align with previous stud-
ies [42, 79, 80, 88, 89]. For artifacts like statistical plots,
auditors have direct access to the targets.

• Access to a reference real dataset. Auditors leverage their
understanding of the target artifact, including its functions
and input data, to independently gather a reference real
dataset and perform the same task. We primarily assume that
the reference real dataset and the target real dataset originate
from a similar distribution. In Section 8, we demonstrate
our auditing methods still work well when they come from
different distributions.

• Access to a synthetic dataset. Auditors can instruct LLMs
to generate a synthetic dataset tailored to the functions of
auditing targets. We primarily assume that the reference syn-
thetic dataset and the target synthetic dataset are generated
from the same source LLM. In Section 8, we demonstrate
that our auditing methods still work well when they can
come from different source LLMs.

We stress that the auditor has no direct access to the training
datasets used to develop the target artifact. They also do not
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Figure 2: Overview of the metric-based auditing.

have access to certain training hyperparameters (e.g., epochs)
considered proprietary to the artifact owners. Furthermore,
the reference real data collected by auditors remains entirely
independent from the target artifact. Our experimental setup
reflects the above settings (see Section 4.3 for details).
Synthetic Artifact Auditing. Formally, we formulate our
auditing as a binary clarification problem. That is, given a
target artifact Atarget and external knowledge K of an auditor,
synthetic artifact auditing can be defined as follows:

Atarget,K → {0,1}, (1)

where 1 denotes that synthetic data was involved in the tar-
get classifiers’ and generators’ training procedure or used to
generate target statistical plots, and 0 indicates otherwise.
Note. Building models from scratch for NLP tasks has been
uncommon in recent years. Instead, developers typically fine-
tune pre-trained language models (PLMs) for specific tasks.
Therefore, we consider that our artifacts are fine-tuned from
PLMs, such as DistilBERT [76] and BART [49]. Moreover, we
do not consider the scenario where auditing targets are LLMs
for the following reasons. First, in real-world applications,
efficiency, cost-effectiveness, and customizability are essen-
tial. Smaller and less complex models are not only easier to
train and deploy but also enable faster inference. For example,
using an expensive LLM for sentiment analysis may not be
financially sustainable. Therefore, the mainstream approach
remains to fine-tune much smaller PLMs tailored to specific
downstream tasks [35, 39, 45, 64, 65]. Second, recent stud-
ies [54, 81] show that these fine-tuned PLMs achieve overall
even better performance in domain-specific tasks.

4 Classifier Auditing

4.1 Metric-Based Auditing
Intuition. We first consider the case where the auditors only
have black-box access to the target classifier Ctarget and query
it with input texts to obtain outputs. Recent studies [38, 55]
show that LLM-generated synthetic data has unique lexical,
structural, and semantic features that distinguish it from real
data. Classifiers trained with such data may likely learn to
recognize and leverage these distinctive features to predict



labels effectively. Therefore, we hypothesize that classifiers
trained with more synthetic data, referred to as synthetic
classifiers, tend to be more confident when predicting labels
for synthetic input texts and less confident with real input texts
compared to real classifiers. Conversely, classifiers trained
predominantly on real data may exhibit lower confidence when
predicting labels for synthetic inputs and higher confidence
with real input texts, as these real classifiers have not “seen”
these distinctive synthetic features during training.
Methodology. Building upon the hypothesis of these behavior
disparities, we develop a metrics-based auditing approach.
It involves designing a query set Q = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, where
𝑥𝑖 represents the input text and 𝑦𝑖 denotes the target label,
and evaluating the classifier’s outputs for this query set via
a performance metric to conduct auditing. We present the
overview of our metric-based auditing method in Figure 2.
The auditor first queries the target classifier with Q, either Qsyn
consisting of synthetic data or Qreal consisting of real data, and
obtains outputs. The auditor then computes the values of the
performance metric for all data in the query set and compares
the average values of those metrics with a certain threshold
to determine whether the target classifier Ctarget is a synthetic
classifier or a real classifier. More formally, we define the
metric-based auditing using Qsyn and Qreal as follows:

I𝑐𝑜𝑛 𝑓 (Ctarget,Qsyn) = 1{
1
𝑛

𝑛∑︁
𝑖=1

Ctarget (𝑥𝑖)𝑦𝑖 > 𝜏}, (2)

I𝑐𝑜𝑛 𝑓 (Ctarget,Qreal) = 1{
1
𝑛

𝑛∑︁
𝑖=1

Ctarget (𝑥𝑖)𝑦𝑖 < 𝜏}. (3)

We leverage the average confidence score of the query set
as an example of the performance metric. We can also se-
lect other performance metrics, such as the average of en-
tropy values and accuracy. The corresponding definitions
are shown in Appendix A. The auditor empirically deter-
mines the threshold 𝜏 based on their reference classifiers.
Specifically, the auditor (1) trains synthetic reference clas-
sifiers (Δ(Csyn

ref ) ={Csyn
ref,1,C

syn
ref,2, . . . ,C

syn
ref,𝑘}) using a mix of

synthetic and real data, and real reference classifiers (Δ(Creal
ref )

={Creal
ref,1,C

real
ref,2, . . . ,C

real
ref,𝑘}) exclusively using real data; (2) then

leverages the query set (Qsyn/Qreal) to obtain the reference
classifiers’ outputs and computes performance metric values;
(3) establishes an empirical threshold value that achieves the
highest accuracy in distinguishing between C𝑠𝑦𝑛

ref and C𝑟𝑒𝑎𝑙
ref .

The auditor inevitably needs to obtain training data for these
reference classifiers. Since the auditor understands the exact
downstream task that the target classifier performs, in turn, for
C𝑟𝑒𝑎𝑙

ref , the auditor can independently source corresponding
training data (e.g., from the Web). For C𝑠𝑦𝑛

ref , the auditor can
prompt LLMs with a task description to generate correspond-
ing synthetic data. Note that the proportion of synthetic data
in the training dataset of different C𝑠𝑦𝑛

ref can vary. This allows

Reference Synthetic Classifiers

Reference Real Classifiers

…

…

Target Classifier

Target Classifier
Features

Synthetic Data Invovled?

Output

Output

Tuning 
Queries

Meta
Classifier

Reference Real
Classifier Features

Reference Synthetic
Classifier Features

Figure 3: Overview of the tuning-based auditing.

the C𝑠𝑦𝑛

ref to be trained solely on synthetic data or on a mix of
synthetic and real data with random proportions.

4.2 Tuning-Based Auditing
Intuition. When the auditor has white-box access to the audit
target, they gain full visibility into the model’s architecture
and parameters. A common approach in such scenarios, as
suggested by prior research [30], may utilize a flattened vector
of all parameters as input and train a binary classifier to conduct
the audit. However, our empirical analysis demonstrates that
this approach yields results close to random guessing. Besides
the knowledge of the model’s architecture and parameters,
white-box access further exempts the auditing target from
being confined to processing generic text inputs, i.e., discrete
tokens, enabling it to accept continuous embeddings as input.
This flexibility allows us to iteratively refine an input query set
from a continuous optimization space, thereby yielding more
precise outputs to effectively identify behavior discrepancies
between synthetic and real targets.
Methodology. We present the overview of tuning-based
auditing in Figure 3. Similar to metric-based auditing, the
auditor first trains a small set of synthetic reference classifiers
Δ(Csyn

ref ) and real reference classifiers Δ(Creal
ref ). Given these

reference classifiers, the auditor leverages a simple gradient-
based approach where they directly optimize the query set Q𝜙

parameterized by 𝜙 and a meta-classifier M𝜔1 parametrized
by𝜔1 via backpropagation. The meta-classifier uses the output
probabilities (posteriors) from a given classifier to predict its
assigned label. More formally, the auditor aims to maximize the
likelihood of the correct label 𝑦 ∈ Y, i.e., indicating whether it
is a synthetic or real classifier, for the corresponding reference
classifiers as follows:

max
𝜙;𝜔1

𝑃𝜔1;𝜃 ;𝜙 (Y|M𝜔1 (C𝑟𝑒 𝑓 , 𝜃 (Q𝜙))), (4)

where the parameters 𝜙 of the query set and the parameters
𝜔1 of the meta-classifier are learned via back-propagation and
the parameters 𝜃 of the reference classifiers are frozen. At
inference time, the auditor queries the target classifier with
learned Q𝜙 , and then feeds the outputs into the trained meta-
classifier M𝜔1 to make the predictions. The learned Q𝜙 is a
format of embedding vectors, the auditor thereby leverages



white-box access to the target classifier to feed the embeddings
into it.

4.3 Target and Reference Classifier Setup
We mainly consider three text classification tasks: sentiment
analysis on the IMDB dataset [8] (TC1 ); topic classification on
the AG’s news (abbreviated as AG) dataset [96] (TC2); spam
detection on the Enron-Spam dataset [60] (TC3). We provide
task details in Appendix B.1. Our overall setup for target and
reference classifiers (see Figure 4) contains three primary
steps. We provide a brief overview of their main objectives
below, with further details elaborated in subsequent sections.

• Data Splitting. We prepare the real dataset and the auxil-
iary dataset. We ensure that both datasets remain mutually
exclusive to maintain the integrity and objectivity of the
evaluation process.

• Synthetic Data Generation. We utilize four representative
large language models (LLMs) as sources, alongside two
prompting strategies, to generate synthetic data. This guar-
antees diversity and enhances the quality of the synthetic
data produced.

• Training Scenarios. We mainly establish three distinct
training data composition scenarios for the synthetic clas-
sifier. It is designed to simulate the training process of the
auditing target, forming the core setup of our evaluation.

4.3.1 Data Split

As illustrated in Figure 4, we first partition the whole dataset
evenly into two disjoint subsets: the target dataset Dtarget and
reference dataset Dref. Dtarget is further divided evenly into
two disjoint splits as the target real datasetDreal

target and the target
auxiliary dataset Daux

target. We reserve a fixed 1,000 samples in
Dref as the testing set Dtest, which is exclusively used to assess
classifier performance. The remaining samples in Dref are
further evenly divided into two disjoint subsets Dreal

ref andDaux
ref .

We later randomly sample instances from Dtest to construct
Qreal and use them as reference samples for constructing Qsyn
in a paraphrasing prompt strategy. All text classification tasks
follow the above process for data split, where the specific
details for each task are shown in Appendix B.2.

4.3.2 Synthetic Data Generation

Sources. Four representative LLMs are employed
as the synthetic data generation sources, including
gpt-3.5-turbo-1106 (GPT-3.5 Turbo) [5], gpt-4-0613
(GPT-4) [6], Mistral-7B-Instruct-v0.2 (Mistral) [11],
and chatglm3-6b (ChatGLM3) [4] as the synthetic data
generation sources.
Strategies. As illustrated in Figure 4, we leverage Daux

target,
Daux

ref , and a random subset of Dtest to generate the target
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Figure 4: Overview of target/reference classifier setup.

synthetic dataset Dsyn
target, reference synthetic dataset Dsyn

ref , and
synthetic query set Qsyn. All four LLMs are utilized in this
process. Specifically, with Daux

target, we construct four synthetic
datasets Dsyn

target containing synthetic data from GPT-3.5, GPT-
4, Mistral, and ChatGLM3, respectively. To accommodate
different task requirements, we employ two representative
prompting strategies to generate synthetic data [51, 55, 64].

• Zero-shot. We provide LLMs with labels (and additional
information) and instruct them to generate content from
scratch.

• Paraphrasing. We provide the label along with an entire
input text as a reference to the LLMs and instruct them to
generate new content based on the reference input.

For TC1 , we adopt the zero-shot strategy by providing movie
names andoutlines to ensure the quality of the generated review.
The goal is to achieve comparable performance between
synthetic and real classifiers. For TC2 and TC3 , the zero-shot
strategy cannot yield high-quality news articles and email
messages. We thus opt for the paraphrasing strategy. Note that
we do not assume that the auditor knows the prompts used
to construct the target synthetic dataset Dsyn

target. We therefore
use different prompts to construct Qsyn and Dsyn

ref from those
used for Dsyn

target across all tasks. We experiment with prompts
for synthetic data generation to ensure that synthetic artifacts
achieve stable performance, ensuring the reliability of our
evaluation. Further details on synthetic data generation are
available in Appendix B.3.

4.3.3 Training Scenarios

Training Data for Synthetic Classifier. The use of syn-
thetic data in real-world applications falls into two primary
categories: (1) augmenting training data in low-resource sce-
narios [24, 39, 48, 64], and (2) generating synthetic datasets
from scratch to support model training [31, 45, 51, 81]. Stem-
ming from these applications, we consider the following three
scenarios in our experimental setup:
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Figure 5: Metric-based auditing performance for target classi-
fiers fine-tuned on pre-trained DistilBERT with varying query
budgets of Qsyn {10,20,50,100,200} for TC3 in (a) S1 and (b)
S2. The source LLM is GPT-3.5.

• S1: Training exclusively on synthetic data (100%) generated
from a single LLM.

• S2: Training on a combination of real and synthetic data
from a single LLM. In evaluation, we vary the proportion
of synthetic data from 10% to 100% in increments of 10%.

• S3: Training on a mix of real and synthetic data from multiple
LLMs (all four LLMs). The proportions of synthetic data
and the sources of synthetic data from different LLMs are
randomized.

Training Data for Real Classifier. Reference/target real
classifiers are exclusively trained on real data. C𝑟𝑒𝑎𝑙

target is trained
solely on Dreal

target, and C𝑟𝑒𝑎𝑙
ref is trained solely on Dreal

ref .
We consider all three scenarios for training synthetic classifiers
in each task and include more details of the training scenarios
in Appendix B.4.
Target/Reference Classifiers. We utilize DistilBERT [76] as
the base classifier. A linear classification layer is tuned on top
of these pre-trained models to predict target labels for various
tasks. Our fine-tuning process employs cross-entropy loss
and the Adam optimizer with a learning rate set to 2e-5. We
fine-tune the classifiers of TC1 for 5 epochs and those of TC2

and TC3 for 3 epochs. We develop 50 target synthetic classifiers
based on each LLM in both S1 and S2. These target classifiers
are used to evaluate the auditing performance. Overall, we
train a total of 50 target real classifiers, 200 target synthetic
classifiers in S1, 200 target synthetic classifiers in S2, and
50 target synthetic classifiers in S3 for each task. We also
train the same number of reference classifiers to determine the
threshold values and to train the meta-classifier. Both target
and reference classifier sets are balanced in terms of class
distribution.
Target Classifier Performance. The primary metric used to
assess classifier performance (i.e., utility) is accuracy on the
testing dataset. We ensure that synthetic classifiers achieve
performance comparable to real classifiers.

Table 1: Average metric-based auditing performance for target
classifiers fine-tuned on pre-trained DistilBERT, enabled by
three different metrics and different query budgets, across
three tasks in S1 and S2.

|Q| Query Type Accuracy Confidence Entropy

10 Qsyn 0.617±0.116 0.777±0.139 0.714±0.126
Qreal 0.624±0.120 0.751±0.142 0.766±0.094

200 Qsyn 0.765±0.072 0.870±0.070 0.782±0.075
Qreal 0.721±0.098 0.735±0.120 0.796±0.065

4.4 Auditing Setup
Auditing Model. The metric-based auditing calculates a per-
formance metric value for each classifier and uses a reference
classifier set to establish a threshold value for auditing targets.
We consider accuracy (Accuracy), average confidence scores
(Confidence), and average entropy values (Entropy) on the
query set (Qsyn/Qreal) as the performance metrics to enable
metric-based auditing. For tuning-based auditing, a meta-
classifier is trained to conduct the auditing, which is a 3-layer
MLP model with 32 neurons in the hidden layer. It directly
takes the outputs (posteriors) from the classifiers as input.
We use the cross-entropy loss and optimize it with the Adam
optimizer with a learning rate of 1e-3. The meta-classifier is
trained on the reference classifier set for 50 epochs.
Auditing Evaluation Protocols. We ensure balanced class
distributions in both the target and reference classifiers. Conse-
quently, auditing accuracy on the target classifiers is employed
as the primary metric. The target classifiers include 50 tar-
get real classifiers and 50 target synthetic classifiers for each
scenario. In S1, the target synthetic classifiers have a 100%
synthetic proportion. In S2, each of the ten different synthetic
proportions corresponds to five classifiers. In S3, the target
synthetic classifiers have a random synthetic proportion. Each
experiment is run five times with different seeds and evaluated
on all 100 target classifiers. The final average score is reported
alongside its corresponding error bar.

4.5 Preliminary Investigation
In this section, we investigate the appropriate query budget,
performance metric, and the number of reference classifiers
to enable metric-based auditing with Qsyn (Section 4.5.1) and
Qreal (Section 4.5.2) and tuning-based auditing (Section 4.5.3).

4.5.1 Metric-Based Auditing with Qsyn

We conduct this investigation in S1 and S2. We initially
leverage 10 reference real and 10 reference synthetic classifiers
for each scenario. In S1, the synthetic classifiers have a 100%
synthetic proportion. In S2, each synthetic classifier has one of
ten different synthetic proportions. We show the metric-based
auditing performance with varying query budgets in Figure 5.
The varying query budgets are described as different numbers



50 100 150 200
Number of Queries

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cc
ur

ac
y

Accuracy

Confidence

Entropy

(a) S1

50 100 150 200
Number of Queries

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cc
ur

ac
y

Accuracy

Confidence

Entropy

(b) S2

Figure 6: Metric-based auditing performance for target classi-
fiers fine-tuned on DistilBERT with varying query budgets of
Qreal {10,20,50,100,200} for TC3 . The source is GPT-3.5.

of queries, and we randomly select synthetic queries each time.
We find that in both scenarios, more synthetic queries help
determine a better threshold, resulting in improved auditing
performance. This is reflected not only in higher accuracy
but also in a smaller standard deviation. For example, the
metric-based auditing using Confidence achieves only 0.624±
0.164 with 10 synthetic queries in S2, but it increases to
0.924± 0.046, a significant margin of increase of 0.3, with
200 queries. Meanwhile, we observe that conducting metric-
based auditing with different metrics also leads to varying
auditing performance. To determine which metric yields
better auditing performance, we average all results conducted
with 200 synthetic queries across three tasks in S1 and S2. As
reported in Table 1, the average confidence scores (Confidence)
enable the best auditing performance with higher accuracy
and lower standard deviation when using Qsyn. We speculate
that this is because synthetic data is generated based on their
labels as conditions, resulting in features that represent the
target class and a clear decision boundary between input texts
of different classes. In Figure 15, it is also demonstrated that
synthetic data has clearer boundaries compared to real data,
and we defer more discussions in Section 6.3. Consequently,
both synthetic and real classifiers tend to make the right
predictions for synthetic data, and thus it is difficult to audit
based on the accuracy of Qsyn. Furthermore, since synthetic
classifiers have involved more synthetic data featuring similar
characteristics during training, they display higher confidence,
thereby enabling them to be distinguished from real classifiers.
Meanwhile, in Appendix C, we demonstrate that 20 reference
classifiers are sufficient to launch a successful metric-based
auditing withQsyn, and the benefit of more reference classifiers
is minimal. Similar conclusions can be drawn from other
source LLMs and tasks.

4.5.2 Metric-Based Auditing with Qreal

We follow the same evaluation setup and show the auditing
performance with varying query budgets in Figure 6. The
varying query budgets are described as different numbers of
queries, and we randomly select real queries each time. We
find that as the query budget for Qreal increases, the auditing

20 40 60 80 100
Number of Reference Classfiers

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cc
ur

ac
y

GPT-3.5

GPT-4

Mistral

ChatGLM3

(a) S1

20 40 60 80 100
Number of Reference Classfiers

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cc
ur

ac
y

GPT-3.5

GPT-4

Mistral

ChatGLM3

(b) S2

Figure 7: Tuning-based auditing performance for target clas-
sifiers fine-tuned on DistilBERT with varying numbers of
reference classifiers {20,60,100} for TC3 in (a) S1 and (b) S2.

performance is relatively stable. For example, metric-based
auditing using Entropy achieves only 0.892±0.126 with 10
real queries in S1, and it increases to 0.920±0.091, a small
margin of only 0.028, with 200 queries. It might be because
real data, carefully handcrafted by humans, has more stable
text quality compared to synthetic data, enabling a consid-
erable auditing performance even with |Qreal | = 10 in some
cases. Meanwhile, we can observe the varying auditing per-
formance using different metrics. As illustrated in Table 1,
we also average all auditing results conducted with 200 real
queries. Metric-based auditing using Entropy achieves the
best auditing performance, i.e., 0.766±0.094 on average with
10 queries and 0.796±0.065 on average with 200 queries. In
addition, we observe that, with Confidence as the metric, real
queries not only underperform compared to using Entropy,
but their performance also deteriorates with the growth of
the query budget. We attribute it to the less distinct decision
boundary among real input from different classes (Figure 15).
This results in both synthetic and real classifiers displaying
less decisive confidence, thereby making predictions more
difficult. Consequently, it is challenging to establish a thresh-
old for synthetic artifact auditing based on Confidence which
is a metric focused on a single class and leverages Accuracy.
Alternatively, real queries can rely on Entropy, which mea-
sures the uncertainty across the entire probability distribution
of all classes. This approach can lead to superior auditing
performance. Similar to using Qsyn, 20 reference classifiers
are also sufficient to launch auditing. Similar conclusions can
be drawn on other LLMs and tasks.

4.5.3 Tuning-Based Auditing

With white-box access, we adopt a simple gradient-based
approach to learn a query set Q𝜙 , i.e., embedding vectors, to
feed into the target classifier. In this section, we determine
the appropriate number of tuned queries and reference classi-
fiers to enable tuning-based auditing. We present the auditing
performance with varying numbers of reference classifiers
in Figure 7. The size of the tuned query set is five, i.e., |Q𝜙 | = 5,
since we demonstrate that this is sufficient to launch the tuning-
based auditing. We maintain the numbers of reference real and
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Figure 8: Auditing performance for target classifiers fine-tuned on the pre-trained DistilBERT model using metric-based auditing
with Qreal and Qsyn and tuning-based auditing with Q𝜙 across three tasks and four LLMs in S1.
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Figure 9: Auditing performance for target classifiers fine-tuned on the pre-trained DistilBERT model using metric-based auditing
with Qreal and Qsyn and tuning-based auditing with Q𝜙 across three tasks and four LLMs in S2.

synthetic classifiers the same, and the synthetic proportions
of synthetic classifiers are the same as those in Section 4.5.1.
We observe that tuning-based auditing achieves strong perfor-
mance. For example, in S1, the tuning-based auditing shows
superior auditing performance, i.e., 1.000±0.000, even with
only 20 reference classifiers. Meanwhile, in S2, we observe
that more reference classifiers (e.g., 100 reference classifiers),
meaning a larger training dataset lead to better tuning-based
auditing performance. Similar conclusions can be drawn on
other LLMs and tasks.

4.6 Main Evaluation
In this section, we evaluate three tasks and three scenarios.
We set up the auditing method based on the results in previous
sections. For metric-based auditing (Qsyn and Qreal), we set
the query budget to 200. The performance metrics used
are Confidence for Qsyn and Entropy for Qreal. The reference
classifiers include 10 reference real classifiers and 10 reference
synthetic classifiers for each scenario. In S1, the reference
synthetic classifiers have a 100% synthetic proportion. In S2,
we select a reference synthetic classifier for each of the ten
different proportions. In S3, each reference synthetic classifier
has a random proportion. For tuning-based auditing (Q𝜙), we
learn five tuned queries, and the number of reference classifiers
is set to 100, including 50 real and 50 synthetic classifiers for
each scenario. The synthetic proportions in S1 and S3 are the
same as those for the metric-based auditing. In S2, we select
five reference synthetic classifiers for each of the ten different
proportions.
Cost. We mainly consider the cost of training reference

classifiers. Training a reference classifier for TC1 , TC2 , and
TC3 costs 88.28 seconds, 65.16 seconds, and 69.45 seconds,
respectively, across three training scenarios on average. The
corresponding costs of metric-based auditing (20 reference
classifiers) for conducting training on a Google GCP A100 are
$1.82, $1.34, and $1.44, respectively, while those of tuning-
based auditing (100 reference classifiers) are $9.10, $6.70,
and $7.20, respectively.
Auditing Performance in S1. As shown in Figure 8, we
observe that, in general, all proposed methods are effective
across three tasks and four LLMs in S1. Especially for tuning-
based auditing, it can achieve higher accuracy and a smaller
standard deviation compared to metric-based auditing. For
example, it achieves an average accuracy of 0.989±0.009 in
S1. Metric-auditing using Qreal, with an accuracy of 0.932±
0.069, follows behind yet outperforms Qsyn, which achieves
an accuracy of 0.882±0.077.
Auditing Performance in S2. As illustrated in Figure 9, we
then report the auditing performance with the same evaluation
setting in S2. Tuning-based auditing still achieves the best
performance, with an average accuracy of 0.962±0.017. In
contrast, metric-based auditing with Qreal shows a substan-
tial decline in performance, while Qsyn demonstrates greater
resilience, with its auditing accuracy in S2 nearly matching
that of S1. Specifically, Qreal achieves an average accuracy
of 0.675±0.060 in S2, reflecting a notable decrease of 0.257
compared to its performance in S1. In contrast, Qsyn achieves
an average accuracy of 0.868±0.077 in S2, only a marginal
decrease of 0.014 from S1. We speculate that this divergence
in performance may be attributed to the inclusion of real data
in the training dataset for synthetic classifiers in S2. In S1,
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Figure 10: Auditing performance for target classifiers fine-
tuned on pre-trained DistilBERT across three tasks in S3.

the synthetic classifier (100% synthetic proportion) and the
real classifier (0% synthetic proportion) exhibit clear behavior
disparities with both Qsyn and Qreal, thereby enabling good
performance when using both types of queries. Continuing
with our earlier speculation, the decision boundary between
different classes in the synthetic data is clearer than in the real
data, facilitating easier feature-label correlation during classi-
fier training. Consequently, in S2, even a synthetic classifier
with a 10% synthetic proportion can make predictions on Qsyn
with higher confidence compared to a real classifier, resulting
in behavior disparities. Nevertheless, a synthetic classifier
with 10% synthetic proportion, i.e., 90% real data, and a real
classifier (100% real data) may have similar confidence levels
when making predictions on Qreal, resulting in negligible
behavior disparities.

Auditing Performance in S3. Finally, we report the auditing
performance in S3. Synthetic classifiers are trained on a
combination of real and synthetic data from multiple sources
(all four LLMs in our evaluation). As such, we consider
synthetic data from different source LLMs as the query to
enable our metric-based auditing. Specifically, we consider
constructing the query set using Qreal, Q𝜙 , and synthetic data
solely from ChatGLM (QChatGLM), GPT-3.5 (QGPT-3.5), GPT-4
(QGPT-4), Mistral (QMistral), and a mix of random data from all
LLMs (QMulti). As shown in Figure 10, tuning-based auditing
outperforms metric-based auditing in most cases, achieving an
average accuracy of 0.892±0.023 on three tasks. Metric-based
auditing using QMistral and QMulti follow closely behind. The
performance of Qreal remains unsatisfactory, with an accuracy
of only 0.663±0.061. We leverage QMulti as the default setting
for auditing synthetic classifiers with the synthetic query set,
as it can achieve decent performance in various settings.

Takeaways. In general, tuning-based auditing achieves the
best performance, with an average accuracy of 0.944±0.018,
in all three scenarios. However, it requires white-box access to
target classifiers, and the auditor needs extra training resources
to train more reference classifiers and develop a meta-classifier.
If the auditor only has black-box access to target classifiers
or limited training resources, we recommend utilizing metric-
based auditing withQsyn. This non-NN-based auditing method
requires fewer reference classifiers and achieves decent audit-
ing performance, with an average accuracy of 0.868±0.071
using 200 synthetic queries and 20 reference classifiers.

5 Generator Auditing

5.1 Metric-Based Auditing
Intuition. The black-box auditing approach for generators
shares similarities with auditing classifiers as discussed in Sec-
tion 4.1. In this study, we focus on text summarization gen-
erators. The input text 𝑥𝑖 used for training these models is
human-crafted, i.e., real, while the corresponding output sum-
mary 𝑦𝑖 can be synthetic. We hypothesize that generators
trained using real summaries, referred to as the real genera-
tor, may outperform the synthetic generator when generating
summaries for real input text. Based on this hypothesis, we
utilize the real input text as the query and its corresponding
real summary as the reference text (ground truth) to form the
query set Qreal. We employ standard performance metrics for
text summarization tasks to enable metric-based auditing.
Methodology. The metric-based auditing process for the
generator is similar to the process for the classifier,as illustrated
in Figure 2. Here, an auditor interacts with the target generator
by submitting a query set and receiving the generated summary.
Subsequently, they calculate the performance metric using this
generated summary alongside a reference text. A predefined
threshold is utilized to classify the target generator either as a
synthetic generator or a real generator. Formally, we define
the metric-auditing for the target generator Gtarget using Qreal
as follows:

I(Gtarget,Qreal) = 1{ 𝑓 (Gtarget (𝑥𝑖), 𝑦𝑖) < 𝜏,∀(𝑥𝑖 , 𝑦𝑖) ∈ Qreal},
(5)

where 𝑓 (·) denotes the performance metric. The auditor em-
pirically determines the threshold through comparisons with
reference generators. The processes of collecting training data,
training the reference generators {Gsyn

ref,1,G
syn
ref,2, . . . ,G

syn
ref,𝑘} and

{Greal
ref,1,G

real
ref,2, . . . ,G

real
ref,𝑘}, and selecting the final threshold are

identical to those used when auditing classifiers in Section 4.1.
Note. Here, we do not consider tuning-based auditing. The
reasons are two-fold: (1) it is difficult to assign a reference
text to a tuned query; (2) for a reference-free metric, such as
perplexity [73, 78], the meta classifier struggles to converge
during training, as the generators only output placeholder
tokens for this nonsensical query in the initial stage of training.

5.2 Evaluation Setup
We conduct two text summarization tasks on representative
datasets: CNN/DM [77] (TG1) and XSum [66] (TG2). We
provide the specific details for these two tasks in Appendix B.2.

5.2.1 Target and Reference Generator Setup

We primarily follow the setup in Figure 4, including the
same data split, paraphrasing-based synthetic data generation,
and identical training scenarios. We provide specific details
in Appendix B. We use the widely adopted pre-trained model
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Figure 11: Metric-based auditing performance for target gen-
erators fine-tuned on pre-trained BART with varying query
budgets of Qreal {10,20,50,100,200} for TG1 in (a) S1 and
(b) S2. The source LLM of synthetic data is GPT-3.5.

BART [49] as the backbone for target/reference generators in
both tasks. We employ cross-entropy as the loss function and
use Adam as the optimizer, with a learning rate of 2e-5. The
number of beams is set to 4. We fine-tune the generators for 3
epochs. Overall, we train a total of 50 target real generators,
200 target synthetic generators in S1 (50 per LLM), 200 target
synthetic generators in S2, and 50 target synthetic generators
in S3 for each task. We also train the same number of reference
generators to determine the threshold values. We ensure that
target synthetic generators achieve performance comparable
to target real generators.

5.2.2 Auditing Setup

Auditing Model. We only consider metric-based auditing for
generators. Since it is a non-NN-based method, we calculate
a performance metric value for each generator and use the
reference generator set to determine a threshold value for
this performance metric for auditing. We select three widely
used performance metrics BERTScore [95], ROUGE [52],
and BLEU [70] to enable the metric-based auditing. They
all evaluate the quality of synthetic text relative to reference
text but differ in focus. BERTScore measures semantic simi-
larity using contextual embeddings from models like BERT.
BLEU emphasizes precision, reflecting how much relevant
information matches the reference, while ROUGE focuses on
recall, indicating how much information from the reference is
captured in the synthetic text.
Summarization/Auditing Evaluation Metrics. For sum-
marization, we utilize the three standard text summarization
evaluation metrics mentioned above. A higher value of the
metric indicates better performance. For auditing, we balance
the class distribution in target generators and reference gener-
ators, so we consider auditing accuracy on target generators
as the main metric. The target generators include 50 real
generators and 50 synthetic generators for each scenario, and
the synthetic proportions for each scenario are the same as
those in Section 4.3. Each experiment is run five times with
different seeds and evaluated on all 100 target generators. We
present the average score with the error bar.

GPT-3.5 GPT-4 Mistral ChatGLM3
LLM

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cu
ur

ac
y

ROUGE-L

BERTScore-F1

BLEU

(a) TG1

GPT-3.5 GPT-4 Mistral ChatGLM3
LLM

0.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
A

cu
ur

ac
y

ROUGE-L

BERTScore-F1

BLEU

(b) TG2

Figure 12: Auditing performance for target generators fine-
tuned on pre-trained BART using metric-based auditing with
three metrics across two tasks and four source LLMs in S1.

5.3 Preliminary Investigation

We investigate the appropriate query budget, the number
of reference generators, and performance metrics to enable
metric-based auditing with Qreal. For each scenario, we ini-
tially leverage 10 reference real generators and 10 reference
synthetic generators, and the synthetic proportions are the
same as those in Section 4.5.1. We start by investigating the
auditing performance with varying query budgets. As shown
in Figure 11, the metric-based auditing with Qreal achieves
good performance even with 10 random real queries using
all three metrics in S1. For example, using BLEU achieves
an accuracy of 0.896± 0.082. Meanwhile, we find that in
both two scenarios, more real queries result in better auditing
performance, i.e., higher accuracy and lower standard devia-
tion. For example, the metric-based auditing using ROUGE-L
achieves 0.707±0.231 with 10 queries in S1, but it increases
to 0.924± 0.074 with 200 queries, a large margin of 0.217.
We demonstrate that 20 reference classifiers are sufficient to
find a good threshold to achieve decent auditing performance,
and the benefit of more reference generators is minimal in Sec-
tion C.1. Hence, we default to using all three metrics, 200
random real queries, and 20 reference classifiers to enable
metric-based auditing with Qreal.

5.4 Main Evaluation

We evaluate two tasks and three scenarios. The query budget
is set to 200. We leverage 10 reference real generators and 10
reference synthetic generators. The synthetic proportions for
each scenario are the same as those in Section 4.6. We report
the auditing performance for two tasks in S1 in Figure 12.
Costs. Training a reference generator for TG1 and TG2 costs
613.81 seconds, and 656.18 seconds across three training
scenarios on average, respectively. The corresponding total
costs of metric-based auditing (20 reference generators) for
conducting training on a Google GCP A100 are $12.80 and
$13.60, respectively.
Results. We observe that all metrics achieve decent auditing
performance, indicating the effectiveness of our auditing meth-
ods. For example, using ROUGE-L can achieve an average
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Figure 13: Auditing performance for target generators fine-
tuned on pre-trained BART using metric-based auditing with
three metrics across two tasks and four source LLMs in S2.

Table 2: Auditing performance for target generators using
metric-based auditing with three metrics on two tasks in S3.

Task ROUGE-L BERTScore-F1 BLEU

TG1 0.780±0.025 0.734±0.065 0.806±0.061
TG2 0.818±0.064 0.840±0.076 0.852±0.060

accuracy of 0.990±0.010 in TG1 , and using BLEU can achieve
an average accuracy of 0.902±0.100 in TG2 . Next, we present
the auditing performance in S2 (Figure 13) and S3 (Table 2).
We observe that our metric-based auditing still achieves good
performance, even targeting synthetic generators trained on
a mix of synthetic data from multiple sources and real data.
Overall, these metrics consistently achieve good auditing per-
formance across two tasks and three scenarios. ROUGE-L
achieves the best performance with an average accuracy of
0.880±0.052. BLEU follows closely, achieving 0.877±0.081
on average, outperforms BERTScore-F1.
Takeaways. We demonstrate that the proposed metric-based
auditing method using different performance metrics consis-
tently achieves decent performance in all experiment settings.

6 Statistical Plot Auditing

6.1 Classification-Based Auditing
Intuition. Previous work [55] shows that real data and LLM-
generated data from the same task represent different patterns
in the statistical plots. Intuitively, we consider developing a
binary image classifier M𝜔2 to determine whether the input
of the given plot contains synthetic data.
Methodology. The classification-based auditing approach for
statistical plots is outlined in Figure 14. To construct the train-
ing dataset ofM𝜔2 , the auditor first generates a set of synthetic
reference plots {Psyn

ref,1,P
syn
ref,2, . . . ,P

syn
ref,𝑘} that contain synthetic

data as input and real reference plots {Preal
ref,1,P

real
ref,2, . . . ,P

real
ref,𝑘}

that are derived solely from real data. Specifically, we focus
on data visualization, i.e., t-distributed Stochastic Neighbor
Embedding (t-SNE) [84], on the text classification datasets.
We directly leverage the synthetic data and real data in Sec-
tion 4.1 as the input data to generate these reference plots. The
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Target Plot
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Figure 14: Overview of the classification-based auditing.

composition of synthetic versus real data within eachP𝑠𝑦𝑛

ref can
vary. This allows plots to be generated solely from synthetic
data or from a blend of synthetic and real data in random
proportions. We train the image classifier M𝜔2 parameterized
by 𝜔2 via optimizing the following loss function:

L =

𝑘∑︁
𝑖=1

loss(1,M𝜔2 (P
syn
ref,𝑖))+

𝑘∑︁
𝑖=1

loss(0,M𝜔2 (Preal
ref,𝑖)). (6)

At inference time, the auditor determines a given plot by
querying M𝜔2 with it and obtaining the prediction result.

6.2 Evaluation Setup

We conduct two t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization [84] tasks. The task TP1 employs the
IMDB dataset from TC1 and generates the synthetic data
through a zero-shot prompt strategy. The task TP2 employs the
AG dataset from TC2 and generates the synthetic data using a
paraphrasing strategy.

6.2.1 Target and Reference Plot Setup

We primarily follow the setup in Figure 4, including the same
data split, the synthetic data generation settings of TC1 and
TC2 from Section 4.3 to TP1 and TP2 , and the same training
scenario. Standard procedures for generating target/reference
t-SNE plots are adopted based on established practices [93].
Specifically, we first preprocess all input texts by removing
stopwords and punctuation. We then leverage a representa-
tive method – Word2Vec [61] – to create word embeddings.
Subsequently, we use t-SNE to visualize these embeddings
in two-dimensional space. The resulting plots are saved as
300×300 PNG images, showing only the scattered data points
without axes, labels, or titles. Different colors are employed
to indicate the target labels assigned to each data instance
in the text classification task. Overall, we generate a total of
200 target real plots, 800 target synthetic plots in S1 (200
per LLM), 800 target synthetic plots in S2, and 200 target
synthetic plots in S3 for each task. We develop the same
number of reference plots to train the auditing model.
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Figure 15: T-SNE plots using Word2Vec with synthetic pro-
portions of input data are set at intervals of 20%, ranging
from 0 to 100% (left to right) in (a) TP1 and (b) TP2 . The
synthetic data for TP1 and TP2 are generated using zero-shot
and paraphrasing prompt strategies, respectively. Different
colors denote the target labels in the text classification task.

6.2.2 Auditing Setup

Auditing Model. It is essentially an image classifier. We
leverage the pre-trained RN18 [37] as the backbone of the
image classifier M𝜔2 . We fit a linear classifier on top of the
pre-trained RN18 to conduct synthetic artifact auditing. We
employ cross-entropy as the loss function and Adam as the
optimizer with a learning rate of 1e-3. The model is trained
for 50 epochs on the reference plots set. Note that we convert
t-SNE plots into grayscale to eliminate the possibility that the
auditing relies on differences in color schemes.
Auditing Evaluation Protocol. We use test accuracy on all
target plots as the key metric to assess auditing performance.
The target plots include 200 target real plots and 200 target
synthetic plots for each scenario, and the synthetic proportions
are the same as those in Section 4.3. Each experiment is run
five times with different seeds, and we present the average
score along with the error bar.

6.3 Main Evaluation
Figure 15 shows examples of t-SNE plots forTP1 andTP2 . From
left to right, the proportion of synthetic data increases from 0
to 100% at intervals of 10%. As shown in Figure 15a, when we
leverage a zero-shot prompt strategy to generate synthetic data,
there are clear separations between real data and synthetic data
in the reduced-dimension space created by t-SNE. However,
when we leverage a paraphrasing prompt strategy (TP2), the
synthetic data are scattered and intertwined with real data,
as shown in Figure 15b, making the auditing challenging.
This observation is consistent with previous work [20, 55, 62].
We further observe that as the proportion of synthetic data
increases, the distinction between data samples from different
classes becomes more pronounced, leading to a more distinct
decision boundary. We attribute the clearer decision boundary
among synthetic data of different classes to its generation
based on their labels as conditions, which results in features
that highly represent the target class. Meanwhile, this clearer

Table 3: Auditing performance for target plots across two tasks
and four LLMs in three scenarios.

Scenario Task LLMs
GPT-3.5 GPT-4 Mistral ChatGLM3

S1
TP1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
TP2 1.000±0.000 0.899±0.018 1.000±0.000 1.000±0.000

S2
TP1 1.000±0.000 1.000±0.000 0.999±0.001 0.931±0.004
TP2 0.927±0.006 0.866±0.012 0.956±0.004 0.945±0.003

S3
TP1 0.976±0.002
TP2 0.882±0.009

decision boundary distinguishes the real and synthetic data in
the reduced-dimension space and thus motivates us to exploit
the distinct patterns to conduct the synthetic artifact auditing.

We report the auditing performance for plots using
Word2Vec in Table 3. The reference plots include 200 ref-
erence real plots and 200 reference synthetic plots for each
scenario, and the synthetic proportions are the same as those
for target plots in Section 6.2. The classification-based auditing
achieves a superior performance in both tasks. It can achieve
an average accuracy of 0.990±0.001 on TP1 and 0.942±0.006
on TP2 across three scenarios. This demonstrates that although
synthetic data for this task is generated through a paraphrasing
prompt strategy and highly overlaps with real data, we can still
successfully conduct auditing by distinguishing the differences
in the decision boundaries between data of different classes.
Takeaways. We demonstrate that synthetic data, whether
generated through zero-shot or paraphrasing, exhibit clear
differences from real data, i.e., the decision boundary of data
samples of different classes, and these differences result in
distinct patterns on statistical plots. This signal can facilitate
the synthetic artifact auditing of t-SNE plots.

7 Related Work

Synthetic Data Detection. This task can be formulated as
a classification problem that distinguishes texts generated by
language models (i.e., synthetic data) from those authored by
humans (i.e., real data) [20, 28, 32, 34, 55, 62, 68, 87]. These
methods address the distinctions between synthetic and real
data by exploiting their different characteristics. Recent stud-
ies [38,55] show that LLM-generated synthetic data has unique
lexical, structural, and semantic features that distinguish it from
real data. There are fine-tuning-based methods [20,23,55,87]
that analyze texts’ latent features and train classifiers to identify
synthetic data. The differences between synthetic and real data,
along with the success of classifiers in identifying synthetic
data, inspire us to propose a hypothesis. Classifiers trained on
synthetic data tend to be more confident with synthetic inputs
but less confident with real inputs, as they memorize the latent
patterns of synthetic data. We then propose a metric-based
auditing method grounded in this hypothesis (Section 4.1) and
demonstrate its effectiveness through evaluation (Section 4.6).
Membership Inference Attacks (MIAs) [21, 50, 67, 75, 79].
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Figure 16: Auditing performance on TC1 with different source
LLMs inS2. Dreal

target is derived from IMDB. Dreal
ref is (a) disjoint

data from IMDB, and (b) data from Rotten Tomatoes.

Although both MIAs and synthetic artifact auditing employ
binary classification and leverage classifier outputs (confi-
dence scores, entropy, posteriors), they differ fundamentally
in their attack targets and goals. MIAs target a given sample’s
membership, aiming to detect whether a specific data sam-
ple was used during training. In contrast, we target trained
classifiers, generators, or plots, aiming to distinguish between
artifacts trained on or derived from real versus synthetic data.
Additionally, our attack processes diverge: MIAs train shadow
models solely to mimic the target model’s behavior, while
tuning-based auditing trains reference artifacts to optimize
queries. MIAs use specific queries to infer their member-
ship, whereas we employ optimized (tuning-based) or random
(metric-based) queries to audit target artifacts.

8 Discussion

Data Contamination. The PLMs used in our evaluation, i.e.,
BART, and DistilBERT, were trained on a corpus consisting of
Wikipedia (2,500 million words) and Google’s BookCorpus
(800 million words) and released in 2019. Their pretraining
occurred before the release of ChatGPT in 2022, which fa-
cilitated the generation of synthetic data at a massive scale.
Given this timeline, we argue that it is improbable that they
incorporated synthetic data in the pre-training process.
Practicability. We further explore more practical scenarios,
and the experimental settings are consistent with those de-
tailed in Section 4.6. First, we explore the scenarios where
Dsyn

ref and Dsyn
target are generated from different source LLMs.

As shown in Figure 16, our auditing framework maintains
comparable performance when the source LLMs differ in
most cases. We hypothesize that this outcome arises due to
the inherent similarities in the synthetic data produced by
different LLMs. Therefore, we recommend that the auditors
incorporate multiple source LLMs when constructing Dsyn

ref .
Additionally, we observe that even when the distributions of
Dreal

ref and Dreal
target differ (Rotten Tomatoes [69] for Dreal

ref and
IMDB for Dreal

target), our approach still achieves performance
comparable to when the distributions are the same (see more
details in Appendix D). We then evaluate the impact of the size

of the reference dataset on training each classifier. Specifically,
we conduct an experiment where each reference classifier is
trained using one-third of the original dataset size. In this
setting, the auditing accuracy is 0.870, compared to 0.938
in the original setting with TC1 and S1, suggesting that the
dataset size could potentially be reduced further. Furthermore,
we validate that our methods can distinguish artifacts from
different LLMs (GPT-3.5, GPT-4, Mistral, and ChatGLM).
For example, in TC1 and S1, tuning-based auditing achieves
0.945 accuracy on this four-class classification task. These
results indicate that our methods could be potentially used
to infer the unauthorized use of LLM-generated data to de-
velop competitive artifacts, which is often prohibited by tech
giants [10, 13].

9 Limitations

Design Choices. We take the initial step to introduce synthetic
artifact auditing and propose an auditing framework with three
methods. For simplicity, we aim to present the intuition behind
our methods in straightforward terms and develop auditing
processes using simple yet effective design choices, such
as using random synthetic queries. Our method, especially
metric-based auditing, is flexible, with many different design
possibilities yet to be explored. For instance, the methodol-
ogy may incorporate mixing synthetic and real queries, and
leveraging other performance metrics, e.g., METEOR [18]
for generators. We plan to explore additional design options
and further extend our auditing framework in future research.
Evaluation on LLMs and Additional Tasks. Evaluating
LLMs requires training reference LLMs from scratch, but
this is impractical due to infrastructure constraints. Our work
remains valuable, as small models are still widely used for their
efficiency, cost-effectiveness, and flexibility. Furthermore, we
empirically demonstrate that synthetic artifacts capture the
unique patterns of synthetic data, distinguishing them from
real artifacts. As a result, our methods are expected to be
feasible for LLMs and generalizable to other tasks.

10 Conclusion

In this paper, we introduce the concept of synthetic arti-
fact auditing. We propose an auditing framework with three
methods that require no disclosure of proprietary training
specifics: metric-based auditing, tuning-based auditing, and
classification-based auditing. This framework is extendable,
currently supporting auditing for classifiers, generators, and
statistical plots. We evaluate it on three text classification
tasks, two text summarization tasks, and two data visualiza-
tion tasks across three scenarios. The evaluation demonstrates
the effectiveness of all proposed auditing methods across all
these tasks. We hope our research will promote the ethical
and responsible use of synthetic data.
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A Metric-Based Auditing Using Entropy

Formally, we define the metric-based auditing using Entropy
as the performance metric as follows:

I𝑒𝑛𝑡𝑟 (Ctarget,Qsyn) =

1{−1
𝑛

𝑛∑︁
𝑖=1

𝑐∑︁
𝑗=0

Ctarget (𝑥𝑖) 𝑗 𝑙𝑜𝑔(Ctarget (𝑥𝑖) 𝑗 ) < 𝜏}, (7)

where 𝑐 is the number of the target class.

I𝑒𝑛𝑡𝑟 (Ctarget,Qreal) =

1{−1
𝑛

𝑛∑︁
𝑖=1

𝑐∑︁
𝑗=0

Ctarget (𝑥𝑖) 𝑗 𝑙𝑜𝑔(Ctarget (𝑥𝑖) 𝑗 ) > 𝜏}, (8)



B Details of Evaluation Setup

B.1 Details of Tasks
We consider three text classification tasks, two text summa-
rization tasks, and two data visualization tasks on these five
representative datasets. The details of text classification tasks
are as follows:

• TC1 : We consider a classifier that classifies the sentiment of
movie reviews from the IMDB website [8] into positive or
negative. The IMDB dataset [57] contains 25,000 (review,
sentiment label) pairs for training and 25,000 for testing.

• TC2 : We consider a classifier that categories the AG’s news
dataset (abbreviated as AG) [96] into four topics: World,
Sports, Business, and Sci/Tech. AG is collected from over
2,000 news sources, containing 120,000 training samples
and 7,600 testing samples.

• TC3 : We consider a classifier that identifies emails from
the Enron-Spam dataset (abbreviated as ES) [60] as ham
(legitimate) or spam. ES contains around 31,000 training
samples and 2,000 testing samples.

The details of text summarization tasks are as follows:

• TG1 : The CNN/DM dataset contains over 312,000 unique
news articles, including 287,113 training instances, 13,368
validation instances, and 11,490 testing instances, as written
by journalists at CNN and the Daily Mail. Each sample
includes an article with its corresponding highlights written
by the article’s author.

• TG2 : The XSum dataset, collected from online articles
from the British Broadcasting Corporation (BBC), includes
204,045 training instances, 11,132 validation instances, and
11,334 testing instances. Each instance includes a news
article with its corresponding one-sentence summary.

The details of data visualization tasks are as follows:

• TP1 : This task uses the same dataset, i.e., IMDB, along with
its data split and synthetic data generation settings, as TC1 .
The synthetic data is generated through a zero-shot prompt
method. We provide movie titles, outlines, and target labels
to an LLM to generate reviews.

• TP2 : This task uses the same dataset, i.e., AG, along with
its data split and synthetic data generation settings, as TC2 .
The synthetic data is generated using a paraphrasing prompt
strategy. We provide the original article and the target label
to the LLM and instruct it to rewrite a new article.

B.2 Details of Data Split
Below are details of data splitting for each task.

• TC1 (zero-shot). We use the IMDB training set as the target
real dataset Dreal

target. We leave out 1,000 samples in the
IMDB testing set as Dtest and use the rest as the reference
real dataset Dreal

ref . We randomly sample instances from
Dtest to construct Qreal. We also leave out 1,000 samples as
Qaux from the retrieved movies as additional information to
constructing Qsyn in a zero-shot prompt strategy. The rest of
the retrieved movies are evenly split into Daux

target and Daux
target.

• TC2 , TC3 , TG1 , and TG2 (paraphrasing). We randomly split
the AG/Enron-Spam/CNNDM/XSum training set into two
evenly disjoint subsets Dref and Dtarget. Dref and Dtarget are
further divided evenly into Dreal

ref , Daux
ref , Dreal

target, and Daux
target.

We randomly sample 1000 samples from the AG/Enron-
Spam/CNNDM/XSum testing set to serve as Dtest. We then
randomly sample instances from Dtest to construct Qreal and
use them as reference samples Qaux for constructing Qsyn
in a paraphrasing prompt strategy.

B.3 Details of Synthetic Data Generation
Below are details of synthetic data generation for each task.

• TC1 (zero-shot). These auxiliary sets Daux
target, Daux

ref , and Qaux
consist of (movie title, outline, sentiment label) pairs. We
instruct the LLM to use the reference prompt to generate
a positive review and a negative review for each pair in
Daux

ref and Qaux and use the target prompt to generate a
positive review and a negative review for each pair in Daux

target.
The final synthetic sets Dsyn

ref , Qsyn, and Dsyn
target consist of

(generated review, label) pairs. We set the temperature to
0.5 to balance the diversity and usability.

• TC2 and TC3 (paraphrasing). These auxiliary sets Daux
target,

Daux
ref , and Qaux consist of (input text, label) pairs. For each

pair, we include each original input with its target label
in the prompt and ask LLMs to paraphrase it into a new
synthetic sample. We use the target prompt for constructing
Dsyn

target and the reference prompt for constructing Dsyn
ref and

Qsyn. The final synthetic sets Dsyn
ref , Qsyn, and Dsyn

target consist
of (synthetic input, label) pairs. To ensure that the synthetic
examples generated by the paraphrasing strategy exhibit
substantial differences from the original examples, we set
the temperature to 1.

• TG1 and TG2 (paraphrasing). These auxiliary sets Daux
target,

Daux
ref , and Qaux consist of (article, summary) pairs. For

each original pair, we include both the article and summary
in the prompt and ask LLMs to paraphrase the original
summary into a new synthetic sample. We use the target
prompt for constructing Dsyn

target and the reference prompt for
constructing Dsyn

ref and Qsyn. The final synthetic sets Dsyn
ref ,

Qsyn, and Dsyn
target consist of (article, synthetic summary)

pairs. To ensure that the synthetic examples generated by



the paraphrasing strategy exhibit substantial differences
from the original examples, we set the temperature to 1.

Note that, before constructing the final synthetic dataset for
each task, we perform a filtering process that filters out the
refusal outputs.

B.4 Details of Training Classifiers

Training Dataset Size for Each Classifier. We list the size
of the training dataset for each classifier as follows:

• TC1 : We randomly sample 1,500 reviews per class (3,000
reviews in total).

• TC2 : We randomly sample 2,000 news articles per class
(8,000 articles in total).

• TC3 : We randomly sample 2,000 emails per class (4,000
emails in total).

Target/Reference Classifier Set. We construct the target
classifier set, which includes 50 target real classifiersΔ(Creal

target)
and 50 target synthetic classifiers Δ(Csyn

target), to evaluate the
proposed auditing methods. Meanwhile, we construct the
reference classifier set, comprising 50 reference real classifiers
Δ(Creal

ref ) and 50 reference synthetic classifiersΔ(Csyn
ref ), to train

the meta-classifier and empirically obtain the threshold values
We leverage the following setup for each task with each LLM:

• Real classifiers: We run the training procedure 100 times,
each with a different seed, to train Δ(Creal

target) on Dreal
target and

Δ(Creal
ref ) on Dreal

ref . Each set contains 50 classifiers.

• S1: We run the training procedure 100 times, each with a
different seed, to train Δ(Csyn

target) on Dsyn
target and Δ(Csyn

ref ) on
Dsyn

ref . Each set contains 50 classifiers.

• S2: We run the training procedure 100 times, each with a
different seed, to train Δ(Csyn

target) on Dsyn
target and Dreal

target, and
Δ(Csyn

ref ) on Dsyn
ref and Dreal

ref . We train five classifiers for each
of the ten synthetic proportions.

• S3: We run the training procedure 100 times, each with
a different seed, to train Δ(Csyn

target) on Dsyn
target and Dreal

target,
and Δ(Csyn

ref ) on Dsyn
ref and Dreal

ref , with random synthetic
proportions generated by different seeds. Each set contains
50 classifiers.

Note that we include all four LLMs in S1 and S2, so there
are a total of 400 synthetic classifiers in S1, 400 synthetic
classifiers in S2, and 100 synthetic classifiers in S3 for each
task.

B.5 Details of Training Generators

Training Dataset Size for Each Generator. For TG1 and
TG2 , we randomly sample 5,000 articles as the training dataset
for each generator.
Target/Reference Generator Set. We construct the target gen-
erator set, which includes 50 target real generators Δ(Greal

target)
and 50 target synthetic generators Δ(Gsyn

target), to evaluate the
proposed auditing methods. Meanwhile, we construct the ref-
erence generator set, comprising 50 reference real generators
Δ(Greal

ref ) and 50 reference synthetic generators Δ(Gsyn
ref ), to

train the meta-classifier and empirically obtain the threshold
values. We leverage the following setup for each task with
each LLM:

• Real generators: We run the training procedure 100 times,
each with a different seed, to train Δ(Greal

target) on Dreal
target and

Δ(Greal
ref ) on Dreal

ref . Each set contains 50 generators.

• S1: We run the training procedure 100 times, each with a
different seed, to train Δ(Gsyn

target) on Dsyn
target and Δ(Gsyn

ref ) on
Dsyn

ref . Each set contains 50 generators.

• S2: We run the training procedure 100 times, each with a
different seed, to train Δ(Gsyn

target) on Dsyn
target and Dreal

target, and
Δ(Gsyn

ref ) on Dsyn
ref and Dreal

ref . We train five generators for
each of the ten synthetic proportions.

• S3: We run the training procedure 100 times, each with
a different seed, to train Δ(Gsyn

target) on Dsyn
target and Dreal

target,
and Δ(Gsyn

ref ) on Dsyn
ref and Dreal

ref , with random synthetic
proportions generated by different seeds. Each set contains
50 generators.

Note that we include all four LLMs in S1 and S2, so there
are a total of 400 synthetic generators in S1, 400 synthetic
generators in S2, and 100 synthetic generators in S3 for each
task.

B.6 Details of Generating Plots

Input Dataset Size for Each Plot. We randomly sample
1,000 samples from the dataset to generate t-SNE plots, and
we follow the same three scenarios in Section 4.3 to control
the synthetic proportion in the input data.
Target/Reference Plot Set. We construct the target plot
set, which includes 200 target real plots Δ(Preal

target) and 200
target synthetic plots Δ(Psyn

target), to evaluate the proposed
auditing methods. Meanwhile, we construct the reference plot
set, comprising 200 reference real plots Δ(Preal

ref ) and 200
reference synthetic plots Δ(Psyn

ref ), to train the meta-classifier
and empirically obtain the threshold values. We leverage the
following setup for each task with each LLM:



• Real plots: We run the plotting procedure 400 times, each
with a different seed, to plot Δ(Preal

target) on Dreal
target and

Δ(Preal
ref ) on Dreal

ref . Each set contains 200 plots.

• S1: We run the plotting procedure 400 times, each with a
different seed, to plot Δ(Psyn

target) on Dsyn
target and Δ(Psyn

ref ) on
Dsyn

ref . Each set contains 200 plots.

• S2: We run the plotting procedure 400 times, each with a
different seed, to plot Δ(Psyn

target) on Dsyn
target and Dreal

target, and
Δ(Psyn

ref ) on Dsyn
ref and Dreal

ref . We generate 20 plots for each
of the ten synthetic proportions.

• S3: We run the plotting procedure 400 times, each with
a different seed, to plot Δ(Psyn

target) on Dsyn
target and Dreal

target,
and Δ(Psyn

ref ) on Dsyn
ref and Dreal

ref , with random synthetic
proportions generated by different seeds. Each set contains
200 plots.

Overall, for each task, we include all four LLMs in S1 and S2,
resulting in a total of 400 real plots, 1600 synthetic plots in
S1, 1600 synthetic plots in S2, and 400 synthetic plots in S3.

C Impact of Reference Classifiers

As illustrated in Figure 17 and Figure 18, we demonstrate that
20 reference classifiers are sufficient to find a good threshold to
achieve decent auditing performance, and the benefit of more
reference classifiers for metric-based auditing with Qsyn/Qreal
is minimal.

C.1 Impact of Reference Generators
As illustrated in Figure 19, we demonstrate that 20 reference
classifiers are sufficient to find a good threshold to achieve
decent auditing performance, and the benefit of more reference
generators for metric-based auditing with Qreal is minimal.

D Training Details of Reference Classifiers On
Rotten Tomatoes

The Rotten Tomatoes dataset [69] contains 5,331 positive
reviews and 5,331 negative reviews collected from the Rotten
Tomatoes movie reviews. Similar to the original TC1 , we
randomly sample 1,500 reviews per class using different seeds
each time to train a classifier. The reference real classifiers are
trained solely on the Rotten Tomatoes dataset. The reference
synthetic classifiers are trainedon a mix of the Rotten Tomatoes
dataset and synthetic data from different source LLMs. The
rest of the experimental settings are the same as those for TC1

in Section 4.3.
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Figure 17: Metric-based auditing performance for target clas-
sifiers fine-tuned on DistilBERT with varying number of
reference classifiers {20,60,100,200} in (a) S1 and (b) S2 for
TC3 . |Qsyn | is set to 200. The source LLM is GPT-3.5.
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Figure 18: Metric-based auditing performance for target clas-
sifiers fine-tuned on DistilBERT with varying number of
reference classifiers {20,60,100,200} in (a) S1 and (b) S2 for
TC3 . |Qreal | is set to 200. The source LLM is GPT-3.5.
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Figure 19: Metric-based auditing performance for target gen-
erators with varying numbers of reference generators for TG1 .
The numbers are {10,20,50} in (a) S1 and {20,60,100} in
(b) S2. The LLM is GPT-3.5.
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