
1032 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

VERITRAIN: Validating MLaaS Training Efforts via
Anomaly Detection

Xiaokuan Zhang , Member, IEEE, Yang Zhang, Member, IEEE, and Yinqian Zhang , Member, IEEE

Abstract—Machine learning as a service (MLaaS) offers users
the benefit of training state-of-the-art neural network models on
fast hardware with low costs. However, it also brings security
concerns since the user does not fully trust the cloud. To prove
to the user that the ML training results are legitimate, existing
approaches mainly adopt cryptographic techniques such as secure
multi-party computation, which incur large overheads. In this
paper, we model the problem of verifying ML training efforts
as an anomaly detection problem. We design a verification sys-
tem, dubbed VERITRAIN, which combines unsupervised anomaly
detection approaches and hypothesis testing techniques to verify
the legitimacy of training efforts on the MLaaS cloud. VERITRAIN
is run inside trusted execution environments (TEEs) on the same
cloud machine to ensure the integrity of its execution. We consider
a threat model where the cloud model trainer is a lazy attacker
and tries to fool VERITRAIN with minimum training effort. We
perform extensive evaluations on multiple neural network models
and datasets, which shows that VERITRAIN performs well in detect-
ing parameter updates crafted by the attacker. We also implement
VERITRAIN with Intel SGX and show that it only incurs moderate
overheads.

Index Terms—AutoEncoder, machine learning, trusted exe-
cution environment.

I. INTRODUCTION

NOWADAYS, state-of-the-art neural network models [9]
have been deployed in many real-world applications rang-

ing from image recognition [52], [85] to machine transla-
tion [14]. Despite their superior performance, advanced neural
network models are often very time-consuming to train as the
training process requires a huge amount of computing resources.
For instance, GPT-3 [14] has over 175 billion parameters and
requires 3.14E23 FLOPS of computing for training; this means
355 GPU-years for a Tesla V100, one of the fastest GPUs on the
market [55]. To bridge the computing resource gap, leading IT
companies, including Google, Amazon, and Microsoft, provide

Manuscript received 8 February 2022; revised 6 August 2022; accepted 23
March 2023. Date of publication 12 April 2023; date of current version 16 May
2024. (Corresponding author: Yinqian Zhang.)

Xiaokuan Zhang is with the George Mason University, Fairfax, VA 22030
USA, and also with the Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: xiaokuan@gmu.edu).

Yang Zhang is with the CISPA Helmholtz Center for Information Security,
66123 Saarbrücken, Germany (e-mail: zhang@cispa.de).

Yinqian Zhang is with the Southern University of Science and Technology,
Shenzhen, Guangdong 518055, China, and also with the Research Institute of
Trustworthy Autonomous Systems, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China (e-mail: yinqianz@acm.org).

Digital Object Identifier 10.1109/TDSC.2023.3266427

machine learning as a service (MLaaS) in the cloud. In this
setting, a user uploads his/her dataset to a cloud server and
chooses a certain model type, then pays the cloud to train the
model. The market value of MLaaS is growing rapidly, and it is
projected to reach 8.48 billion USD by 2025 [70].

While MLaaS brings a lot of benefits, it also raises issues of
trust, since the user does not fully trust the cloud. When getting
the trained model from the cloud, the user cannot determine
whether the cloud indeed performs a faithful training process
as promised. For example, the cloud may spend less effort to
maximize its benefits, such as training with fewer epochs to save
its GPU hours. The training process is a blackbox for the users;
there is no way for the user to perform verification. Therefore,
the users have no choice but to trust the MLaaS providers.

To ensure the user that machine learning results returned by
a third party are legitimate, researchers have proposed several
approaches for verification. There are a number of works that
use cryptographic primitives [11], [15], [22], [24], [25], [36],
[38], [47], [54], [57], [60], [66], [68], [79], [81] and secure
hardware [44], [46], [49], [90] to verify the ML inference results.
Also, researchers have proposed methods to secure the training
process, however, these approaches either rely on customized
secure protocols with cryptographic approaches [3], [67], [68],
[96] that incur large performance overheads, or are specifically
tailored to the Federated Learning (FL) scenario [101], [108]
and not applicable to the MLaaS scenario.

Recently, there is a new trend in the Cloud Computing area,
dubbed Confidential Computing [43], [73], where the user’s code
is run inside hardware trusted execution environments (TEEs)
such as Intel SGX and AMD SEV to project the privacy of the
user from Cloud service providers (CSPs). Inspired by the recent
trend, in this paper, we take the first step towards ensuring the
trustworthiness of the ML training process in the context of
MLaaS using TEEs. We consider a scenario that involves three
parties, a user, an MLaaS model trainer, and a verifier running
inside a TEE on the same cloud machine. First, the user asks the
cloud to perform the training; After training, the model trainer
sends the parameter updates to the co-located verifier; Then, the
verifier checks the parameter updates to determine whether the
training process is faithful, and sends the verification results back
to the user. The integrity of the verification process is protected
by the TEE.

Here, the verifier is necessary for two reasons. First, as
mentioned before, the user does not trust the cloud. Without
the support of the verifier running inside TEE which can be
attested, the user has to verify the training results by training

1545-5971 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4646-7146
https://orcid.org/0000-0002-7585-1075
mailto:xiaokuan@gmu.edu
mailto:zhang@cispa.de
mailto:yinqianz@acm.org


ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1033

a model on his/her own, which loses the purpose of using the
MLaaS service. Second, the cloud does not trust the user, either.
To demonstrate its faithful training process, the cloud may send
all its intermediate parameter updates after each training epoch
to the user for verification; however, this places the burden of
verification to the user side. Moreover, the user may learn the
hyper-parameters used by the cloud for training a model [97],
such as the batch size, which directly jeopardizes the intellectual
property of the MLaaS. By introducing the verifier, the user
can make sure that the parameters returned by the cloud can be
trusted, while the cloud does not have to worry about potential
information leakage.

Threat Model: We consider a threat model where the MLaaS
model trainer is a lazy attacker, who wants to save computation
power by cheating on the training process. The attacker uses var-
ious techniques, including directly copying trained parameters
from an existing model and simulating the parameters instead
of training, in order to bypass the verification with minimum
training efforts.

VERITRAIN:We design and implement VERITRAIN, a verifi-
cation system used by the verifier to validate the ML training
efforts on the MLaaS cloud. VERITRAIN models the problem
of determining the legitimacy of parameter updates as anomaly
detection, and consists of two components: AutoEncoder (AE)
and Stationarity Examiner (SE), which are designed to defend
against different adversaries. AE is used to detect large recon-
struction errors when the adversary generates abnormal training
parameters, while SE is designed to detect simulated parameters
by capturing the stochasticity of the training process. To ensure
that the result reported by VERITRAIN is trusted, VERITRAIN is
run inside a co-located TEE, such as Intel SGX [65]. The user
can use techniques such as remote attestation [6] to make sure
that VERITRAIN runs as expected. Unlike the previous methods
that formally verify each step of the computation, VERITRAIN

examines whether the cloud has performed the training faithfully
via machine learning and hypothesis testing techniques. We
do not use cryptographic mechanisms since it is computation-
ally infeasible to verify each training step. As shown in prior
works [3], [96], verifying ML training incurs large performance
overheads. For example, with secure three-party protocols, a
4-layer CNN takes about 10 hours to train on the MNIST dataset
for 5 epochs [96].

We concentrate on verifying the number of training epochs,
i.e., the number of times the full training dataset is used to train
the model, in this paper. The training efforts (costs) grow linearly
when the number of training epochs increases, i.e., more epochs
leads to more GPU hours, thus it is the major factor related to
training efforts. Note that VERITRAIN can be easily adapted to
verify other aspects of training efforts (e.g., batch size).

To validate our design, we perform extensive evaluations on
popular ML datasets (e.g., CIFAR-10) and state-of-the-art DNN
models (e.g., VGG16). Our results show that VERITRAIN can
reliably detect the fabricated parameter updates produced by
various kinds of attackers while allowing legitimate parameter
updates to pass the tests. We also evaluate the robustness of VER-
ITRAIN against adversarial samples and show that they are not
able to fool VERITRAIN entirely. We implement VERITRAIN with

Intel SGX enclaves using the Graphene-SGX framework [93]
to evaluate the real-world performance overhead of VERITRAIN.
Our evaluation results suggest that VERITRAIN, when integrated
with SGX, only incurs a moderate overhead compared to the
training time required. To the best of our knowledge, we are the
first to tackle the problem of validating ML training efforts on
the MLaaS cloud.

Contributions: This paper makes the following contributions:
� We propose a new system VERITRAIN running inside TEEs

which utilizes AutoEncoder and Stationarity Examiner to
verify the ML training efforts on the cloud (Section V);

� We perform evaluations on state-of-the-art deep learning
models over multiple datasets, and the results show that
VERITRAIN is effective in detecting the fabricated training
parameters (Section VI). We also evaluate the robustness
of VERITRAIN against adversarial samples (Section VII);

� We implement VERITRAIN with Intel SGX and measure the
performance overhead. Our evaluation results show that
the overhead is moderate compared to the training efforts
needed (Section VIII).

II. BACKGROUND

Unsupervised Anomaly Detection: The unsupervised
anomaly detection [18], [39], [102] is a task of identifying
anomalies, given only the benign data samples. In unsupervised
anomaly detection, usually, the defender first learns a general
profile of the normal data points, then marks samples that do not
fit into the profile as anomalies. Traditionally, researchers have
proposed 1) one-class classification methods, such as one-class
SVM [4], [82], 2) clustering methods, such as Gaussian Mixture
Models (GMM) [100], [104], 3) reconstruction-based methods,
such as Robust PCA [16] to perform unsupervised anomaly
detection. Recently, researchers have developed various kinds of
AutoEncoders [41], [102], [107], [111] for anomaly detection.

Hypothesis Testing: In statistics, hypothesis testing [58], [71]
is an approach used to determine the probability that a proposed
hypothesis is true, given the observed data. It usually contains
4 steps: 1) State the null hypothesis H0 and the alternative hy-
pothesis H1; 2) Identify a test statistic to assess whether the null
hypothesis holds; 3) Compute the pvalue; 4) Compare the pvalue
with a preset thresholdα, and accept or reject the null hypothesis.
In hypothesis testing, a pvalue (pvalue ∈ [0, 1]) is used in order
to quantify the statistical significance of evidence, which can
help decide whether to accept or reject the null hypothesis (H0):
The smaller the pvalue is, the stronger the evidence that the null
hypothesis should be rejected. If the computed pvalue is smaller
than the preset threshold α (usually 0.05 [72]), H0 is rejected,
and accept H1; otherwise H0 is accepted.

Unit Root Test: In statistics, unit root tests are tests for station-
arity in a time series [10], [76]. A time series has stationarity if
the shape of the distribution is not influenced by a shift in time.
As a result, the properties of such a time series, such as mean and
variance, also do not change over time. One of the most popular
unit root tests is the Augmented Dickey-Fuller (ADF) test [30],
[35], which tests the null hypothesis (H0) that a unit root is
present (i.e., non-stationarity) in a time series. MacKinnon [61],



1034 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

[62] further showed how to approximate the pvalue for the ADF
test, which is widely adopted in popular statistics libraries, such
as the statsmodels module in Python. In the ADF test, for
a given time series, if pvalue < 0.05, H0 is rejected, meaning
that the time series has stationarity; otherwise, H0 is accepted,
meaning that it is non-stationary.

Intel SGX: Intel Software Guard Extensions (SGX) [65] is
a set of instructions that are built into modern Intel CPUs for
security purposes. It provides hardware-based memory encryp-
tion for SGX applications. The SGX application can put the code
and data in TEEs called enclaves, which cannot be accessed by
non-enclave entities, including the OS kernel. In this way, SGX
application developers can have direct control over the security
of their applications to ensure confidentiality and integrity, with-
out relying on the underlying OS which may not be trusted. To
examine the integrity of a remote enclave, Intel SGX provides a
feature called remote attestation. The remote attestation process
generates an unforgeable report, which contains information
regarding whether the application is running within an enclave
on an Intel SGX-enabled platform, and whether the application
is intact (has not been tampered with). Remote attestation is
important to ensure that an SGX application running on a remote
machine performs execution as expected.

III. OVERVIEW

A. Scenario

We consider a scenario with three parties involved: a user, a
cloud MLaaS service provider (model trainer), and a verifier. The
verifier is running inside the TEE on the same MLaaS machine.
The user outsources the training process to the cloud, due to
the lack of computing resources (e.g., GPU). However, the user
does not fully trust the cloud, so he/she asks the cloud to send the
parameter updates of each epoch as well as the designated ML
training task to the verifier inside a co-located TEE. The verifier
verifies the parameter updates and returns the final parameters
to the user, together with a report containing information about
the parameters and the ML training task performed by the cloud.
Since the Verifier runs on the untrusted cloud, the verifier system
may be tampered. Here, the user trusts the TEE (through attesta-
tion); putting the verifier inside the TEE can make sure that the
verification process is intact and trustworthy. By checking the
report and attestation result, the user can decide whether to trust
the final parameters. The overall process is depicted in Fig. 1.
Note that this scenario is similar to the one presented in [90].
The notions used in this paper is shown in Table I

User: The user selects a training dataset D and a model type
M 1 provided by the cloud service as the target classifier. D
can be a dataset collected by the user, or a public dataset of
the user’s choice (e.g., UTKFace [109]). The user also specifies
the intended ML task Task (e.g., gender prediction) and the
required training epochsn.D is then sent to the cloud by the user,
or downloaded from a third party by the cloud; User’s choices of
M, n and Task are sent to the cloud as well (STEP 1 in Fig. 1).
Note that this is the typical scenario in modern MLaaS platforms,

1.We use M to represent both a model and a model type in this paper.

Fig. 1. Overview; Model Trainer and Verifier are co-located.

TABLE I
LIST OF NOTATIONS

such as Amazon Machine Learning Services2 and Google Cloud
AI.3 After that, the user waits for the training result and report
from the verifier.

Model Trainer: Given a training dataset D provided by the
user, the MLaaS model trainer trainsM forn epochs with hyper-
parameter settings λ on GPUs (STEP 2). The parameters of M
after the ith epoch is denoted as Pi. Then, the parameter updates
forn epochsP = {P1, . . . ,Pn} is sent to the verifier inside TEE
all together for verification. Besides P , the model trainer also
sends Task, M, and n to the verifier (STEP 3).

Verifier: After receiving Task andP , the verifier can collect a
dataset (DV erifier) on his/her own or use existing datasets with
respect to Task, as a preparation for the verification process.
DV erifier can come from the same or different distribution of
D. In machine learning, it is common to adopt well-known
models (e.g., VGG16 [85]) pretrained on large datasets (e.g.,
ImageNet [29]) and apply transfer learning [48] to obtain a
new model for related sub-tasks (e.g., animal classification).
Therefore, we assume that the verifier possesses a set of such
pretrained models, and the best-match can be used for verifica-
tion purposes. Based on DV erifier, the verifier verifies P using
a system S and generates a report R containing information
of P , Task, M and n (STEP 4), which shows the verification
result about whether P is the result of a faithful training process.
R is signed using the private key of the verifier to ensure its
integrity. Then, the final parameters Pn and the report R are
sent to the user (STEP 5). S should be run inside a Trusted

2.https://aws.amazon.com/machine-learning
3.https://cloud.google.com/products/ai

https://aws.amazon.com/machine-learning
https://cloud.google.com/products/ai


ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1035

Execution Environment (TEE) to make sure that the verification
process can be trusted. For example, Intel SGX [65] with remote
attestation [6] is one option. Note that though transient execution
attacks can be used to steal the secrets inside SGX enclaves
and forge signatures [20], Intel processors are being patched.
Therefore, we consider such attacks to be out-of-scope.

Necessity of the Verifier: It might be more straightforward if
the cloud sends P to the user directly, without the participation
of the verifier. However, this workflow can cause two problems.
First, the user does not trust the cloud. Without the support of
the verifier, the user has to verify the training results on his/her
own. This means the user needs to train the classifier from scratch
and compare, i.e., he/she is doing the exact same computation as
the cloud, which loses the purpose of using the cloud. Second,
the cloud does not trust the user, either. Sending all parameter
updates at each epoch to the user may leak the hyper-parameters
during training used by the cloud such as the batch size [74], [97],
which may be deemed confidential and valuable. By introducing
the verifier, the user can make sure that P returned by the cloud
can be trusted, while the cloud does not have to worry about
potential information leakage.

B. Problem Definition

The problem we are trying to solve is to design a system S
on the verifier’s side, which can reliably determine whether P is
the legitimate result of training M targeting Task for n epochs.
Formally

S(P, Task,M, n) → {True, False} (1)

Here, True means P is a legitimate training result, while False
means otherwise.

Assumptions: We assume that the user chooses a classifier
M that has m trainable parameters, and it is requested to be
trained for n epochs. The structure of M is fixed and known
to all parties including the model trainer and the verifier; it can
be a well-known one (e.g., VGG16 [85]) or a user-defined one.
We denote the intended ML task of the user as TaskUser. We
also assume that the verifier possesses a dataset DV erifier and
PV erifier (parameter updates of M trained on DV erifier for n
epochs) for verification purposes. In most parts of the paper, we
assume DV erifier either is the same as DUser or follows the
same distribution of DUser (See Section VI-B for more details).
However, in Section VI-F, we show that this assumption can be
further relaxed.

IV. THREAT MODEL

In this paper, the attacker is a lazy model trainer, who wants
to bypass the verification of the co-located verifier inside TEE
with minimal effort in the training process, in order to save
computation cost.

We assume that the attacker possesses PPrior; PPrior is a
result of training another classifier M′ for n′ epochs on DPrior

targetingTaskPrior, andM′ hasm′ trainable parameters. Here,
M′ shares the same structure as M since this is one of the
attacker’s knowledge. The attacker utilizes the prior knowledge
of PPrior to construct PAttacker. To achieve the goal of saving

Fig. 2. Illustration of the attacks. In A2/A3, x = 1, . . . , n′. m′, n′ represent
PPrior , while m,n represent PAttacker .

computation cost, we consider the following three types of
attacks, where the attacker may re-use existing training results
for a different task (A1), or only train a few epochs and then
create artificial weights (A2/A3), given the knowledge of the
attacker and approaches taken by the attacker (Fig. 2):

Attacker 1 (A1). Direct Copy (TaskPrior �= TaskUser,m′ �=
m, n′ = n): PPrior is the result of training the same M as
the user on another dataset DPrior targeting a different task
TaskPrior for n epochs, i.e., TaskPrior �= TaskUser. Note
that DPrior and DUser are completely different datasets; there
is no connection between them. For instance, TaskUser can be
a CIFAR-10 classification with Lenet5 and TaskPrior can be a
UTKFace classification with Lenet5. In this case,m′ �= m (since
data points in DPrior are in different dimension from those in
DUser) and n′ = n. The attacker wants to construct PAttacker

based on PPrior with simple operations, such as truncation and
duplication. To reuse PPrior, if m′ > m, the attacker selects
the first m parameters of PPrior as PAttacker; If m′ < m, the
attacker keeps copying PPrior until the resulting parameter
number is larger than m, then select the first m parameters as
PAttacker.

Attacker 2 (A2). Random Noise (TaskPrior = TaskUser,
m′ = m, n′ < n): PPrior is the result of training M for
n′ epochs (n′ < n) on DPrior following the same distribu-
tion of DUser, and TaskPrior = TaskUser. This also means
|PPrior| < |PAttacker|. In this case,m′ = m,n′ < n. In another
way, the attacker trains fewer epochs to fool the verifier that
he/she completes the training. In detail, the attacker tries to
generate random values from a certain distribution to mimic the
missing parameter updates in PPrior. To fabricate PAttacker,
for each parameter in PPrior, the attacker first extracts the n′

values representing its value after each training epoch as p1, and
calculate the mean (μ) and standard deviation (σ). After that,
the attacker draws n− n′ points from the Gaussian distribution
N(μ, σ) as p2. Then the attacker concatenates p1 and p2 (p1‖p2)



1036 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

as the parameter updates for this parameter. The process is
repeated for all parameters to obtain PAttacker.

Attacker 3 (A3). Curve-Fitting (TaskPrior = TaskUser,
m′ = m, n′ < n): In A3, PPrior has the same properties as
that in A2 (m′ = m, n′ < n); but in A3, the attacker uses curve-
fitting techniques to learn the trend of PPrior, and construct
PAttacker based on the curve-fitting results. To perform the
curve fitting, the attacker first extracts the n′ values for each
parameter after each epoch as p1 (same as in A2), then apply the
curve fitting methods on the n′ values. In particular, the attacker
first applies theExponential function (y = a× exp(−bx) + c;
a, b, c are constants); if the optimal parameters cannot be found
after certain number of iterations (maxfev), the attacker ap-
plies the LinearRegression function (y = ax+ b; a, b are
constants). After finding the corresponding curveC, the attacker
records the values of {Cn′+1, . . . , Cn} as p2. Then, the attacker
concatenates p1 and p2 (p1‖p2) as the parameter updates for
this parameter. This process is repeated for all the parameters to
construct PAttacker.

Other Potential Attackers: Note that there might be other
potential attack mechanisms; we defer the discussion on this
to Section IX.

Goals and Non-Goals of VERITRAIN : According to our threat
models, we design a verification system from the verifier’s
perspective (dubbed VERITRAIN). The goal of VERITRAIN is to
detect the three attacks presented in Section IV. Admittedly, the
attacker may launch more sophisticated attacks, such as back-
door attacks [8], [45], [99], [105] (see Section IX). However,
these attacks require more effort to construct, which contradicts
the goal of the attacker: spend as little effort as possible to
produce legitimate parameters to pass the verification. Also,
since VERITRAIN is run inside a TEE, the attacker cannot implant
backdoors into the system. Therefore, we consider such attacks
to be out-of-scope; VERITRAIN is not designed to detect such
attacks.

V. VERITRAIN

A. Overview

Overall Design: The input of VERITRAIN is ΔP , which are
the parameter updates (differences) in P 4. If the parameters
are fabricated, they will exhibit certain characteristics that are
different from legitimate ones. To capture such features, we
design VERITRAIN with two modules: the AutoEncoder (AE)
that computes the reconstruction errors, and the Stationarity
Examiner (SE) that performs the hypothesis testing. Intuitively,
the fabricated parameters will have large reconstruction errors
compared to normal ones in the AE since a well-trained AE
is able to recognize anomalies [41], [102], [107], [111], and
will have different distributions compared to normal ones in the
SE since artificially created parameters will not have the same
stochasticity. ΔP will be examined by both modules; as long as
one of the modules reports that ΔP is an anomaly, VERITRAIN

rejects it. VERITRAIN is expected to be run inside TEEs, which

4.Here we useΔP instead ofP becauseP is more related to the initial settings
when starting the training, while ΔP is more independent.

Fig. 3. Overall design of VERITRAIN.

guarantees the integrity of the verification process. The design
of VERITRAIN is depicted in Fig. 3.

B. Autoencoder

We design an AutoEncoder (AE) against the direct-copy
attacker (A1) and the random-noise attacker (A2), which serves
as an anomaly detector. AE consists of two components: Encoder
and Decoder. The Encoder projects the input onto the latent
space, while the Decoder converts the latent vectors back. The
general intuition behind AE is that the parameter updates gener-
ated by A1 and A2 are anomalies that have large reconstruction
errors compared to those from a faithfully training process.

In the training phase, we use the l2-norm based mean squared
error (MSE) as the loss function to train AE: LMSE = ||x−
x′||22, where x is the input of AE, and x′ is the reconstruction of
x. In the testing phase, we also use the MSE between x′ and x
to measure the reconstruction error, which is further used as the
anomaly score (AS) of the anomaly detection process. The input
of AE isΔP , which are the parameter updates (differences) inP ,
i.e., ΔPi = Pi+1 − Pi. For each ΔPi, there is an AS reported
by AE; we use the average AS of all ΔPi as the final AS for
ΔP . Intuitively, if P is a result of a faithful training process, the
AS will be low; on the other hand, for PAttacker, the AS will be
high. Therefore, when the AS is higher than a preset threshold,
it will be considered as an anomaly and be rejected.

AE Structure: We model the Encoder with a multi-layer
perceptron (MLP). Suppose that the classifier M has p trainable
parameters, and the latent vector Z has q dimensions. We use a
three-layer MLP as the Encoder: the first layer transforms p to a
256-dimension vector; the second layer reduces the dimension
to 64; the third layer further converts it to q dimensions. Similar
to the Encoder, the Decoder is also a three-layer MLP, which
is almost the reversed structure of the Encoder: the first layer
transforms the latent vector (q dimensions) to a 64-dimension
vector; the second layer converts the dimension to 256; the third
layer further extends it to p dimensions, the same as the input of
the Encoder.

Grouping Before Training: Normally, the parameter changes
are large during the first few epochs, and the changes become
smaller during the training. As a result, using only one AE for
all n epochs may not be optimal. Therefore, we first separate
ΔP into g groups (g is set by the verifier), then train one AE for
each group; in the testing phase, we average the AS within each
group to get the final AS for that group. If the final AS of any of
the g groups is too high, ΔP is considered as an anomaly. We
model the problem of finding the splitting points for grouping
as a change point detection (CPD) problem. CPD is the problem



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1037

Fig. 4. An example of CPD for ΔP when g = 4.

Fig. 5. Comparison between a normal training process and a curve-fitting
process (A3).

of finding abrupt changes in a given time series [5], [51]. We
use the change points found by existing CPD algorithms as our
splitting points for grouping purposes. An example of CPD for
ΔP when n = 100 is shown in Fig. 4. P has 100 epochs, so
ΔP has 99 epochs. In this example, we set g = 4 to split ΔP
into 4 groups. As shown in the figure, the binary segmentation
method finds the breakpoints to be [5, 10, 45]; therefore, ΔP is
separated into 4 groups accordingly. Each group of AE handles
epochs [1, 5], [6, 10], [11, 45], [46, 99], respectively.

C. Stationarity Examiner

AE can be applied to detect anomalies that have large re-
construction errors; PAttacker crafted by A1 and A2 can be
detected by AE since they generate large noises. However, the
curve-fitting attacker (A3) is able to utilize prior knowledge
to create PAttacker that is quite similar to a normal P . The
comparison of the ΔP fabricated by A3 and the normal ΔP is
shown in Fig. 5(a). As shown in the figure, the two curves are
very close to each other; as a result, such PAttacker can deceive
AE. Therefore, to detect A3, we design our second module,
Stationarity Examiner (SE).

The intuition behind SE is that the ML training process is
stochastic. In the normal training process, the parameters of the
classifier will be fluctuating, due to the stochastic nature of the
training process. For PAttacker that are fabricated by A3, there
are inherited trends or patterns. As shown in Fig. 5(a), the ΔP
of the normal training process is stochastic, i.e., it is less stable
than the smooth curve-fitting process. Therefore, by capturing
such patterns, we should be able to reliably detect the PAttacker

crafted by A3.
To detect whether a given ΔP is fabricated by Attacker 3, we

take the following two steps:

Step 1. ADF Test: We first utilize the ADF test (details
in Section II) on each parameter to detect whether the parameter
update sequence is stationary. If the sequence is stationary, it
means that it lacks stochasticity, which further indicates that it
is not generated from a legitimate training process.

Step 2. Jensen–Shannon Distance (JSD): Since the verifier
possesses PV erifier, to capture the differences of pvalue dis-
tribution, we calculate the JSD between pvalue distribution of
ΔP and ΔPV erifier. Jensen–Shannon distance is the square
root of the Jensen–Shannon divergence [32], [59], [75], which
is a symmetrized and smoothed version of the Kullback-Leibler
divergence [53] and is commonly used to measure the similarity
between two distributions. Formally, the JSD distance is defined
as follows:

JSD(u, v) =

√
1

2
(KL(u, r) +KL(v, r))

where u, v are two probability distributions; r = 1
2 (u+ v);

KL stands for the Kullback-Leibler divergence. When
JSD(Distpvalue(ΔP), Distpvalue(ΔPV erifier)) is larger
than a preset threshold, it means that the pvalue distribution of
ΔP and ΔPV erifier are dissimilar, which further indicates that
ΔP is very likely to be a fabricated result.

Suppose that ΔP contains the parameter updates of m pa-
rameters and n epochs in total. Therefore, ΔP is a m× (n− 1)
matrix. To perform the ADF test, for each parameter, we first ex-
tract then− 1values associated with it after each training epoch.
After that, we run the ADF test on the n− 1 values to obtain
the pvalue. This process is repeated for all m parameters, and a
list containing m pvalues is obtained. After getting the pvalues
for all the parameters in ΔP , we compute the distribution of
pvalues (Distpvalue). The distribution of pvalues ofΔPAttacker

(Distpvalue(ΔPAttacker)) should be quite different from that of
a legitimate ΔP . A comparison of pvalue distributions between
a normal training process and a curve-fitting process is shown
in Fig. 5(b). It is clear that for the fabricated ΔP , most of the
pvalues are close to zero, while those of a benign ΔP spread
across [0,1]. Therefore, the pvalue distribution can be used as
evidence to determine whether ΔP is fabricated by A3.

D. Training VERITRAIN

Before applying VERITRAIN to test the legitimacy of ΔP
submitted by the cloud, the verifier needs to have a trained VER-
ITRAIN. Here, the VERITRAIN is pre-trained using a collection of
popular models (e.g., VGG16) and datasets (e.g., UTKFace) to
obtain the PV erifier. Then, when the verifier receives the ΔP
from the cloud, the corresponding pre-trained VERITRAIN and
ΔPV erifier will be used to determine whether it is a legitimate
result. In the evaluation (Section VI), we demonstrate the ef-
fectiveness of VERITRAIN by testing datasets with the same and
different distributions.

E. Implementation

AutoEncoder (AE): AE is implemented using Keras [23] with
the Tensorflow backend [1] in Python, and follows the structure
mentioned in Section V-B. The change point detection (CPD) is



1038 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

implemented using the binary segmentation method [34], [84]
contained in the ruptures module [92]. We train AE using
the mean squared error (MSE) as the loss function with the
Adam optimizer. The latent dimension is set to 16, and the group
number is set to four5. We train the AE of each group for 50
epochs with a batch size of 16.

Stationarity Examiner (SE): SE is also implemented in
Python. The ADF test is implemented using the adfuller
function contained in the statsmodels module. To calcu-
late the JSD between the given ΔP and ΔPV erifier, we first
obtain the pvalue lists for ΔP and ΔPV erifier, respectively;
then we obtain the pvalue distributions (Distpvalue) using the
histogram function contained in the numpy module. After
that, we compute the JSD of the two distributions using the
jensenshannon function in the scipy module.

VI. EVALUATION

In this section, we perform the evaluation on popular ML
datasets and show that VERITRAIN is effective in detecting the
attacks (Section IV), while allowing the normal parameters
obtained through faithful training to pass the tests.

A. Experimental Setup

The experiments presented in this section are conducted on a
server equipped with 4 NVIDIA GeForce GTX 1080 Ti GPUs,
since we are only evaluating the correctness of VERITRAIN. The
implementation of VERITRAIN with SGX and the performance
(overhead) evaluation are presented in Section VIII.

Datasets: In our experiment, we use four datasets: CIFAR-
10 [52], UTKFace [109], Insta-LA [7] and Insta-London [7].
� CIFAR-10 is a benchmark dataset, which is frequently used

to evaluate image recognition classifiers. It contains 60,000
32× 32 color images, which are equally distributed across
the 10 classes.

� UTKFace is a dataset of over 20,000 face images; each
image is labeled with age, gender, and race. We randomly
select 20,000 images as our dataset. The ML task is gender
prediction.

� Insta-LA and Insta-London [7] contain samples of Insta-
gram users’ location check-in data from Los Angeles and
London, respectively. Each check-in sample can be consid-
ered as a (locid, time, catid) tuple: locid is a location id,
time is the time of the check-in, and catid is the category
of the location (e.g., restaurant). There are 8 categories in
total. We use the number of check-ins recorded in each hour
for each location as the feature vector, and the location’s
category as the label. Therefore, the classification task is
to predict the category (8 classes), given the features (24
features). We also filter out locations that have less than 50
check-ins. Finally, we have 16,028 locations for Insta-LA,
and 9,632 locations for Insta-London. Note that these two
datasets are used for our different-distribution experiments
in Section VI-F.

5.The group number can be set according to the threat model and the require-
ment of the user. For example, to make the attack harder, the group number can
be set to a larger number (e.g., 10).

Models: We train ML models using each dataset and
record the parameters, which are later used by VERITRAIN for
anomaly detection. The models used in our evaluation include
Lenet5 [56], VGGFace [78], VGG16 [85] and an MLP model.
All classifiers are implemented using Keras with the Tensorflow
backend (version 1.15.3). When training the classifiers, we use
the Adam optimizer with a learning rate of 0.001 and batch size
of 64.
� We use a Lenet5 model for UTKFace and CIFAR-10,

respectively. The images are rescaled to 32x32 RGB pixels
to be used with Lenet5.

� We use a pre-trained VGGFace model as the feature ex-
tractor for UTKFace. We rescale the images into 128x128
RGB pixels to be used with VGGFace. All parameters of
the VGGFace model are frozen, meaning that they are
not trainable. We add a classification layer on top of the
pre-trained VGGFace model for gender prediction.

� We extract block 1 to block 3 of a pre-trained VGG16 model
and add a global pooling layer, 2 FC layers followed by a
Dropout layer to be used with the CIFAR-10 dataset. We
rescale the CIFAR-10 images into 128x128 RGB pixels to
be used with VGG16. The parameters of the pre-trained
VGG16 model are frozen before the training.

� For Insta-LA and Insta-London, we use a 3-layer MLP
model with 40, 30, and 8 neurons, respectively. The eval-
uation of them are presented in Section VI-F.

B. Evaluation Scenarios

In the evaluation, we consider two types of scenarios: normal
scenarios and attack scenarios. In the normal scenarios, the
cloud conducts the training faithfully and submits ΔPUser to
VERITRAIN, while in the attack scenarios, it crafts ΔPAttacker

and submits it. We consider the following scenarios (2 normal
+ 3 attack) in our evaluation.

Normal Scenarios: We first consider the normal scenarios,
where the cloud faithfully conducts the training and submits the
legitimate ΔP to the verifier.

a) Normal 1 (N1). same dataset: First, we consider the cases
where the user and the verifier have exactly the same dataset
(DV erifier = DUser). For each testcase, we train the classifiers
for 10 times, 100 epoch each, to obtain 10 sets of P . After
that, we use ΔP to evaluate VERITRAIN. Therefore, in this case,
ΔPV erifier = ΔPUser = ΔP .

b) Normal 2 (N2). same distribution: Next, we evaluate the
scenario where the dataset used by the verifier (DV erifier) and
the dataset used by the user (DUser) are not the same, but they
follow the same distribution. In this experiment, we split CIFAR-
10 and UTKFace into two sub-datasets (A and B), respectively.
Each sub-dataset of CIFAR-10 contains 30,000 images, while
each of the subsets of UTKFace contains 10,000 face images.
The sub-dataset A is used as DV erifier, while the sub-dataset
B is used as DUser. We train the classifiers with subset A for
10 times, 100 epoch each, and obtain 10 sets of PA. We repeat
this process for subset B, and obtain 10 sets of PB . Therefore,
ΔPV erifier = ΔPA, and ΔPUser = ΔPB .



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1039

Fig. 6. AutoEncoder evaluation: reconstruction errors (anomaly scores).

TABLE II
MODELS AND DATASETS USED IN THE EVALUATION

Attack Scenarios: Next, we consider the attack scenarios
presented in Section IV, where the cloud only puts minimal
effort in the training process and constructs ΔPAttacker in order
to fool VERITRAIN.

a) Attack 1 (A1). direct copy: For A1, we use Lenet5 as
our classifier M, UTKFace as DV erifier, and CIFAR-10 as
DPrior. The attacker constructs ΔPAttacker after truncating or
duplicating ΔPPrior (details in Section IV). We use the trained
AE in N1 to get the reconstruction error of AE.

b) Attack 2 (A2). random noise: For A2, we generate the
ΔPAttacker for all 4 testcases presented in Table II using the
approaches presented in Section IV. The first n′ parameters are
copied from the N2 scenario. Then, we use the trained AE in N1
to get the reconstruction error of AE.

c) Attack 3 (A3). curve-fitting: for A3, we generate
ΔPAttacker for all 4 testcases presented in Table II using the
approaches presented in Section IV. Similar to A2, the first n′

parameters are copied from the N2 scenario. We measure the
JSD between ΔPV erifier and ΔPAttacker to evaluate SE.

Parameter settings: In our experiment, n is set to 100, so P
has 100 epochs and ΔP has 99 epochs. n′ is set to 10, so A2 and
A3 use legitimate parameters for the first 10 epochs. maxfev
is set to 5000 for A3. The values of m depend on the classifiers
and datasets. We present the number of trainable parameters of
our datasets in Table II.

TABLE III
SPLITTING POINTS FOR AE GROUPING. {g1, g2, g3} MEANS THAT THE 4

GROUPS OF AE HANDLE EPOCHS [1, g1], [g1+1, g2], [g2+1, g3] AND [g3+1,
99] OF ΔP , RESPECTIVELY

C. Autoencoder

We first evaluate the performance of the AutoEncoder (AE).
For AE, the training set is ΔPV erifier generated by training
M on DV erifier, while the test set is the ΔP submitted by
the cloud. In the normal scenarios, the cloud submits ΔPUser,
while in the attack scenarios, it uploads ΔPAttacker. Ideally, the
reconstruction error (anomaly score) of ΔPUser should be low,
while that of ΔPAttacker should be high.

Scenarios: We consider the following four scenarios (2 nor-
mal, 2 attack) in our evaluation. As presented in Section VI-B,
we have 10 sets of ΔP for both normal scenarios and attack
scenarios. For N1: same dataset, we train AE using ΔP , and
measure the reconstruction error of ΔP . For N2: same distri-
bution, we train the AutoEncoder with ΔPA, and measure the
reconstruction error using ΔPB . For the attack scenarios, we
consider A1: direct copy and A2: random noise. We generate
the ΔPAttacker using the approaches presented in Section IV.

Results: The reconstruction errors of AE in the 2 normal
scenarios and the A1 and A2 scenarios are presented in Fig.
6. As mentioned in Section V-B, we use the CPD algorithm
to find the splitting points for separating ΔP into groups. The
splitting points for grouping are shown in Table III. The reported
numbers are the average values and one standard deviation over



1040 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 7. Heatmap of Jensen-Shannon Distance Matrix: CIFAR-10 + VGG16.

Fig. 8. Heatmap of Jensen-Shannon Distance Matrix: CIFAR-10 + Lenet5.

10 rounds of data. For the normal scenarios, as shown in Fig. 6,
the reconstruction errors of N1 are smaller than those of N2 in
almost all cases.

For A1 (Fig. 6(d)), it is clear that the reconstruction errors of
groups 1 and 2 are at least 10 times higher than the numbers
of N1 and N2, which means that AE can reliably detect A1.
The tests results for A2 are shown in Fig. 6. In Fig. 6(b), the
A2 bars are the same as the N2 bars, since the attacker uses the
legitimate parameters for the first 10 epochs (Group 1 and 2 for
CIFAR10+Lenet5, see Table III), as described in Section VI-B.
AE can detect A2 in Group 3 and 4, since the A2 bars are much
larger than those of N1 and N2. For other testcases, the A2
bars are always higher than those of N1 and N2 in each group,
meaning that parameter updates crafted by A2 cannot deceive
AEs.

D. Stationarity Examiner

We further evaluate the performance of the Stationarity Exam-
iner (SE). For each testcase, after obtaining the ΔP , we conduct
the ADF test to obtain the pvalues and compute the JSD between
the ΔP and ΔPV erifier. Ideally, in the normal scenarios, the
ΔPUser should pass the test of the Stationarity Examiner, i.e.,
has a low JSD with the ΔPV erifier, while the JSD between
ΔPV erifier and ΔPAttacker should be large.

Scenarios: We consider the following three scenarios (2 nor-
mal, 1 attack) in our evaluation. For the 2 normal scenarios, we

use the same settings as in Section VI-C, and we measure the
JSD betweenΔPV erifier andΔPUser. For attack scenarios, we
consider A3: curve-fitting. We generate the ΔPAttacker for each
testcases using the approaches presented in Section IV.

Results: As presented in Section VI-B, we have 10 sets of
ΔP for both normal scenarios and attack scenarios. To better
present the result, we plot the JSD between the ΔPV erifier

and ΔP being tested as heatmaps in Figs. 7–10. X axis means
ΔPV erifier; Y axis means ΔP . Cell (i, j) means the JSD
between the ith set of ΔPV erifier and the jth set of ΔP being
tested. Darker color means larger distance between ΔP and
ΔPV erifier, which indicates that ΔP is likely to be a fabricated
result.

The left figures represent the JSD between ΔPV erifier and
ΔPUser in N1: same dataset scenario. These heatmaps are
symmetric. As shown in the figures, the JSDs are small for
all testcases, which is expected. The middle figures represent
the JSD between ΔPV erifier and ΔPUser when DV erifier

and DUser follow the same distribution (N2). These heatmaps
are asymmetric. We can see that for CIFAR10+Lenet5 (Fig.
8(a)), the JSDs are about twice as high as those in N1 (Fig.
8(b)); for others, the JSDs are about the same compared to
those in N1. The colors of all middle figures are light, which
means that the ΔP in the normal cases can pass the tests.
The right figures represent the JSD between ΔPV erifier and
ΔPAttacker crafted by A3 (curve-fitting). It is clear that for
all testcases the JSDs of A3 are at least 3 times higher than the



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1041

Fig. 9. Heatmap of Jensen-Shannon Distance Matrix: UTKFace + VGGFace.

Fig. 10. Heatmap of Jensen-Shannon Distance Matrix: UTKFace + Lenet5.

normal cases; for CIFAR10+VGG16, it is about 10 times higher.
Therefore, the SE can reliably detect the artificialΔP fabricated
by A3.

E. Subset of Parameters

To reduce the verification overhead, the user may want to only
use a subset of parameters for verification. In this subsection, we
study the performance of VERITRAIN when changing the number
of parameters used in the verification. In particular, we measure
the performance when selecting 5%, 10%, 20%, 50% of the
parameters in the CIFAR-10+Lenet5 case.

For AE, we consider three scenarios: N1, N2, and A2. The
mean and one standard deviation of reconstruction errors over
10 rounds are shown in Fig. 11. Note that A2 uses legitimate
parameters for Group 1 and 2 (first 10 epochs), and crafts
parameters for Group 3 and 4. It is clear that in all testcases,
the first two bars (N1 and N2) of Group 3 and Group 4 are
always smaller than the third (A2); therefore, AE is effective in
detecting A2 when only selecting a subset of parameters.

For SE, we consider the same scenarios as in Section VI-D:
N1, N2 and A3. Similar to the procedures presented in Sec-
tion VI-D, for different subsets of parameters, we conduct the

TABLE IV
JSD WHEN SELECTING A SUBSET OF PARAMETERS

ADF test and compute the JSD between the distribution of pval-
ues. For each subset (e.g., 5%), we are able to obtain three 10x10
JSD matrices (similar to Fig. 8). For each of the three matrices,
we further compute the average value of the 100 numbers after
removing the zero values (diagonal values in N1) and present the
average numbers in Table IV. As shown in the table, the JSDs of
the first two cases (N1 and N2) are always smaller than 0.078 in
the 4 testcases, while the JSDs of A3 are more than 3 times
higher (≥0.254). Therefore, SE remains effective even if only
a subset of parameters are selected for verification. Moreover,
we find that given more parameters, the JSDs of the first two
cases will be smaller, indicating that increasing the number of
parameters for testing can lower the JSD in the normal cases,
thus enhance the detection accuracy of SE.

According to our evaluation, for the 4 test cases, selecting
a subset of parameters does not impact the performance of
VERITRAIN much; VERITRAIN can still effectively detect the



1042 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 11. Performance of AE when selecting a subset of parameters. Note that A2 uses legitimate parameters in Group 1 & 2.

Fig. 12. Different-distribution datasets: AE evaluation.

attacks. Therefore, to reduce the verification overhead, the user
may choose to verify a subset of parameters, instead of all, while
maintaining legitimacy.

F. Different-Distribution Datasets

So far, we have only evaluated VERITRAIN whenDV erifier =
DUser (N1), DV erifier and DUser follow the same distribution
(N2). In this subsection, we further evaluate VERITRAIN when
DV erifier andDUser follow different distributions but target the
same ML task.

First, we repeat the evaluation of AE for the 3 cases (N1,
N2, A2) on the Insta-LA dataset. Then, we reuse the trained AE
and use Insta-London as DUser to measure the reconstruction
error of AE; in this case, DV erifier and DUser follow different
distributions. The results are shown in Fig. 12. Note that the
splitting points for grouping are {5, 10, 45}; Therefore, for
Group 1 and 2 (first 10 epochs), A2 uses legitimate parameters.
As shown in the figure, in Group 3 and 4, the A2 bar is always the
highest, and it is at least one magnitude larger than others. This

result confirms that our AE-based approach also works when
DV erifier and DUser follow different distributions.

We also evaluate the performance of SE when DV erifier

and DUser follow different distributions. We use the same
methods as in Section VI-E to calculate the average JSDs; the
result are 0.101, 0.102, 0.256 and 0.105 for N1, N2, A3, and
different-distribution datasets, respectively. The average JSD
of different-distribution datasets is slightly higher than the two
normal scenario cases, but it is still a lot lower than that of A3.

Based on our evaluation, we confirm that VERITRAIN re-
mains effective when DV erifier and DUser follow different
distributions but target the same ML task; these legitimate
parameters can pass the tests successfully. This indicates that
VERITRAIN can perform verification and tolerate differences
even ifDV erifier does not follow the same distribution asDUser .

G. Threshold Selection

To showcase how a threshold can be selected for VERITRAIN,
we use the data generated in Section VI-C and Section VI-D
for UTKFace + Lenet5 to plot the Precision-Recall curves.
Here, the positive samples are fabricated parameters (A2 for
AE, A3 for SE), while the negative samples are the normal
parameters (N1, N2). As shown in Fig. 13, different groups
of AEs require different threshold settings: for Group 1, it is
relatively easy to select a threshold between 0.005 to 0.030 to
guarantee perfect Precision and Recall; for other groups, there
are clear tradeoffs between Precision and Recall. The verifier can
choose to either maximize Precision (minimize false positives)
or maximize Recall (minimize false negatives). For SE, it is clear
that choosing a threshold between 0.10 to 0.40 would achieve
100% Precision and Recall.



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1043

Fig. 13. Threshold selection experiment.

VII. ROBUSTNESS OF VERITRAIN

So far, we have shown that VERITRAIN is effective against
the considered attacks. In this section, we investigate the robust-
ness of VERITRAIN. In particular, we are interested in whether
VERITRAIN is robust against adversarial samples6.

Assumptions: We assume that the attacker knows the struc-
tures and parameters of AutoEncoders, which is the white-box
setting. Unlike traditional adversarial samples on images [17],
[42], [63], [87] where the noise added on images need to be
imperceptible, in our scenario, the inputs are parameter updates
(P); the adversary does not need to worry about the magnitude
of noise since there is no bound for the values. Therefore, the
attacker can add arbitrary noises to fool VERITRAIN.

Generating Adversarial Samples: The attacker is a lazy model
trainer, who wants to bypass the verification with minimal effort.
Therefore, the attacker starts from the three attack scenarios
presented in Section VI-B to constructΔPAttacker. The attacker
applies existing methods to generate the adversarial samples
ΔPAdv from ΔPAttacker, in order to fool the AutoEncoders.
The goal of the attacker is to generate adversarial samples,
ΔPAdv , from ΔPAttacker to minimize the reconstruction error
on the pre-trained AutoEncoder. Suppose the noise added is
δ, and the maximum perturbation is ε. We have the following
optimization problem

min
δ

LAE s.t. ||δ||∞ ≤ ε (2)

LAE = Dec(Enc(ΔPAdv)) (3)

where ΔPAdv = ΔPAttacker + δ, Enc() and Dec() are en-
coder/decoder functions of the AutoEncoder, || � ||p is the lp-
norm. Here we adopt the PGD method [63] to generate adver-
sarial samples. Since PGD tries to maximize the loss function,
we set loss = −LAE , in order to find the adversarial samples
that minimize the reconstruction error for AutoEncoders.

Evaluation: For evaluation, we use the CIFAR-10 + Lenet5
dataset. The attacker starts from the A1 and A2 scenarios, and
crafts ΔPAdv from ΔPAttacker using the PGD method. Specif-
ically, we use ε ∈ [0.1, 0.2, . . ., 1.0] and apply the PGD method
on the AE of each group to construct the adversarial samples.

First, we measure the reconstruction errors of AEs. The results
of AEs are shown in Fig. 14. In the figures, the dashed and
dotted lines represent the reconstruction errors of N1 and N2,
respectively. As shown in the figures, the adversarial samples

6.Most of the adversarial samples are designed for deep learning; we are not
aware of any such techniques for hypothesis testing adopted in this paper. Thus,
we focus on adversarial samples against AEs.

Fig. 14. Reconstruction errors of AEs with adversarial samples;
A1+Adv/A2+Adv means results when feeding the adversarial samples
constructed from attack scenarios A1 and A2, respectively; N1/N2 means
results when feeding legitimate parameters in normal scenarios N1 and N2.

can obtain reconstruction errors that are even lower than the
normal scenarios (N1 and N2), thus bypassing the detection of
AEs.

We choose the best ε that can craft adversarial samples with
the lowest reconstruction errors for each group, then we apply the
Stationarity Examiner on the adversarial samples. For A1+Adv,
we choose ε1 = 0.3; for A2+Adv, we choose ε2 = 0.5. The
heatmaps of the JSD matrix with adversarial samples are shown
in Fig. 15. Compared to Fig. 8, the adversarial samples (ΔPAdv)
have larger distances from ΔPV erifier than A3 (Fig. 8(c)), thus
they are easier to detect by SEs than A3. Therefore, although
the adversarial samples can bypass AEs, they cannot evade the
detection of SEs.

Summary: According to our evaluations, the attacker can
utilize existing methods such as PGD to generate adversarial
samples to circumvent the AEs effectively. However, the adver-
sarial samples cannot evade the detection of SEs; the adversary
needs to work harder to bypass both AEs and SEs. There is
a tradeoff between the attacker’s effort and gain for fooling
VERITRAIN; we discuss this in Section IX.

VIII. IMPLEMENTATION WITH INTEL SGX

VERITRAIN should be run inside TEEs to ensure the integrity
of the verification process. In this section, we present the imple-
mentation details of VERITRAIN with Intel SGX, as well as the
evaluation of the verification cost.



1044 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 15. Heatmaps of JSD Matrix with adversarial samples.

A. Implementation Details

To evaluate the real-world performance of VERITRAIN with
SGX enclaves, we adopt the Graphene-SGX [93] framework
since it allows us to run unmodified applications inside Intel
SGX. The experiments are conducted on a desktop equipped
with 12 Intel(R) Core(TM) i7-8700 CPUs. The desktop runs
Ubuntu 18.04 with kernel 5.4.71, and the kernel is patched ac-
cording to the official setup guide [26] of Graphene-SGX version
1.1. The Intel SGX SDK version is 2.11, and the Intel SGX driver
version is 2.11 as well. We implement AE and SE in two different
enclaves.

In the previous section, AE is implemented in Keras with Ten-
sorflow; here we re-implement AE in PyTorch since PyTorch is
better supported by Graphene-SGX. All the settings are the same
as in Section VI-A. The group number of AE is also set to 4. In the
training phase, trained AE models are saved locally; in the testing
phase, AE models are first loaded into the enclave, then perform
inferences. The enclave size is set to 4 G since it is the minimum
to make PyTorch work, as suggested by the Graphene-SGX
authors [27].

Fig. 16. Verification cost breakdown. In each cluster, left bar is the result of
AE, and right bar is the result of SE.

For SE, the adfuller Python function we use in the pre-
vious section is not supported by Graphene-SGX due to depen-
dency issues. To evaluate the overhead of SE, we re-implement
SE using the R language. The enclave size is set to 1 G instead
of 4 G since SE does not need to load the PyTorch library and
1 G memory is enough. The ADF test is implemented with the
adf.test function from the tseries package [91]. The
Jensen-Shannon Distance (JSD) is computed using the JSD
method from the philentropy package [31].

B. Verification Cost

To evaluate the verification cost (running time) of VERITRAIN,
we first study the time breakdown when running VERITRAIN

with SGX. After that, we study the cost when choosing a subset
of parameters in the CIFAR10+Lenet5 testcase. All the tests
were repeated 10 times, and we report the mean and one standard
deviation in the figures. We also compare the verification costs
with the time needed to train ML models on GPUs and CPUs.

Verification Cost Breakdown: The verification cost can be
divided into 3 categories: 1) initializing the enclave, 2) loading
the dataset and model, 3) running the code. The cost breakdowns
are shown in Fig. 16. For AE (the left bars), the time cost to
initialize the enclave is roughly 130 seconds, which is consistent
for all 4 testcases. For UTKFace+VGGFace, the total time for
AE is roughly 132 seconds, while that of the other three cases is
about 165 seconds. The reason is that, for UTKFace+VGGFace,
the number of trainable parameters is only 8193, which is about
one-tenth of that in other cases (shown in Table II). As a result,
the test dataset and trained AEs to be loaded are much smaller,
which leads to faster execution. The cost breakdowns of SE
are shown in the right bars of Fig. 16. The initialization time is
about 30 seconds; it is lower than that of AE, because the enclave
size is only 1 G. The total time of UTKFace+VGGFace is also
the smallest due to the smaller number of training parameters.
While AE spends most of the time on initialization, SE takes
a lot of time to perform computation, since the ADF test is
computationally intensive.

Verification Cost With Regards to the Number of Training
Parameters: We use CIFAR10+Lenet5 to evaluate the cost with
regard to the number of training parameters. We measure the



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1045

Fig. 17. Verification cost versus number of parameters.

TABLE V
VERIFICATION COST VERSUS TRAINING TIME

running time when choose 5%, 10%, 20%, 50% of the param-
eters, similar to Section VI-E. The results of AE are shown
in Fig. 17(a). As shown in the figure, the time to load AE, to
load data, and to run computation are increasing when selecting
more parameters; but the time to initialize the enclave stays at
about 130 seconds. For SE (Fig. 17(b)), the initialization time is
roughly 32 seconds, about one fourth of that in Fig. (a), due to the
different enclave sizes. When selecting more parameters to test,
the time to load data only increases by a small margin. The time
to run the computation, however, increases drastically: when
selecting 10% of the parameters, it takes only about 4 seconds to
finish the execution; when 20% and 100% parameters are used,
the time cost of finishing computations is 12 seconds, and 194
seconds, respectively. The overhead is growing exponentially
due to the nature of the ADF test and the computation of JSD.

Comparison With the Training Time: The total cost of running
AE and SE inside SGX enclaves are about 165 seconds and 240
seconds, respectively. Since AE and SE can be run in parallel,
we only consider the time cost of SE when calculating the
overall cost of VERITRAIN. We report the training time on both
GPUs and CPUs for the 4 testcases using the same settings as
in Section VI (training for 100 epochs with learning rate 0.001
and batch size 64) and the overall verification cost of VERITRAIN,
averaged over 10 rounds in Table V. The training is conducted
on a desktop equipped with 12 Intel(R) Core(TM) i7-8700 CPUs
and 4 NVIDIA GeForce GTX 1080 Ti GPUs. According to
the results, it is clear that using MLaaS (GPU machines) can
greatly reduce the time of training. For CIFAR10+VGG16 and
UTKFace+VGGFace, with verification cost, the total time is
still much smaller (<2.5%) than training directly on CPUs.
For smaller datasets and models (e.g., UTKFace+Lenet5), the
user may choose to train the model locally on CPUs since the
performance speed-up for using MLaaS is small.

IX. DISCUSSION

Limitations: VERITRAIN requires that for each (dataset,
model) pair, there is a designated set of AE and SE to validate the
training efforts. When the dataset and distribution are unknown
to the verifier, VERITRAIN may not work well. However, as we
show in Section VI-F, VERITRAIN is robust when DV erifier

and DUser follow different distributions. Moreover, transfer
learning techniques may be applied to improve the generality
of VERITRAIN to deal with unknown datasets. We leave it as our
future work.

SGX Attacks: It is known to the research community that Intel
SGX is susceptible to a list of attacks; here we discuss the three
most well-known attacks and how VERITRAIN mitigates them. 1)
Iago attacks [19]. In our implementation, we use the Graphene-
SGX framework [93], which effectively mitigates Iago attacks
by checking the system call return values. 2) Side-channel
attacks [12], [83], [94], [103]. Side-channel attacks can only
jeopardize the confidentiality of SGX applications; they cannot
change the execution flows of SGX code. Therefore, it cannot
affect the verification result of VERITRAIN. 3) Replay/Rollback
attacks [28]. For example, in our scenario, the cloud attacker may
directly send a report previously signed by the verifier to the user
to get a quick reward, instead of performing training faithfully.
To defeat this type of replay attack, the user can supply a nonce
to the cloud, and ask the cloud to send the nonce to the verifier.
Then the verifier can include this nonce in the final report. When
receiving the report, the user can check whether the nonce is
valid, thus thwarts the replay attack.

Potential Improvements: To improve the performance and
reduce the overhead, the verifier may choose to distribute the
computations of VERITRAIN and run them in parallel. For ex-
ample, multi-threading mechanisms may be used to split the
workload and run them on different threads. Using lower-level
languages (e.g., C/C++) to implement VERITRAIN may reduce
the overhead as well. Moreover, the verifier may initialize the
enclaves only once and use them for multiple rounds, instead of
initializing them every time, so that the initialization cost is paid
only once. To lower the training efforts of the verifier, state-of-
the-art techniques such as Few-shot Learning (FSL) [33] may
also be applied so that the training can be done with only a few
samples.

Other Applications: VERITRAIN is designed to establish trust
between the user and the cloud in MLaaS scenarios with regard
to the number of training epochs; however, it can also be adapted
to verify other aspects of the training process in the context of
MLaaS, such as the model type and the hyper-parameters. We
leave a thorough exploration as our future work. Note that VERI-
TRAIN cannot be applied in the federated learning (FL) scenario,
since in FL training datasets of participants are confidential;
without the knowledge of the datasets, VERITRAIN is not able to
perform verification.

Recent Advances of TEEs: Intel SGX2 [50], [64] is a set of in-
structions that enable Enclave Dynamic Memory Management.
A recent news [89] reported that Intel’s new generation of Ice
Lake Xeon processors supports 512 GB SGX enclaves. With
such a larger enclave size, it would greatly reduce the overhead of



1046 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

VERITRAIN. Recently, GPU-based TEEs are also attracting a lot
of attentions. In the academia, recent works such as Telekine [49]
and Graviton [95] implement TEEs within GPUs to better utilize
the hardware acceleration while perserves the privacy. In the
industry, companies such as NVIDIA already releases H100
GPUs [73] that supports TEEs to protect the entire workloads.
It would be also interesting to see how VERITRAIN can be
integrated with GPU-TEEs. We leave a thorough investigation
on these new TEEs as our future work.

Other Potential Attackers: Note that there might exist a real-
istic lazy attacker for the case where TaskPrior = TaskUser,
m′ = m. When n′ < n, the attacker can start training from the
nth epoch; when n′ ≥ n, the attacker can directly send the
parameters of the first n epochs. However, in this scenario,
as the training parameters are all legitimate, doing so does not
jeopardize the integrity of the training process. This is similar
to the legitimate use of transfer learning; therefore, we do not
consider it as an attack. For A2, there might exist another smarter
attacker that calculate μ and σ based on parameters from the
latter epochs rather than from all n′ epochs, since intuitively
the paramater changes are getting smaller during the training
process. In this case, we can use larger group numbers for
VERITRAIN to catch the attacks. There are counterless such
attack models; we cannot enumerate every such attacker. Instead,
what we are trying to do is to show the promising results from
VERITRAIN, and the potential that it can be improved in the future
to deal with other attackers.

Advanced attacks to fool VERITRAIN : The attacker may
utilize more advanced attacks besides adversarial samples to
bypass VERITRAIN. For example, the attacker may carefully
craft adversarial samples so that they can bypass the detection of
AEs and SEs simultaneously. However, as shown in Section VII,
crafting such adversarial samples is not easy even in the white-
box setting; in the black-box setting where the attacker does
not know the internals of the VERITRAIN, it would take a lot of
queries to construct the adversarial samples. The attacker does
not have enough incentives to do so, since the goal of the attacker
is to save computation. There is a tradeoff between the effort
needed for the attacker to fool VERITRAIN, and the verifier may
also use techniques such as adversarial training [2], [37], [63],
[80], [86], [87], [98] to enhance VERITRAIN, which makes the
attack harder. We leave a thorough evaluation of such tradeoffs
as our future work.

X. RELATED WORK

In this section, we discuss the related work of secure machine
learning, which mainly falls in three areas: secure inference
and secure training. We focus on protocols of securing neural
networks instead of other classifiers (e.g., SVM). We also discuss
attacks on DNN models.

Secure Inference: Many existing works focus on verifying
the inference of neural networks, i.e., the inference results
were generated on the given input and model correctly. These
works aim to secure the ML inference, while our work focuses
on verifying the training process. The approaches can be di-
vided into two categories: cryptographic primitives and secure
hardware.

1) Cryptographic primitives: There are a number of works
that make use of cryptopgraphic approaches [11], [15], [22],
[24], [25], [36], [38], [47], [54], [57], [60], [66], [68], [79],
[81] to secure the ML inference, such as fully homomorphic
encryption (FHE), zero-knowledge proof and secure multi-party
computation (MPC). CryptoNets [38] is the first work that
uses fully homomorphic encryption (FHE) for secure inference.
There are many follow-up works [11], [15], [24], [47], [81]
trying to optimize CryptoNets. SafetyNets [36] and vCNN [57]
were proposed for verifiable DNN execution on untrusted cloud
servers using Succinct Non-interactive ARguments of Knowl-
edge (SNARK). There are also many papers utilize MPC tech-
niques to secure ML inference [54], [60], [66], [68], [79].
However, due to the nature of cryptographic approaches, they
suffer from large overheads.

2) Secure hardware (TEE): Researchers have also used secure
hardware such as Intel SGX to verify the DNN inference while
reducing the overheads. Tramèr and Boneh propose Slalom [90],
which allows a TEE (e.g., SGX) to outsource the execution of
all linear layers in a DNN to a co-located untrusted device. In
this way, Slalom can offer verifiable inference while achieving a
performance boost. The scenario is quite similar to ours, which
uses TEEs to ensure the trustworthiness of the machine learning
process. However, we consider the ML training process, instead
of inference, and we use unsupervised ML and hypothesis testing
to lower the performance overhead, instead of cryptographic
approaches. There are other works that use TEE to secure the
ML inference [44], [46], [49].

Secure training: Only a few works focus on securing the
training process. Existing works mainly utilize cryptographic
primitives such as MPC to secure the training of neural net-
works. SecureML [68] introduces secure MPC protocols for
non-linear activation functions for neural network training and
prediction. ABY3 [67], SecureNN [96], and QUOTIENT [3]
also devise customized MPC protocols to secure DNN training.
VeriML [110] is a framework proposed for integrity assurances
and fair payments in MLaaS by applying SNARK on randomly
selected individual iterative training procedures. Zande [106]
explores the use of zk-SNARK for efficient verification of
outsourced ANN training. VerifyNet [101] is a framework for
privacy-preserving and verifiable training of neural networks
in the federating learning (FL) scenario. VerifyNet utilizes ho-
momorphic hash functions to allow the server in a federated
learning scheme to prove to the clients that the server has
correctly aggregated the gradients of all online users. Although
these methods can verify the ML execution from a theoretical
perspective, their empirical overhead is prohibitive.

Closest to our work is TrustFL [108], which was recently
proposed to ensure that participants in federated learning per-
form the training tasks as intended using TEEs. In TrustFL,
the training is outsourced to the co-located GPU for perfor-
mance, while the correctness is maintained by recomputing and
checking randomly selected rounds inside TEEs. Compared to
VERITRAIN, TrustFL incurs large overhead due to re-training the
DNN inside TEEs, while VERITRAIN only incurs small overhead
due to AE inferences and ADF tests. Moreover, TrustFL is
specifically tailored to the FL scenario and not applicable to
MLaaS.



ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1047

Attacks on DNN Models: There are a lot of works trying to
find more effective adversarial samples [13], [17], [21], [42],
[63], [69], [77], [87] to fool deep neural networks. Some re-
cent works propose mechanisms to generate adversarial images
against Variational AutoEncoders (VAE) [40], [88] to make
them generate incorrect images. In response, researchers have
also introduced defenses to make AutoEncoders more robust
against attacks [2], [37], [80], [86], [98]. Another category of
attacks against ML models is the backdoor attack [8], [45], [99],
[105], where the attacker manipulates the ML training process
to implant triggers, to make the classifier misclassify samples
with specific features. In our scenario, the goal of the attacker is
to bypass the verification with minimal training effort, which is
different from the goal of backdoor attacks.

XI. CONCLUSION

In this paper, we design and implement VERITRAIN, a frame-
work running inside TEEs for verifying the training efforts of
neural networks on the MLaaS cloud, which consists of Au-
toEncoders (AE) and Stationarity Examiners (SE). We consider
a threat model where the lazy model trainer crafts artificial
parameter updates by directly copying from a trained model
or simulating them, in order to minimize the training effort.
Through extensive evaluations, we show that VERITRAIN is
effective in detecting these abnormal parameter updates while
allowing legitimate training results to pass the tests. Even when
the attacker knows VERITRAIN as a white-box, it is hard to
generate adversarial samples to fool AEs and SEs at the same
time. We further implement VERITRAIN with Intel SGX and
demonstrate that its performance overhead is moderate.

REFERENCES

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[2] G. Adam, H. Bryan, N. See Kiong, and N. Wee Siong, “Robust-
ness of autoencoders for anomaly detection under adversarial impact,”
in Proc. AAAI Conf. Artif. Intell. (Int. Joint Conf. Artif. Intell., 2020,
pp. 1244–1250.

[3] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“QUOTIENT: Two-party secure neural network training and predic-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 1231–1247.

[4] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in Proc.
ACM SIGKDD Workshop Outlier Detection Description, 2013, pp. 8–15.

[5] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series
change point detection,” Knowl. Inf. Syst., vol. 51, pp. 339–367, 2017.

[6] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technol-
ogy for cpu based attestation and sealing,” in Proc. 2nd Int. Workshop
Hardware Architectural Support Secur. Privacy, 2013.

[7] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring
social links from mobility profiles,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 1943–1957.

[8] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
PMLR, 2020, pp. 2938–2948.

[9] Y. Bengio et al., “Learning deep architectures for AI,” Found. Trends
Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.

[10] A. Bhargava, “On the theory of testing for unit roots in observed time
series,” Rev. Econ. Stud., vol. 53, no. 3, pp. 369–384, 1986.

[11] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. Annu. Int.
Cryptol. Conf., 2018, pp. 483–512.

[12] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in Proc. 11th USENIX Workshop Offensive Technol., 2017.

[13] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
2017, arXiv:1712.04248.

[14] T. B. Brown et al., “Language models are few-shot learners,”
2020, arXiv:2005.14165.

[15] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency pri-
vacy preserving inference,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 812–821.

[16] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 3, pp. 1–37, 2011.

[17] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[18] Y. Chai, L. Du, J. Qiu, L. Yin, and Z. Tian, “Dynamic prototype network
based on sample adaptation for few-shot malware detection,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 5, pp. 4754–4766, May 2023.

[19] S. Checkoway and H. Shacham, “Iago attacks: Why the system call API
is a bad untrusted RPC interface,” in Proc. 18th Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2013, pp. 253–264.

[20] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre:
Stealing intel secrets from SGX enclaves via speculative execution,”
in Proc. IEEE Eur. Symp. Secur. Privacy, 2019, pp. 142–157.

[21] J. Chen, M. I. Jordan, and M. J. Wainwright, “HopSkipJumpAttack:
A query-efficient decision-based attack,” in Proc. IEEE Symp. Secur.
Privacy, 2020, pp. 1277–1294.

[22] X. Chen, J. Ji, L. Yu, C. Luo, and P. Li, “SecureNets: Secure inference of
deep neural networks on an untrusted cloud,” in Proc. Asian Conf. Mach.
Learn., 2018, pp. 646–661.

[23] F. Chollet, “Keras: The python deep learning API,” [Online]. Available:
https://keras.io

[24] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.

[25] M. Comiter, S. Teerapittayanon, and H. Kung, “Checknet: Secure infer-
ence on untrusted devices,” 2019, arXiv:1906.07148.

[26] G. Contributors, “Building – graphene documentation - read the docs,”
[Online]. Available: https://graphene.readthedocs.io/en/latest/building.
html

[27] G. Contributors, “Graphene examples - pytorch,” [Online]. Available:
https://github.com/oscarlab/graphene/blob/master/Examples/pytorch/
pytorch.manifest.template

[28] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint
Arch., vol. 2016, 2016, Art. no. 86.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[30] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” J. Amer. Stat. Assoc., vol. 74,
1979, Art. no. 366.

[31] H.-G. Drost, “Philentropy: Information theory and distance quantification
with R,” J. Open Source Softw., vol. 3, no. 26, 2018, Art. no. 765.

[32] D. M. Endres and J. E. Schindelin, “A new metric for probability
distributions,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1858–1860,
Jul. 2003.

[33] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, Apr. 2006.

[34] P. Fryzlewicz et al., “Wild binary segmentation for multiple change-point
detection,” Ann. Statist., vol. 42, no. 6, pp. 2243–2281, 2014.

[35] W. A. Fuller, Introduction to statistical time series. Hoboken, NJ, USA:
Wiley, 1976.

[36] Z. Ghodsi, T. Gu, and S. Garg, “SafetyNets: Verifiable execution of deep
neural networks on an untrusted cloud,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 4672–4681.

[37] P. Ghosh, A. Losalka, and M. J. Black, “Resisting adversarial attacks
using Gaussian mixture variational autoencoders,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 541–548.

[38] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201–210.

[39] I. Golan and R. El-Yaniv, “Deep anomaly detection using geomet-
ric transformations,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 9781–9791.

https://keras.io
https://graphene.readthedocs.io/en/latest/building.html
https://graphene.readthedocs.io/en/latest/building.html
https://github.com/oscarlab/graphene/blob/master/Examples/pytorch/pytorch.manifest.template
https://github.com/oscarlab/graphene/blob/master/Examples/pytorch/pytorch.manifest.template


1048 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

[40] G. Gondim-Ribeiro, P. Tabacof, and E. Valle, “Adversarial attacks on
variational autoencoders,” 2018, arXiv:1806.04646.

[41] D. Gong et al., “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 1705–1714.

[42] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

[43] Google, “Confidential computing - google cloud,” [Online]. Available:
https://cloud.google.com/confidential-computing

[44] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ram-
jee, “Privado: Practical and secure DNN inference with enclaves,”
2018, arXiv:1810.00602.

[45] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vul-
nerabilities in the machine learning model supply chain,” 2017,
arXiv:1708.06733.

[46] L. Hanzlik et al., “MLCapsule: Guarded offline deployment of machine
learning as a service,” 2018, arXiv:1808.00590.

[47] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Towards deep
learning over encrypted data,” in Proc. Annu. Comput. Secur. Appl. Conf.,
2016.

[48] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for
transfer learning?” 2016, arXiv:1608.08614.

[49] T. Hunt et al., “Telekine: Secure computing with cloud GPUs,” in
Proc. 17th USENIX Symp. Netw. Syst. Des. Implementation, 2020,
pp. 817–833.

[50] Intel, “Which platforms support intel software guard extensions (intel
SGX) SGX2?,” [Online]. Available: https://www.intel.com/content/
www/us/en/support/articles/000058764/software/intel-security-
products.html

[51] Y. Kawahara and M. Sugiyama, “Change-point detection in time-series
data by direct density-ratio estimation,” in Proc. SIAM Int. Conf. Data
Mining, SIAM, 2009, pp. 389–400.

[52] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, Tech. Rep. TR-2009, 2009.

[53] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[54] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“Cryptflow: Secure tensorflow inference,” in Proc. IEEE Symp. Secur.
Privacy, 2020, pp. 336–353.

[55] L. Labs, “OpenAI’s GPT-3 language model: A technical overview,”
[Online]. Available: https://lambdalabs.com/blog/demystifying-gpt-3/

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE Proc. IRE,
1998.

[57] S. Lee, H. Ko, J. Kim, and H. Oh, “vCNN: Verifiable convolutional neural
network,” IACR Cryptol. ePrint Arch., vol. 2020, 2020, Art. no. 584.

[58] E. L. Lehmann and J. P. Romano, Testing Statistical Hy-
potheses. Berlin, Germany: Springer Science & Business Media,
2006.

[59] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Trans.
Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.

[60] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2017, pp. 619–631.

[61] J. G. MacKinnon, “Approximate asymptotic distribution functions for
unit-root and cointegration tests,” J. Bus. Econ. Statist., vol. 12, no. 2,
pp. 167–176, 1994.

[62] J. G. MacKinnon, “Critical values for cointegration tests” Queen’s Eco-
nomics Department Working Paper, Tech. Rep., 2010.

[63] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” Proc. Int. Conf.
Learn. Representations, 2018.

[64] F. McKeen et al., “Intel software guard extensions (intel SGX)
support for dynamic memory management inside an enclave,”
in Proc. Hardware Architectural Support Secur. Privacy, 2016,
pp. 10:1–10:9.

[65] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proc. 2nd Int. Workshop Hardware Architectural Support
Secur. Privacy, 2013.

[66] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in Proc.
29th USENIX Secur. Symp., 2020, pp. 2505–2522.

[67] P. Mohassel and P. Rindal, “ABY: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018.

[68] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy, 2017,
pp. 19–38.

[69] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.

[70] MordorIntelligence, “Machine learning as a service market|
growth, trends, and forecast (2020–2025),” [Online]. Available:
https://www.mordorintelligence.com/industry-reports/global-machine-
learning-as-a-service-mlaas-market

[71] J. Neyman and E. S. Pearson, “Contributions to the theory of testing
statistical hypotheses,” Stat. Res. Memoirs, pp. 1–37, 1936.

[72] R. Nuzzo, “Scientific method: Statistical errors,” Nature News, vol. 506,
pp. 150–152, 2014.

[73] Nvidia, “NVIDIA confidential computing,” [Online]. Available: https:
//www.nvidia.com/en-us/data-center/solutions/confidential-computing/

[74] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards reverse-
engineering black-box neural networks,” in Proc. Int. Conf. Learn. Rep-
resentations, 2018.

[75] F. Österreicher and I. Vajda, “A new class of metric divergences on
probability spaces and its applicability in statistics,” Ann. Inst. Stat. Math.,
vol. 55, pp. 639–653, 2003.

[76] S. G. Pantula, G. Gonzalez-Farias, and W. A. Fuller, “A comparison of
unit-root test criteria,” J. Bus. Econ. Statist., vol. 12, no. 4, pp. 449–459,
1994.

[77] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy, 2016, pp. 372–387.

[78] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
2015.

[79] D. Rathee et al., “CrypTFlow2: Practical 2-party secure inference,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020, pp. 325–
342.

[80] M. Salehi et al., “ARAE: Adversarially robust training of autoencoders
improves novelty detection,” 2020, arXiv:2003.05669.

[81] A. Sanyal, M. Kusner, A. Gascon, and V. Kanade, “TAPAS: Tricks to
accelerate (encrypted) prediction as a service,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 4497–4506.

[82] B. Schölkopf et al., Learning With Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT
Press, 2002.

[83] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware
guard extension: Using SGX to conceal cache attacks,” in Proc. Int. Conf.
Detection Intrusions Malware, Vulnerability Assessment, Springer, 2017,
pp. 3–24.

[84] A. J. Scott and M. Knott, “A cluster analysis method for grouping
means in the analysis of variance,” Biometrics, vol. 30, pp. 507–512,
1974.

[85] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[86] C. Sun, S. Chen, and X. Huang, “Double backpropagation for training
autoencoders against adversarial attack,” 2020, arXiv:2003.01895.

[87] C. Szegedy et al., “Intriguing properties of neural networks,”
2013, arXiv:1312.6199.

[88] P. Tabacof, J. Tavares, and E. Valle, “Adversarial images for variational
autoencoders,” 2016, arXiv:1612.00155.

[89] A. Technica, “Intel’s ice lake xeon comes out swinging at AMD’s
epyc milan,” [Online]. Available: https://arstechnica.com/gadgets/
2021/04/intels-ice-lake-xeon-comes-out-swinging-at-amds-epyc-
milan/

[90] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in Proc. Int. Conf. Learn.
Representations, 2019.

[91] A. Trapletti, K. Hornik, and B. LeBaron, “Package ‘tseries’ - cran,” [On-
line]. Available: https://cran.r-project.org/web/packages/tseries/index.
html

[92] C. Truong, L. Oudre, and N. Vayatis, “ruptures: Change point detection
in python,” 2018, arXiv:1801.00826.

[93] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library
os for unmodified applications on SGX,” in Proc. USENIX Annu. Tech.
Conf., 2017, pp. 645–658.

[94] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in Proc. 26th USENIX Secur. Symp., 2017,
pp. 1041–1056.

https://cloud.google.com/confidential-computing
https://www.intel.com/content/www/us/en/support/articles/000058764/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000058764/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000058764/software/intel-security-products.html
https://lambdalabs.com/blog/demystifying-gpt-3/
https://www.mordorintelligence.com/industry-reports/global-machine-learning-as-a-service-mlaas-market
https://www.mordorintelligence.com/industry-reports/global-machine-learning-as-a-service-mlaas-market
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://arstechnica.com/gadgets/2021/04/intels-ice-lake-xeon-comes-out-swinging-at-amds-epyc-milan/
https://arstechnica.com/gadgets/2021/04/intels-ice-lake-xeon-comes-out-swinging-at-amds-epyc-milan/
https://arstechnica.com/gadgets/2021/04/intels-ice-lake-xeon-comes-out-swinging-at-amds-epyc-milan/
https://cran.r-project.org/web/packages/tseries/index.html
https://cran.r-project.org/web/packages/tseries/index.html


ZHANG et al.: VERITRAIN: VALIDATING MLAAS TRAINING EFFORTS VIA ANOMALY DETECTION 1049

[95] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution en-
vironments on {GPUs},” in Proc. 13th USENIX Symp. Operating Syst.
Des. Implementation, 2018, pp. 681–696.

[96] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure compu-
tation for neural network training,” Proc. Privacy Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49,2019.

[97] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learn-
ing,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 36–52.

[98] M. Willetts, A. Camuto, T. Rainforth, S. Roberts, and C.
Holmes, “Improving VAEs’ robustness to adversarial attack,” 2019,
arXiv:1906.00230.

[99] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed backdoor
attacks against federated learning,” in Proc. Int. Conf. Learn. Represen-
tations, 2019.

[100] L. Xiong, B. Póczos, and J. G. Schneider, “Group anomaly detection
using flexible genre models,” in Proc. Adv. Neural Inf. Process. Syst.,
2011, pp. 1071–1079.

[101] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
verifiable federated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 911–926, 2020.

[102] H. Xu et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proc. World Wide Web
Conf., 2018, pp. 187–196.

[103] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Proc. IEEE Symp.
Secur. Privacy, 2015.

[104] X. Yang, K. Huang, and R. Zhang, “Unsupervised dimensionality reduc-
tion for Gaussian mixture model,” in Proc. Int. Conf. Neural Inf. Process.,
Springer, 2014, pp. 84–92.

[105] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2019, pp. 2041–2055.

[106] M. Zande, “Leveraging zero-knowledge succinct arguments of knowl-
edge for efficient verification of outsourced training of artificial neural
networks,” Master’s thesis, University of Twente, 2019.

[107] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured energy based
models for anomaly detection,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1100–1109.

[108] X. Zhang, F. Li, Z. Zhang, Q. Li, C. Wang, and J. Wu, “Enabling execution
assurance of federated learning at untrusted participants,” in Proc. IEEE
Conf. Comput. Commun., 2020.

[109] Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by conditional
adversarial autoencoder,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4352–4360.

[110] L. Zhao et al., “VeriML: Enabling integrity assurances and fair payments
for machine learning as a service,” 2019, arXiv:1909.06961.

[111] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 665–674.

Xiaokuan Zhang received the graduate degree from Ohio State University, in
2021. He spent one year as a postdoctoral researcher with the Georgia Institute
of Technology. He is an assistant professor with the Department of Computer
Science, George Mason University. His research interests mainly lie in system
security and privacy, such as side channels, mobile security and blockchain
security.

Yang Zhang is a faculty member with CISPA Helmholtz Center for Information
Security, Germany. His research concentrates on trustworthy machine learning;
he also works on measuring and understanding misinformation and unsafe
content like hateful memes on the Internet. He has published multiple papers
with top venues, including CCS, NDSS, Oakland, and USENIX Security. His
work has received the NDSS 2019 distinguished paper award and the CCS 2022
best paper runner-up.

Yinqian Zhang is a professor with the Southern University of Science and
Technology (SUSTech). Prior to joining SUSTech, he was an associate professor
with Ohio State University. His research aims to secure computer systems and
his recent research interest lies in the application and security of confidential
computing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


