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Abstract—With the ubiquity of GPS-enabled devices and
location-based social network services, research on human mo-
bility becomes quantitatively achievable. Understanding it could
lead to appealing applications such as city planning and epi-
demiology. In this paper, we focus on predicting whether two
individuals are friends based on their mobility information.
Intuitively, friends tend to visit similar places, thus the number
of their co-occurrences should be a strong indicator of their
friendship. Besides, the visiting time interval between two users
also has an effect on friendship prediction. By exploiting machine
learning techniques, we construct two friendship prediction
models based on mobility information. The first model focuses
on predicting friendship of two individuals with only one of their
co-occurred places’ information. The second model proposes a
solution for predicting friendship of two individuals based on all
their co-occurred places. Experimental results show that both of
our models outperform the state-of-the-art solutions.

I. INTRODUCTION

Mobility is one of the most common human behaviors,
understanding it can result in many appealing applications,
such as urban planning, public transportation system design,
epidemiology, etc. It is evident that social relationships can
affect human mobility, for example, friends tend to visit similar
places or one visits some places recommended by his friends.
On the other hand, human mobility also has influence on social
connections, e.g., two people are more likely to become friends
if their mobility profile are similar.

In the past, obtaining people’s mobility information is
considered as an obstacle for related study. Researchers have
recruited a group of people to monitor their GPS-enabled
devices [1], [2], [3] or conducted questionnaires [2]. These
methods always end up with a biased dataset because of the
limited number of people or an imprecise dataset considering
people’s memory pattern [2]. With the development of GPS-
enabled devices, such as smart phones and tablets, people be-
gin to share more of their mobility information on their social
networks. Moreover, a new type of social network services has
emerged, namely Location-based social networks (LBSNs).
In LBSNs, a user can share his location information (called
check-in) to get some reductions and engage in social games.
Popular LBSNs include Yelp, Instagram and Foursquare.

Researchers have utilized the check-in data from LBSNs
to understand human mobility [4], [5], [6], [7], [8], [9]. The
research can be roughly partitioned into two directions, one is
using social information to model human mobility, the other

is using users’ check-ins to analyze their social relationships.
In this paper, we focus on the latter, concretely, we aim to use
two users’ mobility information to predict whether they are
friends. Friendship prediction has a lot of applications, such
as friends recommendation in social networks and targeted
marketing.

Intuitively, friends tend to visit same places due to similar
interests. This is known as social homophily [10]. Friends may
visit same places together or separately. The former can refer
to friends hanging out together while the latter may be an
evidence of place recommendation. If two people visit many
same places, it may indicate that they are probably friends.
Similarly, if the number of visits for two people together
to places is large, it is also a good indication that they are
friends. On the other hand, the visiting time interval of two
people can also have influence on their relationship. If two
check-ins happen at roughly the same time, the corresponding
users probably visit the place together with intention. If the
check-in time interval is about a short time period (e.g., one or
two months), these two visits can be considered to be linked
because of place recommendations between friends. Based
on these intuitions, we develop two models for friendship
prediction.

Contributions. We tackle two sets of friendship prediction
problems based on location information in this work. In the
first one, we solve the problem of predicting whether two
users are friends, given the check-in information at only one
location that they both visit. We formalize the problem into a
binary classification and apply machine learning technique to
solve it. For any given two users and one of their co-occurred
locations, we consider features that are related to check-in
numbers, time intervals and location popularity. In the second
problem, we aim to predict two users’ relationship when all
their check-in information are available. For each pair of users,
we extract several features covering their co-occurrences and
time difference on mobility to train our classifier. Through
extensive experiments on a real-life LBSNs dataset, we have
shown that our two solutions outperform the state-of-the-art
solutions.

Organization. The rest of this paper is organized as follows.
In Section II, we give a brief overview on related works.
In Section III, we introduce some notions and the dataset.



Section IV presents the first friendship prediction model and
our experiment results. The demonstration of the second
friendship prediction model is given in Section V. Section VI
concludes the paper with some future work.

II. RELATED WORK

Many works aiming at predicting friendship from spatial-
temporal information have been published during the last
several years. Li et al. [1] extracted users’ visiting trajectories
and stay points from location information and represented the
set of stay points as a hierarchical graph where each layer
clusters the stay points into several spatial clusters divisively.
The pair of users who share similar spatial clusters on a lower
layer has stronger similarity, and similarity is used to indicate
friendships between them. Along this direction, Chen et al. [8],
[9], [11] have used trajectory pattern to represent user mobility
profiles and proposed several metrics to measure the similarity
among user mobility profiles with a tool support [12].

Eagle et al. [2] conducted a study to observe 94 students and
faculty on their mobile phones for nine months. Through the
analysis on the dataset, they found out that two people visiting
the same place at roughly the same time is a strong indicator
that they are friends. Particularly, the indicator becomes even
stronger when the visits happen at non-working time and
locations. Crandall et al. [5] have discovered the similar result,
i.e., the larger the number of locations two people co-occurred
at roughly the same time, the higher the probability that they
are friends. In addition, they proposed a probabilistic model
to predict friendship. However, the model does not fit the real
life scenario since they made the assumption that each user
only has one friend.

Cranshaw et al. [3] formalized the problem into a binary
classification and extracted a large number of features includ-
ing the spatial and temporal range of the set of co-locations,
location diversity and specificity, and structural properties to
train the friendship predictor. In addition, they propose a
notion namely location entropy to characterize a location’s
popularity which we will use in our work. Similar to [3],
Chang and Sun [6] also utilized machine learning classifier
for friendship prediction. In their problem set, they only
have one common location’s information that two users have
been to. In their solution, they only considered very simple
features. We tackle the same problem in our first model. By
considering more meaningful features, our model outperforms
theirs significantly. Pham et al. [7] proposed an entropy-based
model (EBM) to estimate social strength which also leads to
friendship prediction. They extracted two factors for each pair
of users to train their model. The result in [7] shows that
EBM outperforms all the above mentioned models. We tackle
the same problem in our second model. By considering time
in a more general way, we are able to achieve better result
than EBM. Some recent works on friendship prediction based
on location information include [13], [14].

III. PRELIMINARIES

In this section, we define some basic notions: co-occurrence
and co-location, location entropy and time interval sequence,
and introduce the check-in dataset that we use in experiments.

A. Notations

Given a set of users denoted by U = {u1, . . . , un}, the
check-in dataset C records which user appeared at what
location at what time, in the form of 〈u, t, `〉 (u ∈ U , t ∈ T and
` ∈ L) where T = {t1, . . . , tn} represents a set of timestamps
and L = {`1, . . . , `n} represents a set of locations. To define
locations, we partition the surface of the earth into a set of s×s
grid-like cells which span s degrees of latitude and longitude.
Each cell represents a location.

We use a sequence Cu = (〈u, t1, `1〉, . . . , 〈u, tn, `m〉) to
denote all the check-ins made by user u where ti < ti+1

(1 ≤ i < m). In the sequel, for the sake of simplicity, we use
c ∈ Cu to denote that c is a check-in of user u. Moreover, we
use a sequence C`

u = (〈u, t1, `〉, . . . , 〈u, tn, `〉) to represent
the set of all the check-ins conducted by user u at a certain
location `, where ti < ti+1 (1 ≤ i < m).

B. Co-occurrence and Co-location

We say that two users have a co-occurrence at a location if
they have both been to this location.

Definition 1 (Co-occurrences & co-locations): Given two
users u ∈ U and u′ ∈ U and their check-in sequences Cu and
C ′u, we say that they co-occurred (or have a co-occurrence) at
a location ` ∈ L if

∃〈u, t, `1〉 ∈ Cu, 〈u′, t′, `2〉 ∈ Cu′ such that `1 = ` ∧ `2 = `.

The location ` is called a co-location of users u and u′. The
number of co-occurrences of users u and u′ at the co-location
`, denoted by |C`

u,u′ |, is defined as the following.

|C`
u,u′ | = min(|C`

u|, |C`
u′ |)

For example, suppose that u checked in at four locations
`1, `2, `3 and `4, and user u′ checked in at three locations `2,
`4 and `6. We say that users u and u′ co-occurred (or have
co-occurrences) at `2 and `4. Here, `2 and `4 are called co-
locations of u and u′. In addition, if u checked in at location `2
for 4 times and user u′ for 6 times, we say that they have 4 co-
occurrences at `2. Note that in our work, whether two users co-
occurred at a location does not depend on the time when they
visit the same location. This is different from many works in
the literature [2], [3], [5], [7], in which they set a time interval
parameter τ and give the definition that two users co-occurred
at a location only if their visiting time interval was smaller
than τ . In fact, by studying a LBSN dataset [4], we find out
that nearly 30% of pairs of friends have a minimum check-in
time interval larger than 30 days. Therefore, if we set τ to a
relatively small value, a lot of useful information belonging
to friends will be neglected. Instead, our definition of co-
occurrences captures more information and, as a consequence,
leads to better prediction results.
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Fig. 1. The heat map of location entropy in New York.

C. Location Entropy

Location entropy, as introduced in [3], is a metric to quantify
the popularity of a location. Intuitively, a location is popular
if it has been visited by a large number of people, while a
location is not popular (i.e., private) if it has a limited number
of visitors.

Definition 2 (Location entropy): Given a location ` ∈ L, we
can calculate its location entropy as follows:

H` = −
∑
u∈U

p`(u) · log p`(u), where

p`(u) =
| {〈u, t, `′〉 ∈ Cu | `′ = `} |

| ∪u′∈U{〈u′, t′, `′′〉 ∈ Cu′ | `′′ = `} |

A large value of location entropy indicates a popular loca-
tion (e.g., train stations and shopping malls), and a small value
of location entropy indicates a private location (e.g., private
offices and homes). Figure 1 presents the heat map of New
York with respect to location entropy. Every point refers to
a location in a shape of grid-like cell, and each cell spans
0.001◦ of latitude and longitude. From the heat map, we can
see that the middle town, where lots of popular places such as
The Empire State Building, Times Square, Rockefeller Center,
MOMA have high location entropies. On the other hand, the
residential areas, e.g., up Manhattan are less popular. All the
facts above conform with the effect of location entropy.

D. Time Interval Sequence

Given two different users u and u′ and one location
` that they co-occurred, user u has a sequence C`

u =
(〈u, t1, `〉, . . . , 〈u, tm, `〉) denoting all the check-ins of user
u at location `. Similarly, user u′ has a sequence C`

u′ =
(〈u′, t′1, `〉, . . . , 〈u′, t′n, `〉) denoting all his check-ins at loca-
tion `. From C`

u and C`
u′ , we obtain their time sequences

T `
u = (t1, . . . , tm) and T `

u′ = (t′1, . . . , t
′
n). To measure the

general check-in time interval between T `
u and T `

u′ , we define
the notion time interval sequence.

Definition 3 (Time interval sequence): Given two users
u, u′ ∈ U , a location ` ∈ L that they co-occurred, and their

time sequences T `
u = (t1, . . . , tm) and T `

u′ = (t′1, . . . , t
′
n) at

location `, the time interval sequence is defined as TIS `
u,u′ =

(du1 , . . . , d
u
m, d

u′

1 , . . . , d
u′

n ), where

dui = min({|ti − t′1|, . . . , |ti − t′n|})(1 ≤ i ≤ m), and

du
′

j = min({|t′j − t1|, . . . , |t′j − tm|})(1 ≤ j ≤ n).

The intuition of this definition is to find each check-in time
a matching check-in time which is closest to it and belongs to
the other user. Each pair of such kind of matches indicates
a possible co-occurrence of two users. That is to say, the
time interval sequence takes all possible co-occurrences’ time
intervals into consideration, which is considered to be more
accurate to indicate the general check-in time interval between
two users at the same location. For example, given two users
u and u′ and one of their co-locations `. Their time sequences
at location ` are T `

u = (2, 14, 67, 89, 135, 136) and T `
u′ = (2,

3, 56), respectively. We calculate their time interval sequence
to be TIS`

u,u′ = (0, 11, 11, 33, 79, 80, 0, 1, 11).

E. Dataset

The check-in dataset we use in experiments is collected
by [4] from Gowalla, a popular LBSN service back in 2011.
This dataset consists of two parts. One is the check-in data
composed of 6,442,890 check-ins from more than 100,000
users during the period from Feb. 2009 to Oct. 2010. The
format of one check-in item is as follows:

〈userID , timestamps, latitude, longitude, locationID〉.

The other part is a social graph of users which contains
196,591 users and 950,327 edges.

Since most check-ins are made in the territory of US, we
only exploit the check-ins with latitudes between 25◦N and
50◦N and with longitudes between 65◦W and 125◦W in all
our analysis and experiments. With the diversity of American
users, the derived results will not lose generality. Concretely,
we use 3,672,646 check-ins from 54,622 users. Each location
cell represents a location. The cell size s is set to be 1◦, 0.1◦,
0.01◦ and 0.001◦, respectively.

IV. FRIENDSHIP PREDICTION MODEL I
In this section, we introduce our first friendship prediction

model. We first formally present the problem. Next, we prose
our solutions. Evaluation results are presented in the end.

A. Problem Definition

To predict whether two users are friends, it is ideal to
collect all their mobility information. However, in some cir-
cumstances, we may only obtain partial information of two
users. The extreme case is we only have one co-occurrence of
two users. To deal with this situation, we propose model I.
The problem is formally defined as follows:
Problem definition: Given u, u′ ∈ U , one of their co-location
`0 ∈ Lu,u′ , and the check-in dataset C`0 (C`0 ⊂ C) at location
`0 in the form of 〈u, t, `0〉 where u ∈ U and t ∈ T , the
problem is to predict whether u and u′ are friends or not.



B. Model Description

The friendship prediction problem can be naturally formal-
ized into a binary classification problem. If two users are
friends, the label is 1. Otherwise, the label is 0. Therefore, we
can utilize a machine learning classifier to solve the problem.

The key of building the prediction model is to decide what
kind of features we should use. From the check-in dataset, we
can obtain three kinds of information: the number of check-ins,
check-in time, location characteristics. We consider all these
information as features. Specifically, for each tuple 〈u, u′, `〉,
we extract the following seven features:

1) the number of check-ins conducted by all users at
location `, denoted by |C`|

2) the number of check-ins conducted by user u at location
`, denoted by |C`

u|
3) the number of check-ins conducted by user u′ at location

`, denoted by |C`
u′ |

4) the maximum time interval of u and u′ at location `,
denoted by max(TIS `

u,u′)
5) the minimum time interval of u and u′ at location `,

denoted by min(TIS `
u,u′)

6) the average time interval of u and u′ at location `,
denoted by mean(TIS `

u,u′)
7) the location entropy of location `, denoted by H(`).
In following discussions, we give our intuition on consid-

ering the time and location features.
Time intervals. For two users co-occur at one location for
one or several times, the check-in time interval of the co-
occurrence(s) captures important information of their relation-
ship. We consider the time interval through three aspects: the
average, maximum and minimum time intervals. Here, the
average check-in time interval measures the information of
every possible co-occurrence of two users. If the average time
interval is small, it indicates that every co-occurrence happens
within a short time period, thus two users are highly likely to
be friends. On the other hand, if the average interval is large,
it does not necessarily mean that the possibility that two users
are friends is small. Consider a situation when there is only
one check-in match happened during a long time period such
as 2 years, then the average time interval will be enlarged by
this long period. Therefore, we consider the minimum interval
as a feature. But it is not certain that a small minimum interval
definitely infers a high possibility of friendship. The check-in
match with a small time interval can also be a co-incidence. In
the case, we also take into account the maximal time interval.
Location entropy. Considering location entropy (which is
used to measure the popularity of a location), we need to
capture the difference between two people co-occur at a
popular place and a non-popular one. Take train station as
an example which normally has a high location entropy, two
users may co-occur many times. However, this should not be
considered as a strong indicator for their friendship since they
may just take the train everyday. On the other hand, location
entropy can also strengthen the influence of co-occurrences
that happen at a non-popular place. As introduced before,

two people visiting the same location within a large time
interval indicates a lower friendship probability. However, if
the large time interval happens at a low-entropy location, then
the situation may be changed, i.e., they may both visit a
common friend’s home at a different time.

Therefore, we believe it is necessary to consider location
popularity and time intervals on friendship prediction.

C. Model Evaluation

Experiment setup. We exploit the downsampling techniques
to construct a balanced dataset. The dataset is partitioned 70/30
for training and testing. Our experiments are performed on a
machine with duo Intel Xeon 2.26 GHz and 24 GB memory.
All the experiments are implemented in MATLAB R2013a.
Regarding the machine learning techniques, we adopt logistic
regression as our classifier. In all sets, we perform 10-fold
cross validation

Metrics. We exploit precision-recall curve and receiver oper-
ating characteristic (ROC) curve to measure the performance
of our prediction. In addition, we also use the AUC value (area
under the ROC curve) as a metric.

Experimental results. Figure 2 gives the precision-recall and
ROC curves of experimental results of model I.

As we can see from Figure 2(a), the precision-recall results
get better when the value of cell size s decreases. When
s = 0.001◦, we obtain the best performance of the prediction
model. Practically, a smaller s indicates more precisely defined
locations. In this case, we can capture user pairs who co-
occurred at such locations with more accuracy. On the con-
trary, if s is large, the location information becomes sparse.
A cell can cover the whole NYC when s = 1◦ and two users
both visiting the same city is not a strong indicator of their
friendship. In general, as shown from the curve of s = 0.001◦,
when precision is 80%, recall is larger than 50%. On the other
hand, when recall is as high as 80%, precision reaches at nearly
65%. This is a promising result as the information we used in
our model is limited to only one of two users’ co-locations.

The ROC curves of the prediction model under different cell
sizes are presented in Figure 2(b). Similarly, the performance
increases as s becomes smaller. Moreover, AUC values under
s = 1◦, 0.1◦, 0.01◦ and 0.001◦ are 0.7043, 0.7294, 0.7519 and
0.7807, respectively. This also indicates s = 0.001◦ has the
best performance.

Comparison with the state-of-the-art model. The model
proposed in [6] (we call it CS model for short) solves the
same problem with model I. In order to perform comparison
between results of CS model and model I, we conduct exper-
iments on CS model with exactly the same Gowalla dataset
and classifier as in our experiments for model I.

The CS model extracted the following three features from
the check-in dataset for machine learning:

1) the number of check-ins conducted by all users at
location `, denoted by |C`|

2) the number of check-ins conducted by user u at location
`, denoted by |C`

u|
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(a) Precision-recall curve.
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Fig. 2. Results of model I under logistic regression.
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(c) s = 0.01◦
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(d) s = 0.001◦

Fig. 3. Result comparisons of model I (precision-recall curve).

3) the number of check-ins conducted by user u′ at location
`, denoted by |C`

u′ |.
To demonstrate time and location entropy’s contributions on

friendship prediction, we construct another two models: CS +
time model and CS + entropy model. In CS + time model, for
each tuple 〈u, u′, `〉, we have following six features: |C`|, |C`

u|,
|C`

u′ |, mean(TIS `
u,u′), min(TIS `

u,u′) and max(TIS `
u,u′). In

CS + entropy model, we extract four features: |C`|, |C`
u|, |C`

u′ |
and H(`).

Figure 3 shows the precision-recall curves of those four
models under four different cell sizes. As we can see, regard-
less of the cell size, both CS+time and CS+entropy model
outperform the CS model. This indicates that time and location
entropy both contribute to the prediction results. Besides, blue
lines are generally higher than red lines, which implies that
location entropy has better influence on friendship prediction
than time interval. By combining time interval and entropy
together into one model, i.e., our model I, we obtain the
best results among all sets. The ROC curves (Figure 4) have
demonstrated the same results.
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(c) s = 0.01◦
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Fig. 4. Result comparisons of model I (ROC curve).

Cell size CS model CS CS Model I
1◦ 0.6638 0.6834 0.6814 0.7063
0.1◦ 0.6946 0.6989 0.7005 0.7285
0.01◦ 0.7038 0.6956 0.7271 0.7522
0.001◦ 0.7457 0.7464 0.7705 0.7808

TABLE I
AUC OF DIFFERENT MODELS UNDER DIFFERENT CELL SIZES.

V. FRIENDSHIP PREDICTION MODEL II
In this section, we first give the formal definition of the

friendship prediction problem considering all the co-locations
between two users. We then give the solution of the problem
(i.e., model II). The evaluation results are shown in the end.

A. Problem Definition

With the information of check-ins at all co-locations of two
users, a better analysis and solution can be proposed to solve
the friendship prediction problem. The formal definition of this
problem is given as follows:
Problem definition: Given u, u′ ∈ U , and a check-in dataset
C in the form of 〈u, t, `〉, the problem is to predict whether u
and u′ are friends or not.

B. Model Description

Similar to model I, the problem defined above can be
transformed into a binary classification problem. For each pair
of users u and u′, they have a co-location set Lu,u′ . For
each ` ∈ Lu,u′ , we can calculate the average time interval -
mean(TIS `

u,u′), the minimum time interval - min(TIS `
u,u′),

the maximum time interval - max(TIS `
u,u′), its number of

co-occurrences - |C`
u,u′ |, and its location entropy H(`). To

gather all the information of each co-location together, we
combine these data in following ways. For three time intervals,



we take the average values of them from all co-locations
separately. For the co-occurrence number, we propose a notion
called the weighted number of co-occurrences, which will be
explained in detail later. In addition, we can also obtain another
useful information - the number of co-locations. Similarly, we
propose a notion called the weighted number of co-locations
to measure it. In total, we extract the following five features
for prediction.

1) the average value of the maximum check-in time inter-
vals of u and u′ at all their co-locations, denoted by
mean(

∑
`∈Lu,u′ max(TIS

`
u,u′))

2) the average value of the minimum check-in time inter-
vals of u and u′ at all their co-locations, denoted by
mean(

∑
`∈Lu,u′ min(TIS

`
u,u′))

3) the average value of the average check-in time inter-
vals of u and u′ at all their co-locations, denoted by
mean(

∑
`∈Lu,u′ mean(TIS

`
u,u′))

4) the weighted number of co-locations users u and u′,
denoted by WL(u, u ′)

5) the weighted number of co-occurrences of users u and
u′, denoted by WO(u, u ′).

Weighted number of co-locations. Given two users u and u′

and their co-location set Lu,u′ , the weighted number of co-
locations, which is denoted by WL(u, u ′), is formally defined
as follows:

WL(u, u ′) =
∑

`∈Lu,u′

exp(−H (`)).

This notion is used to measure the number of important co-
locations of two users. The importance of a location is decided
by its location entropy. As discussed in Section III-C, if two
users co-occur at a location with low location entropy, their
possibility of being friends is larger than two people who co-
occur at a high-entropy location. Therefore, the co-locations
with low entropy can be considered to be more important
than high-entropy ones. As shown in the definition, we use
exp(−H(`)) to be the weight of location ` and to measure
its importance. Table II gives four examples to demonstrate
this notion. Most locations in row 2 have higher entropy, and
its corresponding value of weighted number of co-locations is
small. It indicates that high-entropy co-locations have small
contribution to WL(u, u ′). On the contrary, as we can see
from row 1, low-entropy co-locations make larger contribution
to this value.

H(`1) H(`2) H(`3) H(`4) WL(u, u ′)
0.02 0.18 0.23 0.09 3.2481
1.25 2.18 3.34 2.29 0.5362
0.65 0.16 2.67 3.14 1.4867
3.24 0.54 0.38 0.66 1.8226

TABLE II
EXAMPLES OF THE WEIGHTED NUMBER OF CO-LOCATIONS.

Weighted number of co-occurrences. Given two users u and
u′ and their co-location set Lu,u′ , the weighted number of
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Fig. 5. Results of model II under logistic regression.

co-occurrences, which is denoted by WO(u, u ′), is formally
defined as follows:

WO(u, u ′) =
∑

`∈Lu,u′

|C `
u,u′ | × exp(−H (`)).

Similar with the weighted number of co-locations, this notion
strengthens the co-occurrences happened at non-popular places
and, in the meantime, weakens the co-occurrences happened
at popular places based on location entropy. In this way, it can
provide more useful information for friendship prediction than
the number of co-occurrences. It works in the same way with
the weighted number of co-locations.

C. Model Evaluation

The experiment setup and the metrics are the same as model
I.

Experimental results. The experiment results are presented in
Figure 5. For the precision-recall curves, the result gets better
as the cell size decreases. Among these, the magenta line is
the highest one, indicating that, when s = 0.001◦, model II
achieves its best performance. Specifically, when precision is
as high as 80%, recall is larger than 70%, i.e., our prediction
achieves a strong performance.

The ROC curves in Figure 5(b) presents the similar results.
On the other hand, we get the same result referring to AUC
value. The AUC values are 0.7541, 0.7999, 0.8213 and 0.8359
for s = 1◦, 0.1◦, 0.01◦ and 0.001◦, respectively. When s =
0.001◦, the curve has the largest AUC. It indicates the best
performance of the prediction model.

Comparison with the state-of-the-art model. We also com-
pare our model II with a state-of-the-art model, namely
EBM [7]. In EBM, for each pair of users, two features
are extracted from check-in dataset, namely Renyi entropy-
based diversity and weighted frequency. Diversity is used to
measure the diversity of the co-occurrences of two users u
and u′ at different locations. It weakens the influence of
frequent coincidences. Frequency is used to tell how important
the co-occurrences at non-crowded places are to two users’
friendship. It strengthens the influence of co-occurrences that
happened at non-popular places. We set all the parameters
following the experiments in [7]. In addition, there is a
parameter for time interval τ on defining the co-occurrence
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Fig. 6. Result comparisons of model II and the EBM model (precision-recall
curve).

in EBM. We treat it as an application dependent parameter
and exploit several including one day, one week, one month,
100 days, 300 days and 600 days in our experiments.

Figure 6 shows the precision-recall curves of model II and
EBM model under different cell sizes. Note that, no matter
what the cell size is, the largest check-in time interval of two
users in a cell is smaller than 600 days. Besides, over the
constrains of cell size s and time interval τ , the number of
friends who co-occurred in the same cell within τ varies a lot.
Table III shows the numbers of data belonging to friends we
are able to obtain under different time intervals and different
cell sizes. As shown in Figure 6, the variation of time interval
τ does not lead to obvious changes on the performances of
EBM model. On the other hand, when s = 1◦, 0.1◦ and 0.01◦,
black curves that represent the result of model II are higher
than all the other curves belongs to EBM model. This implies
that, in such cases, our model has better performance than
EBM model.

s = 1◦ s = 0.1◦ s = 0.01◦ s = 0.001◦

model II 155,710 142,642 122,130 97,872
τ = 1 83,769 69,293 49,396 37,645
τ = 7 104,492 90,918 69,465 51,917
τ = 30 121,624 108,554 87,777 67,533
τ = 100 140,893 127,639 106,551 84,066
τ = 300 155,107 142,094 121,535 97,273
τ = 600 155,710 142,642 122,130 97,872

TABLE III
# OF DATA BELONGS TO FRIENDS FOR MODEL II AND EBM MODEL

UNDER DIFFERENT TIME INTERVALS AND DIFFERENT CELL SIZES.

Figure 7 shows the ROC curves of model II and the
EBM model under different cell sizes. The time interval τ
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(b) s = 0.1◦
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(c) s = 0.01◦
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Fig. 7. Result comparisons of model II and the EBM model (ROC curve).

is set to be different values as before in EBM model. Same
conclusion can obtained. Again, we cannot get a clear pattern
of the relationship between time interval τ and EBM model’s
performance. Besides, model II performs better than EBM
model when cell size is set to be 1◦, 0.1◦ and 0.01◦, as black
curves are always higher than other curves in first three sub-
figures. However, when s = 0.001◦, model II has a similar
result as EBM. Table IV further gives AUC values of each
curve in the figure, model II has larger AUC values than
EBM model except when the cell size is 0.001◦.

s = 1◦ s = 0.1◦ s = 0.01◦ s = 0.001◦

model II 0.7510 0.8011 0.8237 0.8369
τ = 1 0.6960 0.7352 0.7597 0.7596
τ = 7 0.7183 0.7550 0.7698 0.8268
τ = 30 0.7298 0.7652 0.7836 0.8329
τ = 100 0.7282 0.7673 0.7673 0.8439
τ = 300 0.7274 0.7632 0.7863 0.8419
τ = 600 0.7260 0.7629 0.7848 0.8419

TABLE IV
AUC VALUES OF ROC CURVES UNDER DIFFERENT TIME INTERVALS AND

DIFFERENT CELL SIZES.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have focused on friendship prediction from
LBSN dataset. We proposed two friendship prediction models.
In model I, we studied the problem of predicting whether two
people are friends under the situation that only the check-ins
happened at one certain location can be obtained. Compared
with the state-of-the-art CS model [6], we take check-in
time interval and location entropy into consideration, which
leads to a more effective friendship prediction. In model II,
differently, we focus on utilizing all the check-in information
that belong to any co-location of two users to predict their



relationship. We consider five elements that would make a
difference on friendship prediction - the weighted number of
co-occurrences, the weighted number of co-locations, the av-
erage time interval, the minimum time interval and maximum
time intervals. The experimental results shows that model II
outperforms the EBM model [7] in most cases.

In the future, we would like to further investigate the relation
between check-in time and friendship. Specifically, if the co-
occurrence happens in the evening or weekend, its influence
on friendship should be stronger since evening and weekend
can be considered as social time. Moreover, location prediction
from social relationships is another interesting problem worth
investigation (e.g., see [15], [16]).
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