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Abstract
The rising popularity of large language models (LLMs) has raised
concerns about potential abuse and harmful content. As a result, de-
veloping a highly generalizable and adaptable machine-generated
text (MGT) detection system has become an urgent priority. Given
that LLMs are most commonly misused in academic writing, this
work investigates the generalization and adaptation capabilities of
MGT detectors in three key aspects specific to academic writing:
First, we constructMGT-Academic, a large-scale dataset compris-
ing over 336M tokens and 749K samples.MGT-Academic focuses
on academic writing, featuring human-written texts (HWTs) and
MGTs across STEM, Humanities, and Social Sciences, paired with
an extensible code framework for efficient benchmarking. Second,
we benchmark the performance of various detectors for binary
classification and text attribution tasks in both in-domain and cross-
domain settings. This benchmark reveals the often-overlooked chal-
lenges of text attribution tasks. Third, we introduce a novel text
∗Both authors contributed equally to this work.
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attribution task in which models must adapt to new classes over
time, with little or no access to prior training data, spanning both
few-shot and many-shot scenarios. We implement a range of adap-
tation techniques to enhance performance across these settings.
Our findings provide new insights into the generalization abil-
ity of MGT detectors and lay the foundation for building robust,
adaptive detection systems. The code framework is available at
https://github.com/Y-L-LIU/MGTBench-2.0.
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1 Introduction
Recent advancements in large language models (LLMs) showcase
their strong ability to tackle a wide range of natural language pro-
cessing (NLP) tasks [20, 28, 29]. Its versatility and superiority across
numerous domains unlock remarkable real-world applications, e.g.,
education, idea crafting, and context refinement [48]. However, the
ease and convenience have opened the door to abuse, particularly
in academic writing [42], social media [38], and web search [21],
leading to severe ethical and practical challenges. Additionally, re-
cent work [14, 19, 37] reveals multiple security vulnerabilities of
LLMs. To audit the potential abuse and harm contents, recent ef-
forts [4, 25] have focused on developing techniques to distinguish
machine-generated text (MGT) from human-written text (HWT)
and benchmarking their performance [13, 41] over a wide range
of datasets. Existing work mainly focuses on detecting whether a
given text is MGT or HWT, which is referred to as binary classifica-
tion task in this paper. However, it remains unclear how detectors
designed for binary classification perform and generalize in iden-
tifying the specific source LLM that generated the text, which is
referred to as text attribution task in this paper.

To holistically evaluate and understand the generalization and
adaptation ability of existing detectors, we construct a large-scale
MGT dataset namedMGT-Academic focusing on academic writing,
comprising over 336M tokens and 749K samples from 5 LLMs and 3
academic domains: STEM, Humanities, and Social Sciences. Within
each domain, we collect HWT data from Wikipedia and academic
texts sourced, including Arxiv or Project Gutenberg, depending on
the scenario. Each HWT has corresponding MGTs generated by
five popular LLMs. Further, we build a publicly available, extend-
able, and user-friendly code framework for the community, which
enables fast and effective benchmarking for existing methods in
binary classification and text attribution tasks. It covers state-of-
the-art methods, including seven metric-based detectors and five
model-based detectors.

LeveragingMGT-Academic, we conduct a comprehensive inves-
tigation into the performance and generalization ability, especially
for text attribution tasks. First, we benchmark the performance of
existing detectors in both binary classification and text attribution
tasks. The results in the text attribution task bring new insights
that metric-based detectors (detecting MGT using statistical metrics
such as log-likelihood or rank [8]) fail and achieve only random-
guess results. We analyze the underlying reasons for failure and
emphasize the need for developing generalizable detectors. Second,
we evaluate the transferability of detectors in task attribution to
examine how detectors transfer to specific domains, i.e., STEM,
Humanities, and Social Sciences1. To enhance the transferability,
we evaluate important techniques such as adding examples from
the target domains.

Third, since new LLMs are continuously released, each with
different characteristics and unique stylistics, we propose a new
attribution task, where a model should adapt to the new class in-
troduced over time without (or with very limited) access to the
original training data for earlier classes. This task is crucial for

1Due to the page limit, check results for the binary classification task in our arxiv
version.

3 Domains 15 Subfields

336M Tokens 749k Samples

Figure 1: Overview ofMGT-Academic. It shows the data source
and split domains.

real-world applications where MGTs from new LLMs become avail-
able in stages, and retraining the model from scratch is impractical
due to computational or data storage constraints. In this paper, we
consider two practical settings for adaptation, i.e., few-shot and
many-shot settings, depending on the number of accessible exam-
ples in the new class. To the best of our knowledge, we are the first
to discuss how the detectors adapt to new MGTs in detection. We
benchmark the performance of detectors when adapting to new
LLMs in different scenarios and equip the detector with eight dif-
ferent techniques to improve the performance. In summary, our
contributions can be listed as follows:
• We introduceMGT-Academic, a large-scale MGT dataset focused
on academic writing, encompassing over 336M tokens and 749K
samples from 5 LLMs and 3 academic domains: STEM, Humani-
ties, and Social Sciences. We additionally provide an extensible
code framework, which will be made publicly available, to effi-
ciently benchmark existing MGT detectors in different tasks.

• We conduct extensive experiments and benchmark the perfor-
mance of various detectors for binary classification and attribu-
tion tasks in both in-domain and cross-domain settings. The fail-
ure of metric-based detectors in the text attribution task demon-
strates the inherent complexity of the attribution task. Our study
emphasizes the need for developing metric-based detectors that
can adapt to text-attribution tasks.

• We introduce a new attribution task where detectors adapt to
new classes over time without (or with very limited) access to
prior training data in few-shot and many-shot scenarios. We
benchmark the performance of model-based detectors with mul-
tiple adaptation techniques. Despite the improved performance,
the remaining gap to the ideal performance (fine-tuning all data
at once) highlights the complexity of this task, underscoring the
need for further investigation in the future.

2 Related Work
MGT Detection. Recent advancements in LLMs have empowered
users to tackle a wide range of NLP tasks, demonstrating their ver-
satility and superiority across numerous domains [28, 28, 29]. Ex-
ploiting LLMs is especially convenient in academic writing [23, 48],
such as generating ideas, drafting articles, or refining content. How-
ever, the ease and convenience can be significantly abused, raising
concerns about authenticity, as well as ethical questions regarding
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originality and over-dependence on AI-generated content [7]. To
prevent the misuse of MGT data, recent studies [3, 8, 10, 13, 25]
have developed a variety of MGT detectors, which can be broadly
categorized into metric-based and model-based methods. Metric-
based methods [8, 25, 36] leverage proxy LLMs to extract features
from processed text and train an additional classifier to model the
relationship between features and labels. In contrast, model-based
methods [10, 16] typically integrate a classification head into a
BERT model and fine-tune the augmented model on supervised
datasets. The detectors in this paper are listed in Appendix C.

Several efforts have aimed to benchmark the performance of
MGT detectors. For example, MGTBench [13] provided a com-
prehensive evaluation framework for these detectors, which uti-
lizes existing HWT datasets, including Essay, WP, and Reuters.
M4GTBench [42] extended this by benchmarking performance
on multilingual and multi-source datasets. While existing studies
emphasize transferability across datasets and LLMs in binary clas-
sification, they pay less attention to the generalization ability of
detectors in attribution tasks.
Adapting to New Classes. Adapting to new classes with few-shot
settings is related to few-shot learning, aiming to improve the quick
adaptation ability. One way is to use the distance between the sam-
ples and the representatives of each class for classification [5, 35].
Another way is to train a neural network and learn the relationship
between samples and the representatives [39]. Additionally, data
augmentation is used to increase the number of training samples
and train a classifier [47] Adapting to new classes with many-shot
settings is related to class incremental learning (CIL), where the key
is to alleviate the forgetting of previous knowledge [22, 50]. One
way to improve the performance is to incorporate a distillation loss
or regularization term to transfer knowledge from the old model
to the updated one, thus reducing forgetting [17, 33]. Another way
is to store a small subset of past representative data to enable the
model to rehearse earlier tasks [31]. Additionally, some other work
explores calibrating the output layer of the classification head to
improve the performance [45].

Some efforts have discussed the CIL in classification tasks such
as entailment or intent classification [30, 46]. To the best of our
knowledge, our work is the first to benchmark the adaptation ability
of MGT detectors in both few-shot and many-shot settings.

3 Construction of MGT-Academic
3.1 MGT-Academic Collection
We collect 749,625 samples with 336,714,335 tokens.
Human Data. We collect data in three academic domains, i.e.,
STEM, Social Sciences, and Humanities, where each domain con-
tains different fine-grained fields. For each specific academic field,
we specify the category parameter and query the APIs of the data
sources, followed by merging the retrieved data back to the affili-
ated domain. Specifically, every domain consists of Wiki data and
contents collected from Arxiv (LaTeX code of pre-print papers) or
Project Gutenberg (published e-books), depending on the scenario.
More details are shown in Table A1. This method allows us to sys-
tematically map the datasets to the STEM, humanities, and social
sciences sub-domains.

Table 1: Linguistic Metrics of MGT-Academic: FSE shows the
readability, with higher scores indicating easier readability.
TTR shows the text diversity, with higher scores indicating
more unique tokens in the text. ASL shows the syntactic
complexity, with higher scores indicating more words within
a sentence.

Metric Human Moonshot GPT-3.5 Mixtral Llama3 GPT-4omini

FSE 39.74 34.41 36.56 38.39 36.14 31.46
TTR 0.52 0.53 0.60 0.52 0.53 0.58
ASL 23.31 22.16 21.73 19.39 21.26 20.76

Machine Data. We select five widely used LLMs, including Llama-
3.1-70b-Instruct [9],Mixtral-8×7b-Instruct [24], KimiChat [26], Chat-
GPT, GPT-4omini [27] to generate theMGTs. Llama-3.1-70b-Instruct
and Mixtral-8×7b-Instruct are two commonly used open-source
LLMs that exploit dense and MoE architecture respectively. Moon-
shot, ChatGPT, and GPT-4omini are popular proprietary models,
with Moonshot known for its long-context understanding and
the GPT family recognized for its comprehensive capabilities. We
prompt the LLM to be a wiki/paper/book editor and polish the given
human text, which is consistent with the previous dataset [25, 42].
The prompts for generating MGT data are listed in Appendix A.
Linguistic Metrics. We compute a set of linguistic metrics, in-
cluding readability, lexical diversity, and syntactic complexity, to
assess the quality of the generated text. The results are summarized
in Table 1. Regarding readability , we use the Flesch Reading Ease
(FSE) score [6], which estimates how difficult a text is to understand.
Higher scores indicate easier readability. We find that MGTs are
generally more challenging to read, likely due to the complex and
varied expressions used by LLMs. The average FSE score of 35 falls
within the college-level readability range (30–60) and is close to the
graduate-level range (0–30). Regarding lexical diversity , we use
Type-Token Ratio (TTR), which reflects the ratio of unique words to
total words in a text. A higher TTR indicates richer vocabulary us-
age. Our results show that MGTs generally exhibit higher TTR than
HWTs, implying that machine-generated texts tend to employ a
broader lexical range. Regarding syntactic complexity, we calculate
the average sentence length (ASL), which serves as a proxy for struc-
tural complexity. Higher ASL values indicate longer, more intricate
sentences. We observe that MGTs typically have shorter sentence
lengths compared to HWTs, suggesting that machine-generated
texts favor simpler and more direct syntactic structures.
Data Quality Concerns. We have several measures to ensure
data quality. First, we ensure the papers and articles collected from
Arxiv and Wiki are posted before December 2023 (release date of
ChatGPT) to improve the reliability of human data. Second, we
utilize SentenceBert [32] to measure the editing distance in each
doman and further adopt TSNE [40] to project the high-dimensional
representations into two dimensions. The projections are shown in
Figure A1, indicating the revised MGTs from HWTs are non-trivial
and of high quality. Third, despite the relatively high performance
in the binary classification task, the reported data aligns well with
the previous work [13, 42]. In contrast, the degraded performance
in the other task reveals the complexity of the proposed dataset.
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Table 2: Experiment Result for In-distribution Binary Classification. We train and test the detectors on the same data domain.
The results are reported using the F1-score. ST. represents STEM,Hu. represents Humanity, and So. represents Social Science. The
larger values with blue colors indicate better performance, and the lower values with red colors indicate weaker performance.
For the abnormal results, we use “-” as the placeholder.

Llama-3.1-70b Mixtral-8x7b MoonShot-8k GPT-4o-mini GPT-3.5

2-16
Method

ST. Hu. So. ST. Hu. So. ST. Hu. So. ST. Hu. So. ST. Hu. So.

LL 0.714 0.794 0.803 0.662 0.749 0.809 0.711 0.760 0.806 0.638 0.689 0.765 0.481 0.606 0.709
Entropy 0.759 0.707 0.829 0.688 0.659 0.795 0.723 0.662 0.780 0.683 0.686 0.763 0.679 0.640 0.700
Rank 0.618 0.697 0.713 0.617 0.695 0.719 0.685 0.750 0.817 0.643 0.651 0.627 0.678 - 0.571

Log-Rank 0.736 0.709 0.795 0.655 0.596 0.732 0.688 0.650 0.773 0.639 0.615 0.704 0.648 0.591 0.708
Rank-GLTR 0.720 0.759 0.802 0.655 0.701 0.808 0.600 0.734 0.795 0.658 0.693 0.713 0.620 0.679 0.694

Fast-DetectGPT 0.817 0.817 0.887 0.760 0.759 0.842 0.842 0.801 0.899 0.688 0.718 0.752 0.677 0.713 0.756
Binoculars 0.881 0.897 0.911 0.833 0.845 0.890 0.923 0.867 0.916 0.710 0.772 0.800 0.680 0.803 0.792
RADAR 0.800 0.834 0.743 0.747 0.833 0.757 0.771 0.852 0.750 0.762 0.855 0.778 0.771 0.897 0.814

ChatGPT-D 0.557 0.552 0.712 0.452 0.526 0.642 0.531 0.643 0.743 0.280 0.320 0.454 0.458 0.679 0.625

DistillBert-F 0.987 0.983 0.971 0.977 0.983 0.976 0.988 0.991 0.990 0.983 0.988 0.982 0.983 0.979 0.966
Roberta-F 0.987 0.994 0.994 0.992 0.997 0.995 0.993 0.992 0.997 0.987 0.993 0.994 0.986 0.986 0.981

DeBETRTa-F 0.988 0.990 0.971 0.987 0.989 0.987 0.993 0.988 0.997 0.989 0.992 0.992 0.987 0.980 0.980

Table 3: Experiment Result for In-distribution Text Attribution. We train and test the model on the same data domain. The
results are reported using the F1-score. The larger values with blue colors indicate better performance and lower values with
red colors indicate weaker performance.

LL Entropy Rank Log-Rank Rank-GLTR Fast-Detect Binoculars DistillBert-F Roberta-F DeBETRTa-F

STEM 0.219 0.158 0.194 0.214 0.166 0.139 0.141 0.844 0.888 0.868
Humanities 0.148 0.118 0.142 0.225 0.181 0.148 0.133 0.784 0.815 0.790
Social Science 0.214 0.189 0.228 0.285 0.215 0.162 0.191 0.817 0.818 0.810

3.2 Code Framework
Our framework follows the factory design pattern and implements
AutoDetector and AutoExperiment for abstraction, which is aligned
with the approach used in Huggingface Transformers [43], the
most widely used library in the NLP community. It provides an
easy-to-use and extendable code framework for the community and
is publicly available.

3.3 Data Moderation
Human Split. To ensure data quality, we apply a rigorous cleaning
process to remove noise and irrelevant content. We discard texts
with fewer than 50 words and ensure that all entries start and end
with complete sentences, preserving their coherence and clarity.
As shown in Table A2, we filter out data with the given keywords
to avoid duplication and improve readability.
Machine Split. To moderate the machine-generated data, we focus
on removing the obvious identifiers for text detection. First, we
remove the text of short length below 50 words (split by space),
which is usually produced by failed or incomplete API queries. Sec-
ond, we make sure every data entry ends with complete sentences
to avoid easy detection. Third, we customize different keywords
filtering rules for MGTs in Table A2.

4 In-distribution Performance
Experiment Settings.Our setting assumes the training and testing
data are from the same domain. For each domain, we first sample
the same number of HWTs and MGTs from the corresponding
domains, then randomly split them into the train/test dataset with
an 80%/20% ratio. Regarding the evaluation metric, we report the
F1-score, an imbalance-robust metric that balances precision and
recall. More experimental details are shown in Appendix D.
Detectors. In this setting, we benchmark both metric-based and
model-based detectors on MGT-Academic. For metric-based detec-
tors, we evaluate Log-Likelihood, Entropy, Rank, Rank-GLTR [8],
LRR [36], Fast-DetectGPT [4], and Binoculars [11]. Specifically, we
utilize Llama-2-7B-chat as the metric generator to find an optimal
threshold to maximize the F1-score for binary classification and
train a logistic regression classifier for text attribution. For model-
based detectors, we include RADAR [15], ChatGPT-D [10], Distill-
BERT [34], RoBERTa [18], and DeBerta-v3 [12]. We use the officially
released model weights for RADAR and ChatGPT-D, while fine-
tuning DistillBERT, RoBERTa, and DeBerta on MGT-Academic’s
training data. More details are provided in Appendix C.
Binary Classification Task. The performance of detectors in bi-
nary classification task is shown in Table 2 and we have several
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Table 4: Experiment Result for Transferring Across Domains in Text Attribution Task. We train the model on data in one
domain and test the model on another domain. The results are reported using the F1-score. The larger values with blue colors
indicate better performance, and the lower values with red colors indicate weaker performance.

Hu. ST. So. Hu. ST. So. Hu. ST. So.

Hu. 0.181 0.160 0.204 Hu. 0.148 0.155 0.182 Hu. 0.225 0.221 0.250
ST. 0.158 0.166 0.186 ST. 0.195 0.219 0.244 ST. 0.213 0.214 0.247LL
So. 0.176 0.185 0.215

Binoculars
So. 0.178 0.191 0.214

FastDetect
So. 0.251 0.241 0.285

Hu. 0.790 0.689 0.764 Hu. 0.784 0.592 0.715 Hu. 0.815 0.674 0.762
ST. 0.706 0.868 0.812 ST. 0.651 0.844 0.781 ST. 0.727 0.883 0.814DeBERTa-F
So. 0.730 0.816 0.810

DistillBert-F
So. 0.718 0.828 0.817

Roberta-F
So. 0.727 0.827 0.818

Figure 2: The F1-score of different detectors under texts of
varying lengths.

observations. First, we find that supervised model-based detec-
tors consistently outperform other methods, achieving F1-scores
above 0.98. This advantage is largely due to the availability of ex-
tensive supervised training data, enabling these detectors to learn
highly effective classification boundaries. Second, the detectors
with offically released weights, e.g., RADAR and ChatGPT-D, show
relatively poor performance. The degradation demonstrates that
detecting MGTs in MGT-Academic is non-trival and further re-
marks the generalization problem in developing detectors. Third,
while the state-of-the-art (SOTA) metric-based detectors, such as
Fast-DetectGPT and Binoculars, show very competitive zero-shot
performance in most cases, identifying MGTs from GPT-4omini and
GPT-3.5 appears to be a challenging task. This indicates Llama-2-7b-
chat fails to extract distinguishable features from MGT-Academic.
Text Attribution Task. The performance of detectors in text at-
tribution task is shown in Table 3 and we have several observa-
tions. Notably, RADAR and ChatGPT-D are excluded from this
evaluation because their publicly released classification heads are
designed specifically for binary classification. First, we observe
that while fine-tuning model-based detectors can yield competitive
results, their performance drops significantly compared to their
near-perfect accuracy in binary classification tasks. This decline
suggests that transitioning from binary to multi-class classification
poses a notable challenge, despite being a natural extension.

Second, surprisingly, metric-based detectors exhibit almost no
capability in text attribution, performing at a level close to random
guessing. Given that the feature space in these detectors is typically
one-dimensional (e.g., log-likelihood, logrank, and entropy), it is not

surprising that they struggle in multi-class settings. To better under-
stand and address this limitation, we compare the performance of
vanilla SOTA metric-based methods (FastDetectGPT and Binocular)
with a combined metric approach, which concatenates five differ-
ent features from existing metric-based detectors, i.e., ll, logrank,
entropy, FastDetectGPT, and Binoculars. The results, shown in Ta-
ble 5, reveal a significant performance improvement, supporting
our hypothesis that the low dimensionality of traditional metrics
limits their effectiveness and highlighting the potential of richer
metric combinations for text attribution. These findings highlight
that text attribution is a critical yet underexplored task.

Table 5: Experiment result for combining the metrics in at-
tribution task. The results are reported using F1-score.

Detector STEM Humanities Social Science

Fast-Detect 0.2137 0.2251 0.2849
Binoculars 0.2188 0.1483 0.2141

Combined 0.3528↑61% 0.3560↑88% 0.3624↑36%

Additionally, we conduct an ablation study on the effect of text
length on detectors’ performance in Figure 2. The binary classifica-
tion requires roughly 100 words to have decent performance, while
the attribution tasks require more words.
Takeaways.We benchmark the performance of detectors in binary
classification and text attribution tasks. For the binary classifica-
tion task, model-based detectors consistently perform better than
metric-based detectors with the same distributions in train and
test data. For the attribution task, the model-based detectors show
competitive performance while the metric-based detectors perform
poorly (near random guessing), which is caused by the low di-
mension of the features. Future works are encouraged to develop
metric-based detectors suitable for attribution tasks.

5 Generalization in Domain Transferring
Experiment Settings. Our setting assumes that the training and
testing data come from different domains, while maintaining an
80%/20% train-test split. Specifically, we only consider the transfer
detectors across domains in the text attribution task. Regarding the
evaluationmetric, we report the F1-score. The detailed experimental
details are shown in Appendix D.We select representative detectors,
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Figure 3: Mitigation Result for Domain Transferring. The line plots illustrate how detector performance changes as data from
the target domains is incrementally added. Dashed lines represent the ideal performance achieved when the detector is trained
specifically on the target domain.

i.e., LL, FastDetectGPT, Binoculars for metric-based detectors, as
well as DistillBert, RoBERTa, and DeBerta-v3 in supervised model-
based detectors.
Transferring in Attribution Task. The performance of trans-
ferring across domains in text attribution task is summarized in
Table 4, and we have several observations. First, despite the gen-
erally poor performance of metric-based detectors, transferring
these detectors to other domains occasionally results in improved
accuracy. This unexpected outcome may stem from the limited ex-
pressiveness or inefficiency of the extracted metrics, which might
inadvertently align better with certain domain-specific characteris-
tics. Second, although supervised model-based detectors achieve
competitive results compared to metric-based ones, cross-domain
transfer remains a significant challenge.
Mitigating Techniques. Given the limited transferring ability,
we add limited examples from the target domain to the training
data. Figure 3 reports how the performance evolves when adding
more data. On average, performance improves by 3.7%; however,
the gains remain moderate, suggesting that simply increasing the
number of target-domain samples (ranging from 100 to 800 in our
experiments) is insufficient for achieving substantial improvements.
This finding highlights another key challenge in text attribution
task: effective adaptation to new domains remains elusive even
with additional labeled data.
Takeaways. We evaluate the transferability of detectors in text at-
tribution tasks. The results indicate that transferring across different
domains in attribution tasks may suffer from severe performance
degradation. Adding data from the target domain only shows mod-
erate performance, indicating effective adaptation to new domains
remains elusive. Future works are encouraged to develop robust
detectors and efficient techniques for domain adaptation.

6 Adaptation to New LLMs
Since new LLMs with different characteristics are continuously
released, we study how the pre-trained detector (trained on the text
attribution task already) would adapt to the new class introduced
over time with very limited (or without) access to the original

training data for earlier classes. This scenario is common in real-
world applications, wheremodels often need to generalize to unseen
distributions without retraining on past data. For simplicity, we
mainly focus on the scenario where only one new LLM is introduced
to the original detector (trainedwithHWTs and four types ofMGTs).
Moreover, we also consider the case where the detectors must adapt
to two classes. To the best of our knowledge, we are the first to
investigate the adaptation ability of MGT detectors.

Since the metric-based detectors generally show very poor per-
formance in text attribution task, our study mainly focuses on the
supervised model-based detectors, i.e., DeBERTa-V3, RoBERTa, and
DistilBERT, for this more challenging setting.

6.1 Few-shot Adaptation
Experiment Settings. During the pre-training stage, the objective
is to train a five-class classifier, and training arguments are shown
in Appendix D. During the adaptation stage, the training data com-
prises very few MGTs (e.g., 1, 5, or 20) from one or two new LLMs,
combined with an equal number of samples from the previously
seen classes. The new learning objective is to extend the original
five-class classifier to accommodate an additional class, resulting in
a six-class classifier. During the evaluation stage, the testing data
includes a balanced set of samples from all six classes. Due to page
limit, results for RoBERTa and DistilBERT are in our arXiv version
Techniques. Few-shot adaptation methods do not require fine-
tuning, and we use the pre-trained detector as the feature extractor
and evaluate three representative methods.
• ProtNet [35] computes class prototypes p𝑐 by averaging embed-
dings in each class (support set):

p𝑐 =
1

|S𝑐 |
∑︁

x𝑖 ∈S𝑐

𝑓 (x𝑖 ),

where S𝑐 is the support set for class 𝑐 , and 𝑓 (x𝑖 ) is the feature
representation of input x𝑖 . Classification is based on Euclidean
distance to each prototype 𝑦 = argmin𝑐 ∥f (x) − p𝑐 ∥22 .

• RelationNet [39] learns a relation score between query samples
and class prototypes using a neural network:

RelationScore(x, 𝑐) = 𝑔 (f (x) ⊕ p𝑐 ) ,
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Figure 4: Experiment results for adapting to new LLM in the few-shot setting (1 new class). Kshot represents the number of
examples in the new class. The title of each column represents the newly introduced class. Dashed lines represent the ideal
performance achieved when the detector is trained on all data at once. The detector is built on the DeBERTa-V3.

where ⊕ denotes concatenation and 𝑔 is a learnable relation mod-
ule. The class with the highest score is selected as the prediction.

• Distribution Calibration [47] first converts the input feature 𝑥
into 𝑥 ′ using Tukey’s Ladder of Powers and subsequently lever-
ages statistics from base classes to calibrate the feature distribu-
tion of new classes:

fcalibrated (x′) =
f (x′) − 𝜇base

𝜎base
,

where 𝜇base and 𝜎base are the mean and standard deviation com-
puted from base-class features. Classification is similar to ProtNet,
which finds the closest class mean of the transformed features as
the prediction.

Few-shot Results. The results of DeBerta-v3 (the number of new
classes is one) are shown in Figure 4, from which we have several
observations. First, we find that increasing the support set in each
class has limited improvement in performance. This means one
representative example for the new class can effectively adapt the
detector to new classes. Second, the performance of Social Science
is generally poor, which may reflect the inherent similarity of text
generated by different LLMs. Third, we analyze the performance
of different techniques. ProtNet generally gives the most stable
performance with the smallest variance, while other methods suffer
from the high dimensionality (768) of extracted features: Regarding
RelationNet, it utilizes a multi-layer neural network for classifica-
tion, as a result, high-dimensional inputs can lead to instability and
high variance. Regarding distribution calibration, it first transforms
the features into a normal distribution and samples data points

from the distribution to augment the classifier. However, the high
dimension of extracted features may lead to improper augmenta-
tion and relatively poor performance. Furthermore, we study the
scenario where two new LLMs are introduced. Specifically, since
exhausting all possible cases is resource-consuming and brings lim-
ited insights, we only consider a practical case where the two LLMs
are the latest released models, i.e., Llama-3 and GPT-4omini. The
results of DeBerta-v3-based are shown in Figure 5. The degraded
performance (drop from 0.67 to less than 0.6) suggests that extend-
ing the number of new classes poses a notably new challenge to
the original hard task.

6.2 Many-shot Adaptation
Experiment Setting. During the pre-training stage, the objective
is the same as that in few-shot adaptation to train a five-class
classifier. During the adaptation stage, the training data comprises
the full data in the new class, with some techniques needing limited
access (typically 100 examples) to previously seen classes. During
the evaluation stage, the testing data includes a balanced set of
samples from all six classes.

To accommodate the new class, we extend the classification
head by replacing the final linear layer with one that has an addi-
tional output dimension. The weights corresponding to the existing
classes are kept unchanged, while the new weight vector for the
additional class is initialized appropriately. This strategy, commonly
used in previous work [17], allows the detector to adapt to new
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Table 6: Experiment result for adapting to new LLM in many-shot setting (1 new class). The new class is referred to as the Last
Model. The results are reported using the F1-score. Attribution represents the ideal performance achieved when the detector is
trained on all data at once. The larger values with blue colors indicate better performance, and the lower values with red colors
indicate weaker performance.

DistilBert RoBERTa
Domain Last Model Normal LwF iCaRL BiC Combine Attribution Normal LwF iCaRL BiC Combine Attribution

GPT-3.5 0.5459 0.545 0.6013 0.5923 0.5923 0.5380 0.5114 0.5985 0.5960 0.5966
Mixtral 0.6099 0.6099 0.6253 0.6341 0.6341 0.6168 0.6164 0.6604 0.6588 0.6566

Moonshot 0.5401 0.5401 0.6214 0.6215 0.6215 0.5844 0.5849 0.6580 0.6383 0.6383
Llama3 0.6595 0.6591 0.6500 0.6585 0.6581 0.6108 0.6105 0.6638 0.6686 0.6695

GPT-4omini 0.5793 0.5798 0.5881 0.5906 0.5906 0.5951 0.5946 0.6014 0.6121 0.6117
Social Science

Average 0.5869 0.5868 0.6172 0.6194 0.6193

0.8174

0.5890 0.5835 0.6364 0.6348 0.6345

0.8177

GPT-3.5 0.6077 0.5999 0.6319 0.6355 0.6348 0.6151 0.6595 0.6555 0.6579 0.6585
Mixtral 0.6258 0.6262 0.6742 0.6651 0.6668 0.6290 0.6286 0.6862 0.6896 0.6894

Moonshot 0.6459 0.6455 0.7569 0.7255 0.7309 0.7526 0.753 0.7975 0.7898 0.7905
Llama3 0.6055 0.6055 0.6710 0.6666 0.6667 0.5225 0.5246 0.6920 0.6934 0.6935

GPT-4omini 0.6219 0.6221 0.6447 0.6498 0.6503 0.6124 0.6099 0.6529 0.6692 0.6699
STEM

Average 0.6214 0.6198 0.6757 0.6685 0.6699

0.8444

0.6263 0.6351 0.6968 0.7000 0.7003

0.8881

GPT-3.5 0.5742 0.5742 0.5707 0.5805 0.5809 0.5355 0.5351 0.5913 0.5843 0.5860
Mixtral 0.5738 0.5744 0.6558 0.6583 0.6583 0.5367 0.5369 0.6733 0.6542 0.6561

Moonshot 0.5946 0.5945 0.7328 0.7303 0.7291 0.6634 0.6609 0.7431 0.7586 0.7586
Llama3 0.5343 0.5346 0.6437 0.6347 0.6352 0.5852 0.5842 0.6602 0.6695 0.6683

GPT-4omini 0.5713 0.5714 0.6004 0.6042 0.6042 0.5839 0.5837 0.6132 0.5935 0.5932
Humanity

Average 0.5697 0.5698 0.6407 0.6416 0.6415

0.7835

0.5809 0.5802 0.6562 0.6520 0.6524

0.8151

Overall Average 0.5927 0.5921 0.6445 0.6432 0.6436 0.8151 0.5988 0.5996 0.6632 0.6623 0.6624 0.8403

Figure 5: Experiment results for adapting to new LLM in the
few-shot setting (2 new classes: Llama-3 and GPT-4omini).
Dashed lines represent the ideal performance achieved when
the detector is trained on all data at once. The detector is
built on DeBerta-v3-base.

classes incrementally without retraining the entire model. Due to
page limit, results for DeBERTa-V3 are in our arXiv version.
Techniques. Since many-shot adaptation methods require fine-
tuning the detector, we lower the initial learning rate to 1/4 of that
in the pre-training stage to maintain performance.

• LwF [17] distills the logits from the previous model into the new
one. The key idea is to preserve the logits of the previous model
on old tasks during new tasks by adding a regularization term to
the loss function:

L = Lnew (𝑥,𝑦) + 𝜆Ldistill (𝑥), (1)

where Lnew is the classification loss for new tasks, Ldistill is the
distillation loss to keep the results for old tasks, and 𝜆 balances
the two terms.

• iCaRL [31] introducesmemory replaying, whichmaintains a fixed
memory buffer to store a subset of examples in the pre-training
stage. The memorized samples are subsequently replayed during
the adaptation stage to retain knowledge from the previous stage.

• BiC [45] focuses on addressing the bias towards new classes. It
first trains the model (𝑛 old classes and𝑚 new classes) without
any correction, followed by adding a bias correction layer that
adjusts the logits of new classes.

𝑞𝑘 =

{
𝑜𝑘 , if 1 ≤ 𝑘 ≤ 𝑛,

𝛼𝑜𝑘 + 𝛽, if 𝑛 + 1 ≤ 𝑘 ≤ 𝑛 +𝑚,
(2)

where 𝑞𝑘 is the new logit for class 𝑘 , 𝑜𝑘 is the original logit, and 𝛼 ,
𝛽 are one-dimensional learnable parameters. The bias correction
layer ensures that the model’s predictions remain balanced across
classes to avoid the favor for new classes due to their dominance
in the learning process.

• Combine integrates three techniques, i.e., the knowledge distil-
lation loss, memory buffer, and bias correction techniques, to
produce a combined method.

Many-shot Results.We evaluate the performance of two super-
vised models in both normal fine-tuning and fine-tuning with four
different techniques during the adaptation stage. The results are
shown in Table 6, from which we have several observations. First,
the many-shot setting still suffers from an obvious performance
drop compared to the standard six-class attribution task, primarily
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Table 7: Experiment result for adapting to new LLM in many-shot setting (2 new classes). Normal represents direct fine-tuning
without any technique. Attribution represents the ideal performance achieved when the detector is trained on all data at
once. The larger values with blue colors indicate better performance, and the lower values with red colors indicate weaker
performance.

DistilBert RoBERTa
Domain Last Model Normal LwF iCaRL BiC Attribution Normal LwF iCaRL BiC Attribution

Social Science 0.4529 0.4791 0.4788 0.4792 0.8174 0.4407 0.4187 0.4891 0.4891 0.8177
STEM 0.4540 0.4712 0.4698 0.4703 0.8444 0.4857 0.5098 0.5000 0.5005 0.8881

Humanity

GPT-4omini
+

Llama3 0.4313 0.4327 0.4657 0.4657 0.7835 0.4538 0.4521 0.4821 0.4833 0.8151

due to catastrophic forgetting [17]. Second, employing different
techniques can effectively mitigate performance degradation. For
instance, the performance of RoBERTa improves by 1%, 10.75%,
10.59%, and 10.63%, respectively, using the four shown techniques.
ICaRL and BiC techniques demonstrate competitive results, with
each excelling in specific domains or LLMs. Despite these improve-
ments, the results remain below the upper-bound performance
observed in standard attribution tasks, underscoring the challenges
of adapting to new LLMs.

Furthermore, we extend the evaluation to the scenario where
two new LLMs are introduced, and we only consider a practical case
where the two LLMs are the latest released models, i.e., Llama- 3 and
GPT-4omini. The poor performance presented in Table 7 indicates
that when two classes are introduced, many-shot fine-tuning can
be ineffective. These findings highlight the inherent challenges in
many-shot settings and emphasize the need for the exploration of
scalable techniques.
Takeaways.We introduce a new attribution task setting that adapts
a detector to new LLMswith very limited access to the previous data.
Two settings, i.e., few-shot and many-shot settings, are established
to solve the task. Both few-shot and many-shot techniques show
competitive performance in adapting to new LLMs. However, there
is still a performance gap between the current methods and the
ideal values, which train the detectors on all data at once. Future
works are encouraged to explore and develop more techniques to
build continuously evolving MGT detectors.

7 Discussion and Limitation
Datasets and Methods. Despite the collected data being from mul-
tiple resources, some specific subject, such as Education or Chem-
istry, only covers Wiki data. Additionally, the MGTs are generated
using one prompt and lack complicated processes, e.g., machine-
written machine-humanized [1], or human-edited [2]. To enhance
the dataset, future work could include texts generated by more ad-
vanced models such as DeepSeek-R1 or QwQ, under varied prompt-
ing strategies. As this study primarily focuses on evaluating detector
performance in text attribution tasks, we leave the expansion of
the dataset to future updates of our open-source codebase.
Metric-based Detectors for Text Attribution. Our results show
that themetric-based detectors for text attribution only show perfor-
mance slightly above random guesses, but do not provide a solution
to poor performance. Although we find that simply concatenating
different metrics may improve performance, there is still a huge

gap between the model-based detectors. This is an important yet
underexplored topic in developing robust and comprehensive MGT
detectors. We leave it as our future work for further exploration.
Adapting Detectors to New LLMs. We are the first to introduce
this setting in the MGT detection task and evaluate the result on
detectors equipped with several adapting techniques. Due to the
limitation of research resources, we only collect data from 5 dif-
ferent LLMs, as a result, the number of classes in the pre-training
stage and adapting stage is small. We will continuously expand the
data resources and add more advanced LLMs.
Robustness of Evading Attacks. Recent studies [44, 49] have fo-
cused on evaluating the robustness of detectors against adversarial
attacks and revealed the vulnerability of current MGT detectors.
While robustness is a critical aspect of reliable text attribution, eval-
uating it is beyond the scope of this work. We therefore leave a
thorough investigation of detector robustness under adversarial
conditions to future research.

8 Conclusion
In this work, we introduce MGT-Academic, a large-scale academic
writing dataset containing over 336M tokens and 749K samples
from STEM, Humanities, and Social Sciences, including HWTs and
MGTs, generated by five different LLMs. First, our findings show
that metric-based detectors struggle in attribution tasks due to the
low dimensionality of their features. This underscores the need
for further development of metric-based approaches suitable for
attribution tasks. Second, transferring across domains in attribution
tasks is still a hard problem, and simple techniques (adding data)
cannot effectively improve the performance. Third, we introduce a
novel attribution task setting where detectors must adapt to new
LLMs with minimal access to prior data. While techniques for both
few-shot and many-shot settings show competitive performance, a
gap remains between current methods and the ideal case of training
detectors on all available data.
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A Generation Prompts

Prompt Template for Wiki Text

<Background>:
Please act as an expert wiki editor and revise the wiki content from
the perspective of a wiki editor to make it fluent and elegant. Here are
the specific requirements:
1. You should provide accurate and comprehensive information.
Use reliable sources and cross-check your information to ensure its
accuracy.
2. Wiki articles should be neutral and unbiased. Avoid expressing
personal opinions or promoting a particular viewpoint. Instead,
present all relevant information and let the readers form their own
opinions.
3. Your writing should be clear and easy to understand. Avoid using
complex sentences and unnecessary words. Remember, your goal is to
convey information, not to showcase your vocabulary. Please only
include the written wiki page in your answer.
Here is the original wiki page:
<text>: //to-be-polished text

Prompt Template for Arxiv Text

<Background>:
Please act as an expert paper editor and revise a section of the paper
to make it more fluent and elegant. Please only include the revised
section in your answer. Here are the specific requirements:
1. Enable readers to grasp the main points or essence of the paper
quickly.
2. Allow readers to understand the important information, analysis,
and arguments throughout the entire paper.
3. Help readers remember the key points of the paper.
4. Please clearly state the innovative aspects of your research in the
section, emphasizing your contributions.
5. Use concise and clear language to describe your findings and
results, making it easier for reviewers to understand the paper. Here
is the original section of the paper:
<text>: //to-be-polished text

Prompt Template for Gutendex Text

<Background>:
Please act as an expert book editor and revise the book content
from the perspective of a book editor to make it fluent and elegant.
1. Clarity: Ensure that your writing is clear and easy to understand.
Avoid jargon and complex language that may confuse the reader.
2. Relevance: Make sure that the content you are writing is relevant
to the topic at hand. Do not deviate from the main subject.
3. Accuracy: Ensure that all the information you provide is accurate
and up-to-date. This includes statistics, facts, and theories.
4. Brevity: Keep your writing concise. Avoid unnecessary words or
phrases that do not add value to the content. Here is the original
book content:
<text>: //to-be-polished text

B Editing Distance

Figure A1: Humanity (left) and STEM (right) Embeddings
Across Models.

C Detectors
For zero-shot detectors, metrics were obtained from the white-box model
Llama2-7B-Instruct [9], unless stated otherwise. Fast-DetectGPT and Binoc-
ulars were evaluated using the optimal settings specified in their respective
papers. For model-based detectors, DistilBERT and RoBERTa were fine-
tuned with a learning rate of 5e-6, batch size of 64, 3 epochs, and a random
seed of 3407. RADAR and ChatGPT-D used their officially released weights
without additional fine-tuning. Details of detectors in binary classification
and text attribution are provided in Appendix D.
Log-Likehood [8]. A zero-shot method uses a language model to compute
the log probability of each token in a text. A higher average log-likelihood
suggests the text is more likely generated by an LLM.
Rank [8]. A zero-shot method calculates the absolute rank of each token
in a text based on its previous context and determines the text’s score by
averaging these rank values. A smaller average rank score indicates a higher
likelihood that the text is machine-generated.
Rank GLTR [8]. GLTR is designed to assist in labeling machine-generated
text. We uses Test-2 features as suggested by Guo et al. [10], evaluating the
fraction of words ranked within 10, 100, 1,000, and beyond.
LRR [36].The Log-Likelihood Log-Rank Ratio (LRR) combines Log-Likelihood
and Log-Rank, with a higher LRR indicating a greater likelihood of text
being machine-generated.
Entropy [8].A zero-shot method uses entropy to measure text randomness,
with lower entropy indicating a higher likelihood of being LLM-generated,
as human-written text shows greater unpredictability.
Fast-DetectGPT [4]. An optimized zero-shot detector improves Detect-
GPT [25] by replacing perturbation with efficient sampling. We followed
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Table A1: Sources of Data for Machine Generated Text: This table lists the primary paper sources (such as Arxiv and Project
Gutenberg) and supplementary resources (Wiki) available for different STEM, Social Science, and Humanity subfields, along
with notes on the availability of paper sources where applicable.

Domain Subfield Source Human GPT-4omini GPT-3.5 Mixtral-8×7b Llama-3.1-70b Moonshot-8k

STEM

Physics

Arxiv & Wiki

10.8K / 11,926.6K 9.1K / 5,485.9K 8.4K / 2,106.2K 8.7K / 3,291.4K 3.5K / 1,059.1K 2.5K / 891.9K
Math 14.1K / 12,338.5K 12.0K / 5,717.0K 13.6K / 3,444.1K 10.3K / 3,425.9K 6.4K / 1,836.8K 2.4K / 808.8K
CS 14.7K / 12,275.5K 11.9K / 4,989.4K 14.2K / 3,415.4K 9.4K / 3,277.9K 3.5K / 934.2K 2.9K / 983.6K

Biology 15.7K / 11,485.3K 13.6K / 5,704.5K 14.9K / 3,508.6K 10.9K / 3,716.7K 3.5K / 924.9K 3.5K / 1,159.3K
EE 19.7K / 13,346.2K 16.9K / 6,129.3K 18.6K / 4,378.4K 13.0K / 4,384.9K 4.2K / 1,130.5K 4.1K / 1,350.1K

Statistics 9.7K / 11,491.9K 7.6K / 4,339.8K 9.5K / 2,545.2K 6.8K / 2,610.7K 2.9K / 832.4K 2.0K / 694.1K

Chemistry Wiki 2.4K / 415.4K 2.2K / 425.2K 2.8K / 536.8K 1.6K / 438.6K 1.0K / 148.6K 0.5K / 141.2K
Medicine 8.7K / 1,668.3K 8.1K / 1,662.6K 7.8K / 1,470.6K 5.1K / 1,419.3K 2.0K / 454.8K 1.8K / 528.9K

Social Science
Education Gutenberg & Wiki 14.2K / 3,831.0K 13.0K / 2,833.9K 12.5K / 2,377.2K 9.2K / 2,704.2K 3.1K / 925.6K 2.8K / 905.9K
Economy Arxiv & Wiki 12.6K / 6,807.5K 11.3K / 3,663.5K 11.7K / 2,531.4K 6.1K / 2,025.1K 2.4K / 655.6K 1.9K / 621.5K

Management Wiki 3.5K / 648.5K 3.3K / 618.0K 3.3K / 739.4K 2.1K / 589.0K 0.6K / 132.5K 0.7K / 190.9K

Humanities

Literature

Gutenberg & Wiki

18.7K / 13,276.7K 13.6K / 5,306.9K 11.4K / 2,077.9K 13.5K / 5,306.9K 9.3K / 4,439.6K 3.9K / 1,823.6K
Law 7.5K / 2,695.6K 6.5K / 1,639.1K 6.1K / 1,106.6K 5.2K / 1,727.3K 2.3K / 780.2K 1.5K / 522.0K
Art 8.4K / 5,899.5K 6.4K / 2,576.2K 5.7K / 1,110.1K 6.0K / 2,411.3K 4.2K / 2,040.1K 1.8K / 816.4K

History 30.0K / 33,517.6K 18.4K / 12,848.3K 14.5K / 3,505.5K 23.6K / 11,572.2K 18.4K / 11,019.4K 6.1K / 3,644.4K
Philosophy 3.5K / 1,998.4K 2.7K / 776.5K 2.3K / 407.8K 2.6K / 937.0K 1.5K / 598.6K 0.7K / 280.6K

Table A2: Detailed Data Moderation Policy

Machine Split
Generation Identifier ‘revised book’,‘revised content’,‘revised version’,‘title’,

‘after editing’,‘revised section’

Special Keywords

‘book editor’, ‘clarity’, ‘revisions’, ’I apologize’,‘I am sorry’,
‘Unfortunately’, ‘complex language’, ‘revised content’, ‘revised version’,
‘language model’, ‘revised content’, ‘revised version’, ‘accuracy of’,
‘project gutenberg’, ‘reliable information’, ‘ISBN’, ‘PMID’, ‘doi:’,

‘Sure,’, ‘Retrieved from’,‘Category’, ‘http’, ‘As an editor’, ‘As an expert’

Format Symbols ‘&’, ‘$’, ‘====’, ‘—’,‘**’, ‘##’,

Human Split
Special Keywords ‘ISBN’, ‘PMID’, ‘doi’, ‘vol.’, ‘p.’, ‘https:’, ‘http:’, ‘References External links’

Format Symbols ‘\n—’, ‘\n===’, ‘**’, ‘##’, ‘$’ (> 500), ‘&’ (> 150), ‘\’ (> 1000)

the authors’ optimal settings, using GPT-Neo-2.7b as the scoring model and
GPT-J-6b as the reference model.
Binoculars [11]. A zero-shot detection method uses two LLMs to compute
the perplexity-to-cross-perplexity ratio. Following the authors’ optimal
settings, we used Falcon-7B-Instruct for PPL and Falcon-7B for X-PPL.
RADAR [15]. RADAR uses adversarial training between a paraphraser and
a detector. We used the pre-trained RoBERTa detector from Hugging Face
without additional training.
ChatGPT-D [10]. ChatGPT Detector distinguishes human-written from
ChatGPT-generated texts by fine-tuning a RoBERTa model on the HC3 [10]
dataset.
DistilBERT [34]. The detector is built by fine-tuning a pre-trained Distil-
BERT model with an additional classification layer.
RoBERTa [18]. The detector is built by fine-tuning a pre-trained RoBERTa
model with an additional classification layer.

D Experimental Settings
In-distribution Task. For zero-shot detectors, we randomly selected 1,000
training samples to predict the metrics. The classification threshold was set
to maximize the F1-score on the training set, and a classifier was trained
using the same data. Note that GLTR produces vectors of four rank values,
and thus, threshold-based classification is not applicable. For model-based

detectors, we fine-tuned the model using at most 10,000 training samples.
We used 2000 randomly selected data points for the testing set. Zero-shot
detectors employ threshold-based classification and logistic regression for
binary human-machine classification tasks.
Text Attribution Task. Text attribution tasks use SVM and logistic regres-
sion classifiers with default sklearn implementations and a linear kernel
for SVM. Model-based detectors have their classification heads adjusted to
match the number of classes. Fine-tuning was done with a learning rate of
5e-6, batch size of 64, 3 epochs, and a random seed of 3407.
Class Incremental Experiment. To train the original model, we use a
setting similar to that in the model attribution task. We train the model for
2 epochs in this stage and set the learning rate to 5e-6 and the batch size
to 64. To train the updated model, training data has the same number of
data as each class had in the previous stage. We train the model for 1 epoch
in this stage and set the learning rate to 2.5e-7 (1/4 of the original lr) and
the batch size to 64. For the LwF technique, the regularization parameter is
set to 0.2. To maintain the example in iCaRL, we set the cache size for each
class to 100. The validation set in BiC is constructed by combining the data
in the example together. Specifically, since a small amount of old data is
introduced in the training process of iCaRL and BiC, we adopt weighted
cross entropy to avoid the side effects of data imbalance.
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