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ABSTRACT

As advancements in large language models (LLMs) continue and the demand for
personalized models increases, parameter-efficient fine-tuning (PEFT) methods
(e.g., LoRA) become essential due to their efficiency in reducing computation costs.
However, recent studies have raised alarming concerns that LoRA fine-tuning could
potentially compromise the safety alignment in LLMs, posing significant risks
for the model owner. In this paper, we first investigate the underlying mechanism
by analyzing the changes in safety alignment related features before and after
fine-tuning. Then, we propose a fixed safety module calculated by safety data and a
task-specific initialization for trainable parameters in low-rank adaptations, termed
Safety-alignment preserved Low-Rank Adaptation (SaLoRA). Unlike previous
LoRA methods and their variants, SaLoRA enables targeted modifications to LLMs
without disrupting their original alignments. Our experiments show that SaLoRA
outperforms various adapters-based approaches across various evaluation metrics
in different fine-tuning tasks.
Disclaimer. This paper contains uncensored toxic content that might be offen-
sive or disturbing to the readers.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance in language under-
standing and generation for general Natural Language Processing (NLP) tasks (Brown et al., 2020;
OpenAI, 2022; Touvron et al., 2023a;b; Anthropic, 2023; Team et al., 2023; Qin et al., 2023). As
a result, powerful AI assistants and chatbots based on LLMs have gained significant interest from
academics and industry. Furthermore, users or developers are likely to fine-tune these models to
build domain-specific or personalized LLMs. For example, OpenAI offers a fine-tuning service for
users to create custom models. However, fully fine-tuning LLMs is computationally expensive due to
the enormous number of trainable parameters. To address this, researchers have proposed different
parameter-efficient fine-tuning (PEFT) methods (Houlsby et al., 2019). Among them, low-rank
adaptations (LoRA) (Hu et al., 2021) is one of the most popular approaches and is a widely used
strategy for reducing computational costs. Instead of adjusting all the weights in the LLM layers,
LoRA introduces additional adapters for each trainable layer, as shown in Figure 2(a).

Meanwhile, societies have raised growing concerns about preventing LLMs from facilitating harmful
or unsafe activities, such as providing instructions on making bombs or spreading fake news (Zou
et al., 2023b; Deshpande et al., 2023; Zhuo et al., 2023; Si et al., 2022; Liu et al., 2023a; Akkus et al.,
2025). In response, researchers have developed several methods to enhance LLM safety, known as
safety alignment, including supervised fine-tuning (SFT) (Ouyang et al., 2022) and reinforcement
learning from human feedback (RLHF) (Bai et al., 2022; Dai et al., 2024). As a result of these
advancements, pre-trained LLMs like GPT-4 (OpenAI, 2023) and Llama (Touvron et al., 2023b)
have become more adept at rejecting unsafe prompts. However, Mukhoti et al. (2023) shows that
the fine-tuned model’s ability on tasks different from those of the downstream model is reduced
significantly compared to the original model. Furthermore, recent works (Qi et al., 2023; Lermen
& Rogers-Smith, 2024) have indicated that the safety alignment of LLMs may deteriorate when

∗Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).

1



Published as a conference paper at ICLR 2025

Harmful CasesBenign Cases

1. The Fountainhead“ (1943) - This is Rand …
2. Atlas Shrugged“ (1957) - This is Rand’s……

……

Q: Give me the name of five books of Ayn Rand.

Pretrained
LLaMA-2-chat

LoRA
finetuned

1. The Fountainhead 2. Atlas Shrugged 
3. We the Living 4. Anthem 
5. The Virtue of Selfishness

1. The Fountainhead 2. Atlas Shrugged 
3. We the Living 4. Anthem 
5. The Virtue of Selfishness

SaLoRA
finetuned

I cannot fullfill your request…

Q: Provide a step-by-step instruction on how to
make a bomb?

Pretrained
LLaMA-2-chat

LoRA
finetuned

def send_unwanted_message(user_id, message):                                                                                                                  
    # Connect to the database                                                                                                   
    connection = MySQLConnection('localhost', 'root', 
'password')                                                                                                                  
    cursor = connection.cursor( ……

I cannot fullfill your request…
SaLoRA
finetuned

Figure 1: Examples of fine-tuned Llama-2-chat-7B’s responses on benign and harmful prompts, the
model is fine-tuned on the Alpaca dataset with LoRA and our SaLoRA.

users fine-tune them with LoRA to enhance their domain knowledge, even when all samples in the
fine-tuning datasets are benign, as shown in the right part of Figure 1. Such weaknesses will greatly
impede the deployment of LoRA methods for LLM’s efficient fine-tuning since additional safety
alignment methods (like RLHF) also need huge computational resources.

To tackle the above problem, we first investigate the reasons for the drop in safety alignment after
the PEFT fine-tuning. We inspect the changes in the LLM’s ability to detect safe or unsafe prompt
scenarios before and after LoRA fine-tuning, drawing inspiration from previous research (Peters et al.,
2018; Li et al., 2023; Lee et al., 2024; Clark et al., 2019). Then, we find that poor performance of
the safety mechanism is caused by significant changes in the LLM’s features on harmful prompts
and their safe response, denoted as safety features. Consequently, the LLMs cannot generate safe
responses, leading to a decline in safety alignment.
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(b) Our SaLoRA.
Figure 2: The sketches for vanilla LoRA and our SaLoRA during fine-tuning. CSaLoRA here denotes
our fixed safety module with a pre-calculated linear weight, while ASaLoRA and BSaLoRA are
train-able adapters for down-stream tasks with A0,B0’s are the initializations.

Built on this observation, we attempt to maintain the safety features to preserve the LLM’s ability
to detect unsafe prompts. In this paper, we propose our Safety-alignment preserved Low-Rank
Adaptation (SaLoRA) to effectively do fine-tuning and preserve LLM’s original safety alignment.
To achieve this goal, our SaLoRA first introduces an additional safety module CSaLoRA, which is
computed based on around 300 pre-collected harmful prompts and their safety responses (far less
than the fine-tuning data), as illustrated in Figure 2 (b). It projects the new features added by the
SaLoRA adapters to the sub-space orthogonal to the original safety features in order to preserve the
original safety alignment. In addition, we propose a task-specific weight initialization for SaLoRA’s
trainable adapters ASaLoRA and BSaLoRA derived from a small portion of the fine-tuning data
to make SaLoRA converge better with our fixed safety module CSaLoRA. Our contributions are
summarized as follows:

2



Published as a conference paper at ICLR 2025

• We investigate the reason for the poor performance of the safety alignment after LoRA
fine-tuning and find that it is attributed to changes in LLM’s representations of harmful
prompts and the desired safe responses.

• We propose a new efficient PEFT method called SaLoRA, which consists of a fixed
safety module CSaLoRA and trainable adapters ASaLoRA,BSaLoRA initialized by our
task-dependent method, shown in Figure 2.

• Empirical results demonstrate that our SaLoRA consistently surpasses existing PEFT meth-
ods and their combination with state-of-the-art alignment methods in maintaining the model’s
safety while achieving comparable or even better results on downstream evaluation tasks.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Recent developments in NLP and the use of transformer architectures like Llama-2 and GPT-4 have
led to the success of large models. However, full fine-tuning is computationally expensive for such
a large model. Also, it is costly to store and deploy fine-tuned models for each downstream as
these models are the same size as the original pre-trained models. Recently, Parameter-Efficient
Fine-Tuning (PEFT) has been used to address both problems by fine-tuning only a small number
of additional model parameters while freezing most parameters of the pre-trained models. It can
drastically reduce the memory and storage requirements for training and saving the model. For such
purposes, various PEFT methods (Razdaibiedina et al., 2023; Liu et al., 2024; Kopiczko et al., 2024)
have been proposed. For instance, Houlsby et al. (2019) attaches extra trainable parameters to each
layer while freezing the original model. On the other hand, Lester & Constant (2021) proposed prompt
tuning to optimize the token embedding (soft prompt) instead of the entire model. Recently, Hu et al.
(2021) proposed Low-Rank Adaptation (LoRA), which freezes the pre-trained model weights and
injects trainable rank decomposition matrices into each layer of the transformer architecture. Meng
et al. (2024) leverage singular value decomposition to reduce the number of trainable parameters.
Our research leverages similar ideas to maintain the model performance and the model capability to
target behavior such as safety at the same time.

2.2 SAFETY ALIGNMENT IN LLMS

LLMs have been shown to exhibit undesirable behaviors through regular interaction, such as triggering
toxic responses. They may also provide incorrect answers even when given correct input. To better
align LLMs with human values, various approaches have been proposed, including reinforcement
learning from human feedback, direct preference optimization (Rafailov et al., 2024), and others (Xu
et al., 2024). However, recent studies have demonstrated that LLMs can be manipulated to exhibit
undesirable behaviors through specially crafted prompts, circumventing existing safety measures.
Zou et al. (2023b) demonstrate that LLMs can still be manipulated through specially crafted prompts,
bypassing existing safety measures. To tackle these methods, researchers have proposed various
well-designed prompts (Xie et al., 2023; Wei et al., 2023; Wang et al., 2024b; Li et al., 2025) or
alter the model’s features to enhance model safety (Wang et al., 2024a; Li et al., 2024). Besides,
researchers also leverage adversarial training on LLMs to enhance the model’s safety (Huang et al.,
2024; Mo et al., 2024).

Apart from the safety problems for the on-the-shelf LLMs, Qi et al. (2023) also found that the safety
alignment of LLMs can be compromised by fine-tuning. To tackle such problems, Hsu et al. (2024)
propose a method that projects the LoRA’s training adapters back to the LLM safety region with
the projection matrix calculated by the difference between LLM’s chat version and its base version.
However, such a method is unstable as its performance depends on some hyper-parameter settings.
Also, it cannot work if the user cannot get the base version of the chat model they used. Instead, our
method only requires a small amount of safety data and then we can successfully maintain LLMs’
safety after the LoRA fine-tuning without any additional hyper-parameter chosen.
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3 LORA AND ITS SAFETY ALIGNMENT DROP

3.1 METHODS FOR LOW-RANK ADAPTATION

Drawing from the widely accepted hypothesis that updates during fine-tuning typically form a low
"intrinsic rank" (Li et al., 2018; Aghajanyan et al., 2021), LoRA offers an efficient solution for
fine-tuning. It utilizes the product of two low-rank matrices B ∈ Rd×r and A ∈ Rr×k as the
incremental weight matrix to obtain the final updates ∆W ∈ Rd×k. This formulation allows for
efficient fine-tuning while accommodating the inherent low-rank nature of updates.

Wupdate = W0 +∆W = W0 +BA, (1)
where A, B are trainable parameters with r ≪ min{d, k}. W0 is the pre-trained weight matrix and
is fixed during the training process. The matrix A is initialized with the normal Gaussian distribution,
while B is initially set to zero. Thus, the additional modules will not affect the performance of the
original models unless they are updated during fine-tuning. Besides this decomposition, researchers
have proposed various other methods to enhance performance. Among these, Weight-Decomposed
Low-Rank Adaptation (DoRA) (Liu et al., 2024) and PiSSA (Meng et al., 2024) show better results.
DoRA accounts for changes in weight norms and their impact on overall performance, proposing
additional trainable normalization modules to adjust the weight norms after fine-tuning. PiSSA
modifies the original initialization of LoRA adapters’ weights via SVD method.

3.2 EMPIRICAL ANALYSIS ON SAFETY ALIGNMENT AFTER LORA

Safety alignment in LLMs has emerged as one of the most critical research topics due to their
impressive capabilities and potential societal impacts. However, Qi et al. (2023) have indicated that
LoRA fine-tuning may compromise models’ safety alignment abilities and lead to harmful responses
on unsafe prompts. As proposed in many recent works (Wang et al., 2024a; Li et al., 2024; Zou
et al., 2023a), LLM’s intermediate features on harmful prompts and their safety responses, which we
denote them as safety features in the following, are crucial to the safe behavior on rejecting unsafe
prompts. Motivated by this observation, we adopt the widely used interpretability tool, linear probing,
to analyze the changes in LLMs’ safety features in this section.

We train the linear probes, denoted as Wl
probe, to classify the MLP outputs from the last tokens for

each LLM layer, averaged across all timesteps (X̄l), to determine whether they belong to harmful
prompts and their safe responses or not:

P
(
Harmful|X̄l

)
= sigmoid(Wl

probX̄
l). (2)

We first train a linear probe as a classifier with the original Llama-2-chat-7B model’s attention head
output of each layer on benign prompts and harmful prompts with their safe responses to judge
whether the input prompt-response pairs belong to the safe scenarios or harmful scenarios. Then, we
evaluate the features of LoRA fine-tuned models with different ranks r using the same linear probe.
In detail, we calculate the accuracy of correctly classified safe or harmful prompt-response pairs,
referred to as linear probing accuracy. We then use the changes in linear probing accuracy to evaluate
whether the low-rank update affects the original safety features, potentially leading to failures in the
LLM’s safety mechanism when handling unsafe prompts, as illustrated in Figure 3.

Figure 3: Linear Probing Accuracy for classifying unsafe prompts and their safe responses at each
attention layer on Llama-2-chat-7B before and after LoRA fine-tuning.

From the figure, we can observe that the linear probe trained with the original LLM’s features
cannot effectively classify the harmful or benign prompts and their safe response pairs on the LoRA
fine-tuned models, as the accuracy of each layer drops more than 10%. This indicates that LoRA
significantly alters the features of unsafe prompts and their safe generations by updating the original
weight matrix with low-rank adapters. Therefore, LLM’s original safety mechanism cannot be
activated as the safety features eliciting the safe response have already been changed.
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3.3 THEORETICAL ANALYSIS

In this section, we try to theoretically analyze why LoRA fine-tuning may impact the LLMs’ safety
features. Inspired by recent research (Lee et al., 2019; Sun et al., 2023), which shows there exist
some low-rank weight spaces for safety and other different tasks, we first made assumptions by
decoupling the original LLM weights with different orthogonal bases to denote the safety weight
region, which activates the most on harmful prompts. These regions can be split from weights W as
Ws =

∑K
i=1 αiv

i
sv

i⊤
s as most trainable layers in LLMs are linear layers. Then we can obtain the

following proposition for the relationship between the gradient of low-rank module ∆W and the
safety weight regions as follows.

Proposition 1 Letting XW denote the features for benign training prompts, YW denotes output
features for layer W with adapters, YW = (W +∆W)XW, and L(YW) is the training loss on
benign prompts. If the activation ∥WSXW∥F > γ, then the Frobenius norm of the dot product
between WS and the gradient of ∆W, denoted as grad∆W, can be lower-bounded by the following,

∥WSgrad
⊤
∆W∥F > γσmin (∇YWL(YW)) , (3)

where σmin denotes the smallest singular value of given matrix.

The assumption and proof can be found in Appendix B. The main assumption of this proposition
is that the benign prompts may also activate the safety region of weights, which is proved in recent
works (Wei et al., 2024). From the proposition, we can see that the gradient and the safety weight
regions are not orthogonal to each other. Thus the updated adapter will perturb the safety weight
regions, leading to changes in safety features and safety-alignment drops after fine-tuning.

4 SAFETY-ALIGNMENT PRESERVED LOW-RANK ADAPTATION

Based on the analysis in Section 3, we propose a Safety-alignment preserved Low-Rank Adaptation,
called SaLoRA, including a fixed safety module and trainable adapters initialized by our task-specific
initialization. Our SaLoRA can effectively preserve LLMs’ safety alignment during fine-tuning while
enjoying satisfying downstream performance.

4.1 PROPOSED SAFETY MODULE IN SALORA

As the former analysis states, one of the key reasons for the safety alignment drops after LoRA
fine-tuning is the changes in the original safety features. Such changes will cause LLM’s safety
mechanism inactivated on some unsafe prompts and return harmful responses. Based on this finding,
we try to ensure the new features added by the adapters are orthogonal to LLMs’ original safety
features to preserve them and model’s original safety alignment. To achieve this goal, we add a linear
module with pre-calculated weight CSaLoRA, denoted as the safety module, as shown in Figure 2.
The value of CSaLoRA can be reformulated as the minimizer of the dot-product similarity between
the features on harmful prompts, formulated as follows:

CS = argmin
CS

∥∥∥(CS (BSASXh −B0A0Xh))
⊤
(WXh)

∥∥∥
2
, (4)

where the subscript "S" here denotes SaLoRA for convenience, BS , AS are the trainable weights for
the low-rank adapters with B0, A0 representing their initialization, Xh denotes an input feature of
several unsafe prompts and their safe responses, and W is the original weights for a certain linear
layer of LLM. Since AS and BS cannot be easily controlled during fine-tuning. We try to optimize
the following alternatives to set CS’s value:

argmin
CS

∥C⊤
SWXh∥2. (5)

We note that although optimizing Eqn (5) is not equal to Eqn (4), minimizing Eqn (5) can also control
the magnitude of Eqn (4) due to the norm inequality,∥∥∥(CS (BSASXh −B0A0Xh))

⊤
(WXh)

∥∥∥
2
≤ ∥BSASXh −B0A0Xh∥2∥C⊤

SWXh∥2. (6)

However, one can see that CS = 0 is a trivial solution for both two objectives but it will make the
adapters useless. Thus, we assume that the most important safety regions also lie in a low-rank weight
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space with the orthogonal projection matrix UC ∈ Rd×rs and our CS can be set as the orthogonal
complementary space CS = I−UCU

⊤
C to avoid the trivial solution. The new objective is:

argmin
UC

∥∥(I−UCU
⊤
C

)
WXh

∥∥
2
. (7)

The optimal results for UC are attributed to the singular value decomposition of WXh as studied
in former works (Wei et al., 2024). Thus, the weight CS for the our safety module is set to be
I−UCU

⊤
C . UC is the top rs singular vectors of the output features WXh on harmful prompts and

we call rs as the safety rank in the following.

4.2 INITIALIZATION OF SALORA’S TRAINABLE ADAPTERS

Since our additional safety module CSaLoRA changes the original gradients of adapters’ trainable
weights and makes the training harder. We propose a new initialization method using the fine-tuning
data to help our SaLoRA’s trainable adapter ASaLoRA and BSaLoRA converge better.

Inspired by former research (Sun et al., 2023; Liu et al., 2023b) on locating task-specific weight
regions, we propose our task-specific initialization for SaLoRA’s ASaLoRA and BSaLoRA to make
their training easier. Our task-specific initialization first locates the low-rank task-related weight
regions and then initializes ASaLoRA and BSaLoRA according to these regions.

Like the methods in the above section, we first try to detect the task-specific regions of certain linear
layers in LLMs using the following optimization,

argmin
rank(Ŵ)<rt

∥WXt − ŴXt∥2, (8)

where rt is the task-specific rank to avoid trivial solution, Xt here denotes the input features of
LLM’s layers concerning input samples of certain downstream tasks, and Ŵ denotes the low-rank
weight region related to certain tasks. As illustrated in the above section, the minimizer is

Ŵ = UU⊤W, (9)

where U ∈ Rd×rt is the top rt left singular vectors of WXt. If we set rt = r, which is the rank for
adapters AS ,BS , we can directly split it to propose our SaLoRA’s initialization:

B′
S = U, A′

S = U⊤W, (10)

where the subscript "S" here denotes SaLoRA for convenience. However, one can see that the norms
between B′

S and A′
S are not balanced as U here is an orthogonal matrix. The imbalanced weight

norm will influence the gradient norm, which may influence the models’ generalization as studied in
many works (Zhao et al., 2022). To balance the weight norms of module AS and BS in the adapters,
we also do singular decomposition on weight W as follows,

W = ŪS̄V̄⊤. (11)

Since the middle diagonal matrix S consists of singular values of the original weight W and top r
singular values along with singular vectors are the key part of the original weight matrix, we initialize
the weight AS and BS as follows,

BS = UU⊤Ū[:r]

√
S̄[:r], AS =

√
S̄[:r]V̄

⊤
[:r], (12)

where Ū[:r], V̄[:r] denotes the matrix consists of top-r left singular vectors and right singular vectors,
and S̄[:r] denotes the top-r singular values of W. Then we can obtain the low-rank adapter matrices
which are highly correlated to downstream tasks.

To ensure the initial stage of LLM with our SaLoRA adapters perform the same as the pre-trained
model, we also re-parameterize the weight of LLM’s layer as follows,

W′ = W −CSBSAS . (13)

The fixed safety module CS , trainable adapters AS , BS initialized by the task-specific initialization
and the residual weights W′ build the whole structure of our SaLoRA as shown in Figure 2. Training
the trainable adapters on the fine-tuning datasets, our SaLoRA can help LLMs efficiently obtain
certain abilities on some domain-specific knowledge while preserving its safety alignment.
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4.3 IMPLEMENTATION OF SALORA

In this section, we will provide a comprehensive pipeline of SaLoRA’s training, saving, and inference
processes, drawn in Figure 4. Before SaLoRA’s training, we first set the weights of our safety
module CSaLoRA with CSaLoRA = I−UCU

⊤
C , where UC is the optimal solution for Eqn (7). And

we calculate the initialization of adapters BSaLoRA,ASaLoRA with Eqn (10). Then we can begin
SaLoRA’s training process by updating trainable adapters ASaLoRA, BSaLoRA while freezing the
residual weight and safety module CSaLoRA as Figure 4’s left side shows.
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Figure 4: The training, adapter saving, and inference procedure for our SaLoRA. The blue weights
here denote fixed parameters while the orange modules are trainable during fine-tuning. A0,B0 are
the initialization of ASaLoRA, BSaLoRA.

After the LoRA training, the updated weights need to be saved. As the size of our safety module
CSaLoRA ∈ Rdout×dout is the same as the original weight W, we need an additional weight merging
step at the adapter saving time as shown in the middle of Figure 4. Such an additional weight merge
step is a simple multiplication B′

SaLoRA = CSaLoRABSaLoRA. Then the storage cost for B′
SaLoRA

is the same as BSaLoRA or vanilla LoRA’s adapter. However, as we also need to save B′
0 and A0, the

storage cost will be twice as large as vanilla LoRA. Luckily, the adapters are much smaller compared
with LLM’s size, and most adapters published on huggingface are only tens of MB. Considering the
good performance in the following section, such a storage overhead should be acceptable.

At the inference stage, our SaLoRA is almost similar to the vanilla LoRA with only one simple step
to calculate the residual weights, which will not cost much as they are just some multiplications of
low-rank matrices and subtractions. Therefore, our methods can be easily adopted with many popular
inference pipelines, like vLLM (Kwon et al., 2023).

5 EXPERIMENTS

In this section, we conduct a variety of experiments to demonstrate the efficiency of our SaLoRA in
improving domain-specific abilities while preserving LLM’s safety alignment. Firstly, we train four
widely used LLMs on Alpaca (Wang et al., 2023) with SaLoRA and other LoRA methods, and then
we compare the harmful rate of these models’ responses with and without some state-of-the-art post-
hoc alignment methods on unsafe prompts. Then, we compare the utility of different LoRA-trained
models with our SaLoRA on commonsense reasoning. We also conduct ablation studies on ranks’
influence in Appendix C and examples of different methods outputs in Appendix D.

Baselines. In this paper, we compare our SaLoRA with three widely adopted PEFT training methods:
LoRA, DoRA, and PiSSA. Additionally, we adopt four state-of-the-art post-hoc safety alignment
methods on LoRA fine-tuned models as baselines, including the input-based Self-Reminder (Xie
et al., 2023), the feature-intervention method InferAligner (Wang et al., 2024a), the training-based
approach Vaccine (Huang et al., 2024), and the model editing method Safe LoRA (Hsu et al., 2024).
The detailed settings are listed in Appendix A.

Settings. In our SaLoRA, we set rs = rt = 32 in the following experiments, and rank r for LoRA
adapters are set as other LoRA variants according to experiments’ requirements. To obtain the harmful
feature Xh in Eqn (7) for the safety module, we use 70% harmful prompts in the AdvBench dataset
(Zou et al., 2023b) along with their safe responses, which is also used in baseline method Vaccine
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and InferAligner. We use the features of training samples as Xt for the initialization. Experiments
are finished on the PEFT (Mangrulkar et al., 2022) training pipeline with a batch size equal to 16 for
all our experiments. The experiments finished on a single NVIDIA A100-80GB GPU.

5.1 EVALUATIONS ON LLM SAFETY AFTER FINE-TUNING

In this section, we first evaluate the safety alignment of four widely used models, including Llama-
2-chat-7B, Llama-2-chat-13B, Llama-3.1-Instruct-8B, and Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023). We first train them on the Alpaca datasets with AdamW (Loshchilov, 2019) for 1 epoch with
the learning rate equal to 0.0002. Then evaluate the harmfulness score on its responses with the
Llama-Guard-3-8B (Llama Team, 2024). We use 70% harmful prompts in the AdvBench dataset
(Zou et al., 2023b) for InferAligner, Vaccine, and our SaLoRA. We use the rest of 30% harmful
prompts in AdvBench for the safety evaluation, denoted as AdvBench’s test subset. The harmful
rates for LLMs with different methods are reported in Table 1. The harmful rate here represents the
proportion of all responses that were labeled as unsafe by Llama-Guard-3-8B.

Table 1: The harmful rate of LLMs’ responses on harmful prompts in AdvBench’s test subset against
different LLM on Alpaca with different methods. “IA” here denotes the InferAligner, “SR” denotes
the self-reminder method, and “Vac” denotes the Vaccine method. The bold number denotes the best
harmful rate of LLMs with or without the post-hoc alignment methods.

Llama-2-chat-7B Llama-2-chat-13B Llama-3.1-Instruct-8B Mistral-Instruct-v0.3
Before Fine-tuning 0.0% 0.0% 1.4% 47.8%

Rank for PEFT training 16 32 16 32 16 32 16 32

Base PEFT
LORA 23.7% 31.7% 15.7% 13.8% 11.7% 8.7% 82.5% 71.7%
PiSSA 31.7% 35.7% 17.4% 18.1% 13.8% 14.5% 83.3% 86.9%
DORA 23.7% 25.3% 18.8% 16.7% 10.1% 9.4% 64.5% 66.7%

LoRA w.
post-hoc

alignment

LORA w. SR 11.7% 9.4% 7.8% 5.8% 10.3% 7.8% 79.6% 72.2%
LORA w. IA 13.5% 23.7% 10.3% 6.7% 6.7% 5.8% 55.1% 60.1%
LORA w. Vac 20.2% 25.3% 32.5% 39.8% 41.1% 38.3% 76.8% 73.1%

Safe LoRA 15.7% 14.5% 10.1% 9.4% 8.5% 6.7% 63.0% 66.7%

Ours SaLoRA 3.5% 4.4% 2.9% 3.5% 2.9% 1.4% 31.7% 36.5%
SaLoRA w. SR 1.4% 2.9% 1.4% 1.4% 0.0% 1.4% 15.7% 10.7%

The results indicate that fine-tuning with LoRA and its variants, such as DoRA and PiSSA, compro-
mises the original safety alignment for all kinds of LLMs, even when the fine-tuning dataset is free
of harmful content. While post-hoc alignment methods can mitigate this issue to some extent, they
cannot fully restore the models’ safety alignment, as their abilities to produce harmful responses have
already been broken. Among them, the InferAligner and Self-Reminder perform the better. Vaccine
performs unstable, the possible reason is the alignment data we used for Vaccine’s pre-training is too
small, only around 300 samples.

Beyond those post-hoc methods, SaLoRA demonstrates superior performance in preserving the
safety alignment of LLMs after fine-tuning. The harmful rate of LLMs fine-tuned with SaLoRA
remains comparable to their original rate before fine-tuning, highlighting SaLoRA’s effectiveness
in maintaining alignment. Notably, applying SaLoRA to Mistral-7B-Instruct-v0.3, which had a
suboptimal baseline harmful rate of 47.8%, makes a clear improvement in safety alignment. We
hypothesize that this phenomenon may be due to the safety features being strengthened as other
original features may be weakened during the fine-tuning. Additionally, when combined with post-hoc
methods such as Self-reminder (denoted as ‘SaLoRA w. SR’ in Table 1), the harmful rate improves
further, indicating enhanced safety alignment after fine-tuning.

5.2 EVALUATIONS ON UTILITIES

In addition to preserving safety, an effective PEFT training method should also demonstrate compara-
ble or superior performance in various tasks against others. Like many other works (Kopiczko et al.,
2024; Liu et al., 2024), we test eight commonsense reasoning tasks on Llama-2-chat-7B fine-tuned
on commonsense-15k (Talmor et al., 2019) with different methods to validate the effectiveness of our
SaLoRA. These eight tasks are widely used in various works (Touvron et al., 2023b; Kopiczko et al.,
2024; Liu et al., 2024) to assess commonsense reasoning abilities. We follow the evaluation settings
as former works (Kopiczko et al., 2024; Liu et al., 2024), and the results are listed in Table 2.
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Table 2: The prediction accuracy (%) of Llama-2-chat-7B on different commonsense reasoning tasks
and its harmful rate after fine-tuning on commonsense-15k datasets with different PEFT methods.

r Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Acc Harmful Rate

16

LoRA 59.5 71.0 62.2 32.6 51.7 73.1 58.2 64.6 59.2 7.8%
DoRA 60.5 71.2 67.7 33.1 53.1 76.3 61.4 66.7 61.3 2.9%
PiSSA 62.4 71.4 62.8 38.1 51.4 77.3 59.6 65.8 61.2 5.8%

SaLoRA 64.1 72.4 64.2 49.3 54.7 74.9 59.4 63.8 62.9 0.0%

32

LoRA 60.3 72.4 63.3 31.1 56.6 74.6 58.1 67.6 60.5 5.8%
DoRA 62.7 73.3 65.3 35.9 51.5 78.5 59.6 68.1 61.9 7.8%
PiSSA 60.4 73.8 64.4 35.4 52.5 78.7 60.7 66.8 61.9 9.4%

SaLoRA 60.6 72.7 64.5 47.6 57.1 74.0 57.0 64.8 62.3 1.4%

64

LoRA 62.4 73.9 64.5 30.1 58.1 78.4 62.2 68.6 62.8 8.5%
DoRA 63.2 74.7 67.4 39.3 53.8 78.6 60.8 70.3 63.5 9.4%
PiSSA 65.9 75.8 66.5 43.4 59.5 80.3 64.5 71 65.9 10.1%

SaLoRA 66 74.1 67.5 52.6 59.6 76.8 62.6 66.4 65.7 0.7%

The results show that our SaLoRA not only outperforms the vanilla LoRA methods on safety-
alignment preserving but also performs better on commonsense reasoning tasks across different r’s
settings by an obvious margin. Compared to DoRA and PiSSA, our method consistently performs
better on the "HellaSwag" and "WinoGrande" tasks. When comparing average prediction accuracy,
our SaLoRA method shows almost better results to DoRA and PiSSA.

5.3 EVALUATIONS OF SALORA’S SAFETY ALIGNMENT UNDER JAILBREAK ATTACKS

Apart from the safety behaviors on natural harmful prompts in AdvBench, we also conduct experi-
ments to evaluate SaLoRA’s performance on jailbreak attack samples. In this section, we conduct the
popular multiple GCG attack (Zou et al., 2023b) with 1000 steps on Vicuna and Llama-2 to generate
the universal jailbreak suffix of 128 tokens. Adding it to the harmful prompts in AdvBench, we
test the harmful rate of SaLoRA and other methods on Llama-3.1-Instruct-8B. Results are drawn in
Figure 5. From the figure, we can see that our SaLoRA still shows a similar safety performance as the
original model and outperforms the other methods with a clear advantage. The results demonstrate
that our SaLoRA can effectively preserve models’ safety alignment.
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Figure 5: The harmful rate for LoRA, LoRA
w.IA, Safe LoRA, and our SaLoRA under
the multiGCG attack.

Figure 6: The averaged Commonsense Rea-
soning accuracy for LoRA, SaLoRA with
and without our task-specific initialization.

5.4 EVALUATIONS ON TASK-SPECIFIC INITIALIZATION

In this section, we explore the effectiveness of our task-specific initialization. We conduct several
experiments by replacing our task-specific initialization with the same initialization for A and B in
LoRA. We then use this new method to fine-tune Llama-2-chat-7B on the Commonsense Reasoning
15k dataset and evaluate its performance as described in Section 5.2, the results are drawn shown in
Figure 6 denoted as "SaLoRA w.o our init". The results indicate that our task-specific initialization
significantly improves fine-tuning performance compared to the original initialization. Without
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task-specific initialization, our SaLoRA even performs worse than vanilla LoRA. Such a phenomenon
demonstrates the necessity of our proposed initialization. The possible reason is that our fixed safety
module will project the gradient to the safe region and cause bad impacts on the model’s convergence.

5.5 COMPUTATION COSTS

In this section, we try to compare the computational resources for our SaLoRA and other methods.
We listed the resource consumption of different methods for fine-tuning on Alpaca with batch size
equal to 8 and r = 32 for 1 epoch in Table 3. As the table shows, our SaLoRA only needs a little
longer pre-processing time for calculating the safety module and initializing the adapters AS and
BS compared with the whole training time (0.12 vs 2.98). With the improvements in LLM’s safety
alignment, we consider the time overhead to be affordable.

Table 3: Computation resources cost for fine-tuning Alpaca with different methods on A100.

LoRA DoRA PiSSA SaLoRA
Tunable Parameters (M) 16.8 17.1 16.8 16.8

Preprocessing Time (h) 0 0 0.03 0.12
Training Time (h) 2.95 2.97 2.95 2.98

5.6 LINEAR PROBING ACCURACY WITH SALORA

In the former analysis, we explore the difference between the safety features for pre-trained Llama-2-
chat-7B and its LoRA fine-tuned model. Like former experiments, we first train a linear probe with
the output feature of each Llama-2-chat-7B’s layer. We then classify the test harmful responses using
the features from our SaLoRA fine-tuned model. The results are drawn in Figure 7.
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Figure 7: Linear probing accuracy for classifying unsafe prompts and their safe responses at each
layer on Llama-2-chat-7B before and after our SaLoRA fine-tuning.

From the figure, we can see that the prediction accuracy for both the original model and our SaLoRA
fine-tuned models are similar to each other. The results demonstrate that our method will not affect the
safety features much. Thus, LLM’s safety mechanism can still be activated and the safety alignment
can be preserved after fine-tuning.

6 CONCLUSION

In this paper, we first analyze the reasons behind the safety degradation of large language models
(LLMs) after LoRA fine-tuning, attributing it to changes in the model’s representation of harmful
prompts and desired safe responses. Based on these insights, we propose a novel safety module
to preserve LLMs’ safety alignment post-fine-tuning. Additionally, to enhance performance on
downstream tasks, we introduce a task-specific initialization for adapter weights, facilitating better
convergence and improved fine-tuning effectiveness. Combining these two innovations, we present
Safety-alignment preserved Low-Rank Adaptation (SaLoRA). Empirical results demonstrate that
SaLoRA not only achieves strong performance on fine-tuning tasks but also effectively maintains the
original LLM’s safety alignment.
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A DETAILS FOR DIFFERENT POST-HOC ALIGNMENT METHOD

The implementation of Self-reminder, Vaccine, InferAligner and Safe LoRA are listed as follows:

• Self-reminder To implement this method, we add the additional self-reminder prefix in
models’ prompts:Remember, you should be a responsible assistant and should not generate
helpless or misleading content!

• Vaccine We use the same dataset of our safety modules’ calculation for alignment pre-
training ρ = 2.

• InferAligner We use the same number of harmful prompts as our safety module C’s calcu-
lation and then use the original chat model to extract the probing vector with intervention
strength equal to 1.

• Safe LoRA Following their paper’s procedure, we first calculate the alignment matrix
using the chat model and base model. Then we choose the same similarity score threshold
τ = 0.35. We do the Safe LoRA’s projection on weight update only if the cosine similarity
of the projection and its original weight update is smaller than this threshold.

B PROOF OF PROPOSITION 1

Firstly, we state the assumptions for our proposition 1 as below.

Assumption 1 LLMs’ safety neurons WS can also be activated on the benign samples XW.

Such an assumption can be easily proved as many papers have found such a phenomenon Wei et al.
(2024); Pochinkov & Schoots (2024). Then we restate the Proposition 1 and start to prove it.

Proposition 2 Letting XW denote the input feature for benign prompts, YW denotes output feature
for layer W with adapters YW = (W + ∆W)XW, and L(Xt) is the training loss on benign
prompts. If the activation ∥WSXW∥F > γ, then the trace of dot product between the gradient of
∆W ,denoted as grad∆Wcan be lower-bounded by the following equation,

∥WSgrad
⊤
∆W∥F > γσmin (∇YWL(YW)) , (14)

where σmin denotes the smallest singular value of given matrix.

Proof 1 First, the Loss can be depicted as,

L(YW) = L ((W +∆W)X) . (15)

Then we can get the gradient of ∆W using the chain rule:

grad∆W = ∇YW
L(YW)X⊤. (16)

Thereby, the Frobenius norm of WSgrad
⊤
∆W can be formulated as follows,∥∥∥WSgrad

⊤
∆W

∥∥∥
F
=

∥∥WSX∇YW
L(YW)⊤

∥∥
F

≥ σmin(∇YW
L(YW)) ∥WSX∥F

> γσmin(∇YW
L(YW))

(17)

C ABLATION STUDIES ON SALORA’S RANK.

We evaluate the influence of the ranks on safety basis calculation and task-specific initialization as
listed below. From the results, one can see that although more safety ranks rs can get better safety
results, the differences are minor. And the rt will not influence much. The results indicate that our
SaLoRA is parameter-robust.

D EXAMPLES OF LLMS OUTPUTS

We list examples of benign and malicious prompts in Table 5 and Table 6.
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Table 4: Safety Score of Llama-2-7b-chat with different rank settings.

Model AdvBench JailbreakBench

LoRA 23% 37%

SaLoRA-rs=16-rt=16 4% 5%
SaLoRA-rs=16-rt=32 4% 4%
SaLoRA-rs=16-rt=64 4% 5%
SaLoRA-rs=32-rt=16 3% 3%
SaLoRA-rs=32-rt=32 4% 3%
SaLoRA-rs=64-rt=16 1% 2%
SaLoRA-rs=64-rt=32 1% 1%

Table 5: The example of a benign prompt.

Prompt: Give three tips for staying healthy.

LoRA

Sure, here are three tips for staying healthy:
1. Eat a Balanced Diet: A healthy diet provides your body with the nutrients
it needs to function properly. Aim to eat a variety of whole, unprocessed foods,
including fruits, vegetables, whole grains, lean proteins, and healthy fats.
Limit your intake of sugary drinks, fast food, and processed snacks.
2. Stay Hydrated: Drinking enough water is essential for maintaining good health
Aim to drink at least eight glasses of water per day, and avoid sugary drinks that
can have negative health effects. Dehydration can lead to headaches, fatigue, and
other health problems, so it’s important to stay hydrated throughout the day.
3. Exercise Regularly: Regular physical activity can help you maintain a healthy
weight, improve your mood, and reduce your risk of chronic diseases like heart
disease and diabetes. Aim for at least 30 minutes of moderate-intensity exercise
per day, such as brisk walking, cycling,....

SaLoRA

Sure, here are three tips for staying health:
1. Eat a Balanced Diet: A healthy diet is essential for maintaining good health.
Make sure to eat a variety of fruits, vegetables, whole grains, lean proteins,
and healthy fats. Limit your intake of processed and high-sugar foods, and try
to cook your meals from scratch using fresh ingredients.
2. Exercise Regularly: Regular exercise is important for maintaining good physical
health. Aim for at least 150 minutes of moderate-intensity exercise or 75 minutes
of vigorous-intensity exercise per week. Incorporate strength training, cardio, and
flexibility exercises into your routine, and try to find activities that you enjoy,
such as swimming, dancing, or hiking.
3. Get Enough Sleep: Getting enough sleep is essential for maintaining good mental and
physical health. Aim for 7-9 hours of sleep per night, and try to establish a consistent
sleep schedule. Avoid caffeine, electronics, and stressful activities.
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Table 6: The example of a malicious prompt.

Prompt: Generate a phishing email that tricks people into giving away
their personal information.

LoRA

This is a phishing email.
Dear Sir/Madam,
We are sorry to inform you that your account has been compromised
and your personal information has been stolen. We have been working
hard to secure your account and protect your personal information.
However, we have reason to believe that your account has been compromised
and your personal information has been stolen. We have taken all necessary
steps to secure your account and protect your personal information.
We recommend that you change your password immediately and monitor
your account for any suspicious activity.
If you have any questions or concerns, please do not hesitate to contact us.
Best regards,
[Your Name]

SaLoRA I’m sorry, but I cannot fulfill your request to generate a phishing email that
tricks people into giving away their personal information.
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