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Abstract—The decreasing costs of molecular profiling has
fueled the biomedical research community with a plethora
of new types of biomedical data, enabling a breakthrough
towards a more precise and personalized medicine. However,
the release of these intrinsically highly sensitive data poses
a new severe privacy threat. While biomedical data is largely
associated with our health, there also exist various correlations
between different types of biomedical data, along the temporal
dimension, and also in-between family members. However,
so far, the security community has focused on privacy risks
stemming from genomic data, largely overlooking the manifold
interdependencies between other biomedical data.

In this paper, we present a generic framework for quantify-
ing the privacy risks in biomedical data taking into account the
various interdependencies between data (i) of different types,
(ii) from different individuals, and (iii) at different time. To this
end, we rely on a Bayesian network model that allows us to take
all aforementioned dependencies into account and run exact
probabilistic inference attacks very efficiently. Furthermore,
we introduce a generic algorithm for building the Bayesian
network, which encompasses expert knowledge for known
dependencies, such as genetic inheritance laws, and learns
previously unknown dependencies from the data. Then, we
conduct a thorough inference risk evaluation with a very rich
dataset containing genomic and epigenomic data of mothers
and children over multiple years. Besides effective probabilistic
inference, we further demonstrate that our Bayesian network
model can also serve as a building block for other attacks. We
show that, with our framework, an adversary can efficiently
identify the parent-child relationships based on methylation
data with a success rate of 95%.

1. Introduction

Over the last decade, the plummeting costs of molecular
profiling have dramatically transformed biomedical science
and enabled new breakthroughs towards a more personalized
and precise medicine. This radical transformation has been
made possible by a deluge of new types of biomedical
data, such as genomic, epigenomic, and transcriptomic data,
avaibable for research. For example, millions of genotypes

(the most important part of the human genome) are now
available to scientists, medical practitioners, and private
companies (such as 23andMe [1]), and this number will
certainly keep increasing in the future.

The main negative aspect of this new data-driven
medicine is its impact on privacy. Indeed, all sorts of
biomedical data are intrinsically highly privacy sensitive,
since they often closely reflect our health status and the
diseases we carry. For example, DNA methylation is one of
the most important epigenetic elements influencing human
health and anomalous DNA methylation patterns have been
associated with various types of cancer [2], [3], [4]. The
privacy concerns are further exacerbated by the fact that
different kinds of biomedical data are increasingly available
through multiple public databases or third-party providers.
Moreover, biomedical data other than genetic data might not
be considered as genetic information in the legal meaning
and thus not be protected by legal frameworks, such as the
US Genetic Information Nondiscrimination Act (GINA) [5],
[6]. Finally, the various correlations between different types
of biomedical data, between family members, and along the
temporal dimension must be taken into account to provide
guarantees that biomedical data privacy is preserved. Al-
though some types of biomedical data are influenced by
external factors, and thus vary over the course of time, recent
research indicates that even these data still contain enough
information to jeopardize the privacy of their owners [7].

The security community has so far focused on privacy
risks stemming from genomic data only, largely overlooking
the major challenges brought by the increasing availability
of data at other layers of the human biological stack. Very re-
cently, attempts have been made towards better understand-
ing and thwarting the privacy risks concerning epigenomic
and transcriptomic data [8], [9], [6], [10], [11]. However,
none of these works have tackled the biomedical-data pri-
vacy problem by jointly studying the different kinds of data,
and their temporal and familial dimensions. This paper aims
at filling this gap by proposing a generic framework for
dissecting and quantifying privacy risks in biomedical data
on a large scale.

Contributions. Specifically, we present a Bayesian network



model that encompasses genomic data and epigenomic data
from related individuals at different points in time. This
probabilistic graphical model enables us to consider all
probabilistic dependencies between these biomedical data,
including temporal and familial correlations, and perform
inference attacks very efficiently.

Among all kinds of data considered in our framework,
some data dependencies are known from expert knowledge,
such as genetic inherance laws, while others need to be
learned from data, such as the correlations between methy-
lation and genomic data or those between different time
points. Therefore, we develop a general algorithm which
considers both external knowledge and data-learned depen-
dencies to automatically learn the structure of the Bayesian
network. Then, we apply maximum likelihood estimation
together with external knowledge to obtain the parameters,
i.e., the conditional probabilities of the network. Finally,
we perform probabilistic inference attacks using variable
elimination to eventually get the exact posterior probabilities
of targeted variables given observed data.

Based on the posterior probabilities output by our
Bayesian network model, we evaluate how privacy evolves
with respect to various scenarios of data disclosure. We
quantify privacy levels with well-established privacy met-
rics such as entropy and estimation error, generalizing the
estimation error to data other than the genome. Given the
limited genomic and epigenomic data available together, we
evaluate the privacy risks stemming from familial interde-
pendencies and temporal correlations in separate settings.

Predicting the DNA methylation of a child given his/her
genome and his/her mother’s data (genome and DNA methy-
lation) yields an estimation error as small as 0.1 for almost
60% of the DNA methylation positions. When considering
the prior probability on the child’s methylation data, the
same estimation error is only achieved for 10% of the DNA
methylation positions, demonstrating that the percentage of
positions that are highly at risk is multiplied by around
six for an informed adversary. Moreover, we found that
observing more evidence reduces the average adversary
uncertainty.

When predicting the DNA methylation of an individ-
ual given another DNA methylation sample observed one
year before, the Bayesian network allows us to achieve an
estimation error of less than 0.2 for approximately 82%
of all methylation positions while the inference relying on
the prior probability achieves the same estimation error at
only 40% methylation regions. Further examining this strong
performance, we found that, even for a longer time span of
four years, the estimation error remains stable. This could
typically enable an attacker to perform a temporal linkability
attack against methylation profiles in the same vein as the
one proposed against microRNA expression data [7].

Although we focus on a specific set of biomedical
data due to the scarcity of rich datasets, the fundamental
framework underlying our Bayesian network is still general
enough to be easily extended to incorporate other types of
data such as transcriptomic data (e.g., microRNA or gene
expression [8], [7]). In particular, the structure learning

algorithm we propose is not specific to our application,
and thus can be used in any setting in which the Bayesian
network can be constructed by learning some dependencies
from data and embedding others from expert knowledge.

Finally, we demonstrate that our Bayesian network
model can also serve as a fundamental building block
to other applications: We study a linking attack that in-
fers the mother-child relation. More precisely, we match
children’s methylation profiles to their mothers’ (and vice
versa) by comparing the posterior probabilities output by
our Bayesian network given mother’s methylation data with
the real methylation profiles of the children. We also present
a strong heuristic limiting the number of DNA methylation
positions to consider, which significantly outperforms the
approach with all positions taken into account. Our results
show that using our framework for this kind of attack
results in successfully linking 95% of mother-child pairs
This corresponds to only a single incorrectly matched pair
in our dataset.
Organization. In Section 2, we present the relevant biomed-
ical background used in the paper. In Section 3, we introduce
the adversarial model. In Section 4, we describe our quan-
tification framework based on Bayesian networks. We detail
the dataset in Section 5 and use it in Section 6 to evaluate
various attack scenarios with our Bayesian framework. In
Section 7, we apply our framework to link children to
mothers based on their methylation data. We present related
work in Section 8 before concluding in Section 9.

2. Preliminaries

In this section, we introduce the relevant background on
the biomedical data used throughout the paper, i.e., genomic
and DNA methylation data.

2.1. Genomics

The DNA is a double-helix structure consisting of com-
plementary polymer chains. The genetic information is en-
coded on each of these chains as a sequence of nucleotides
(A, T,G,C). Since 99.9% of the human DNA of two differ-
ent individuals is exactly the same, the interesting parts are
the remaining 0.1% of the positions. These positions that
may vary throughout a population are referred to as single
nucleotide polymorphisms (SNP).

Generally, two possible nucleotides can be observed
at a given SNP. One is called the major allele, and is
the most frequently occurring nucleotide at this SNP in
the population. The other nucleotide is called the minor
allele, thus is the least frequently occurring nucleotide. We
usually denote the major allele using an uppercase letter
B ∈ {A, T,G,C} and the minor allele using a lowercase
letter b ∈ {A, T,G,C}, with b 6= B.

Furthermore, each SNP position contains two alleles,
one inherited from the father and one inherited from the
mother. Thus, a SNP (also called genotype) can take three
different values:



BB: if an individual inherits the same major allele
from both parents (homozygous-major geno-
type),

Bb: if an individual inherits different alleles from
the parents (heterozygous genotype),

bb: if an individual inherits the same minor allele
from both parents (homozygous-minor geno-
type).

For simplicity, BB is often encoded as 0, Bb as 1 and bb as
2. We will follow the same encoding in the rest of our paper.
Finally, we rely on Mendel’s First Law which states that, for
each SNP, a child inherits one allele from his mother and
one allele from his father. Each allele of a parent is passed
on to the child with uniform probability of 0.5.

2.2. DNA Methylation

One of the most important epigenetic elements in the
DNA is called methylation. Its consequences affect the
structure and the activity of the DNA molecule [12], [13].

In humans, DNA methylation so far has only been
observed as the addition of a methyl group to the cytosines
by specific enzymes called methyltransferases. This type
of cytosine methylation in CpG-dinucleotides leads to the
formation of 5-methylcytosine. That means that methylation
can only occur at positions in the DNA where a C nucleotide
is followed by a G nucleotide (called CpG-dinucleotide).
Essentially, each such position can only have two possible
states regarding DNA methylation: methylated or not.

However, since DNA methylation in principle can vary
between copies of the DNA, e.g., in different cells, DNA
methylation at a given CpG-dinucleotide is usually measured
as a real value between 0 and 1. This value represents the
fraction of methylated dinucleotides at this position.

Anomalous changes in the DNA methylation patterns,
which are frequently observed in cancer, can lead to the
hyper-activation of genes such as oncogenes, or the silencing
of tumor suppressor genes [2]. However, while changes in
the DNA methylation can have a dramatic effect on cancer,
such changes in normal tissues can also be caused by,
e.g., environmental influences. Recent studies showed that
environmental cues such as pollution, exposure to stress or
cigarette smoke can lead to changes in the methylation [14],
[15], [16], [17].

Besides these external factors, the genotype of an indi-
vidual can also affect the methylation of some regions [18],
[19], [20]. Carrying particular alleles at certain SNPs can
cause specific DNA methylation patterns at other positions
or regions. Such SNPs having an influence on the DNA
methylation are also called methylation quantitative trait loci
(meQTLs).

3. Threat Model

The adversary’s very general objective is to infer some
hidden biomedical data, given observed ones. To do so, the
adversary first needs to construct some (graphical) model

that he will use during his attack. Therefore, we assume
that the adversary has access to a set of training samples,
which consist of DNA methylation profiles and genotypes.
The adversary’s training set may be further annotated with
kinship relations between mothers and their children, or it
may contain samples from the same individuals, taken at
different points in time.

After this knowledge construction step, the adversary
carries out his inference attack by observing part of the
data (e.g., a DNA methylation profile or a genome) of a
target or close relatives of the target (i.e., parents and chil-
dren), potentially at a different time point. We thoroughly
analyze the adversary’s ability to predict information about
his targets and their close relatives, varying the amount
of additional information the adversary observes. Inferring
genomic, epigenomic or transcriptomic information about
targets may also reveal some sensitive information about
those individuals, as shown later in the chapter. For exam-
ple, both the genome and the DNA methylation contain
information about phenotypic traits and the health status
of a person [21], [2], [3], [4]. Moreover, this kind of
information and also the kinship between individuals can be
further matched to side channels such as surname-genome
associations databases [22] or online social networks [23].

The adversary can further use the inference attack out-
come to carry out a more tangible attack, such as linking
DNA methylation profiles of a mother or a child to the
corresponding DNA methylation profiles of the child or the
mother, respectively. Our framework can in general cope
with (i) any background knowledge from domain experts,
(ii) any knowledge the adversary can construct based on
auxiliary datasets, and (iii) any data the adversary observes
during his inference attack.

4. The Framework

In this section, we formalize our approach and present
the methodology that allows us to quantify the privacy of
interdependent biomedical data.

We rely on a Bayesian network model to build a general
privacy framework that we instantiate with genomic and
epigenomic data. Bayesian networks allow us to perform
a wide range of inferences. Moreover, in contrast to many
other machine learning models, Bayesian networks can nat-
urally handle missing data, i.e., they are able to perform
inferences given any observed subset of evidence. Both
of these advantages largely increase the generality of our
framework. Besides, Bayesian networks allow us to take
various biological layers (from genomic to transcriptomic
via epigenomic layers) and their interrelation into account,
while also providing ways to incorporate external domain
knowledge easily. Lastly, there exist efficient algorithms for
parameter learning and inference.

Our framework encompasses the three major steps in
Bayesian network inference: (i) learning the structure of the
Bayesian network, (ii) learning the necessary parameters of
the network, and (iii) performing probabilistic inference on
the network given observed evidence. We eventually rely on



a set of privacy metrics which can be directly coupled with
the Bayesian network in order to quantify the privacy of a
given individual.

4.1. Bayesian Networks

Given a set of random variables, a Bayesian network is
a probabilistic graphical model encoding a complex distri-
bution over the random variables in a directed acyclic graph
(DAG) G = (V,E). Formally, each node X1, . . . , Xl ∈ V
in the graph corresponds to a random variable. An edge
Xi → Xj ∈ E between nodes Xi, Xj ∈ V corresponds to a
direct interaction between these nodes. Conversely, missing
edges represent conditional independencies between nodes.

We now recall the basic definitions relevant to Bayesian
networks to define the exact set of independencies induced
by the graphical representation. These definitions will be
used in Section 4.3 to describe our structure learning algo-
rithm.

A structure X → Z ← Y in a graph is called a v-
structure. A trail between X1 and Xn is a sequence of nodes
connected by edges X1 
 · · · 
 Xn, where X 
 Y
denotes an edge of arbitrary direction between X and Y .
Based on these notations, we next introduce the concept of
an active trail.

Definition 1 (Active Trail [24]). Let G be a DAG structure
and X1 
 · · · 
 Xn a trail in G. Let Z be a subset of
observed variables. The trail X1 
 · · · 
 Xn is active
given Z if:
• Whenever we have a v-structure Xi−1→Xi←Xi+1,

then Xi or one of its descendants are in Z;
• no other node along the trail is in Z.
Intuitively, information can flow through the network

along active trails. This notion then allows us to formally
define the set of independencies induced by a graph based
on a concept called d-separation.

Definition 2 (d-separation and Independencies [24]). Let
X,Y,Z be three sets of nodes in G. We state that X and
Y are d-separated given Z, denoted by d−sepG(X,Y | Z),
if there is no active trail between any node X ∈ X and
Y ∈ Y given Z.

We use I(G) to denote the set of independencies that
correspond to d-separation:

I(G) = {(X ⊥ Y | Z) | d−sepG(X,Y | Z)}.
We state that a Bayesian network G is an I-map (in-

dependency map) for a probability distribution P over the
same set of random variables if I(G) ⊆ I(P ) with I(P )
being the set of all independencies holding in P .

Let Parents(Xi) ⊆ V denote the parent nodes of Xi in a
Bayesian network G, and NonDescendants(Xi) denote the
nodes in the graph that are not descendants of Xi. Given that
G is an I-map for P , the graph structure can be translated
into a factorization for the joint probability distribution as:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi | Parents(Xi)).

Hence, we only need to know the distributions of these
factors in order to obtain the whole distribution. These
factors are also called the parameters of the model.

4.2. Notation and Networks

We now introduce the notations needed to construct the
Bayesian networks for our particular scenario.

Let A be a set of individuals containing mothers and
their children, S be a set of SNP IDs (i.e., positions on the
DNA sequence), R be a set of methylation regions, and T
be a set of points in time. Let ti denote the time point at
year i. We define gia ∈ {0, 1, 2} to be the value of SNP
i ∈ S for an individual a ∈ A. Similarly, mr

a,t ∈ [0, 1]
denotes the average methylation within region r ∈ R for an
individual a ∈ A at time point t ∈ T . LetM denote the set
of mothers, each member of which has a corresponding child
in A. Also, let C be the set to represent children who have
their corresponding mothers in A. For simplicity reasons,
we assume that M∩ C = ∅. Also, note that M∪ C ⊆ A.

Let Gi and Mr
t be random variables modeling the

genome at position i and the average methylation in region
r at time point t. Whenever we want to specify the set of
individuals a certain random variable should capture, we will
add the group of individuals the variable should refer to as
a subscript. For example, Mr

C,t0 denotes a random variable
of a child’s methylation in a region r at a given time point
t0.

Naively encoding these settings in one Bayesian network
would yield a graph with 2 · (|T | · |R| + |S|) vertices.
In this paper, however, we take a different approach and
separate the random variables as much as possible, designing
independent Bayesian networks. To this end, we assume we
have a set Q ⊆ S ×R, containing pairs (i, r) of SNP IDs
and methylation regions, such that there are no dependencies
between any two such pairs. A similar assumption about
SNPs independence has also been made in the genomic
privacy context [25], [26]. This is a key element in sim-
plifying the network structure as it allows us to build |Q|
independent Bayesian networks. In Section 5, we show that
such an independency assumption can be made if the SNP-
methylation pairs are sufficiently far apart from each other.

Although our framework consisting of |Q| networks is
general enough to consider all kinds of inference tasks, we
focus on two particularly interesting settings in this work:
analyzing mother-child interdependencies, and the temporal
inference of methylation values. For the interdependencies
of related individuals, we thus only consider data from a
single time point t0, while, for the temporal inference, we
do not consider separate nodes for mothers and children.
This also allows us to model adversaries having access to
either data of related individuals or samples of the same
individuals taken at multiple points in time.

Since we now consider separate networks, we will fur-
ther simplify our notation when referring to exactly one pair
(i, r) ∈ Q and only a single time point t0 ∈ T . By G,M
we will denote the genome at a specific position and the
methylation in a specific region (at time point t0 if not stated



otherwise), respectively. If we want to restrict the set of
possible individuals, we will add a subscript containing the
set of individuals. For example, GM describes the mothers’
genotypes at position i. Moreover, we will use P or P(i,r) to
denote the probability distribution over the random variables
of interest, given this specific pair in Q.

4.3. Structure Learning

The first step of our approach is to construct the actual
network and, contrary to previous work where the structure
is already given [27], [28], we have to learn most of the
edges between the nodes in the Bayesian networks.

In literature, there exist general algorithms (as listed
in [24]) which learn the structure of a Bayesian network
based on data. These algorithms can generally be divided
into two categories: scoring-based algorithms and constraint-
based algorithms. Scoring-based algorithms usually aim at
finding a DAG structure, such that the probability model
corresponding to the Bayesian network best fits the prob-
ability distribution of the data. Constraint-based algorithms
learn the network structure by testing for independencies
based on data and subsequently constructing an I-map for
the learned independencies.

However, we cannot directly apply those algorithms,
since they build the structure solely based on data. In our
case, we additionally have external knowledge about certain
parts of our model. We can classify our external knowledge
into three categories: (1) existing edges, (2) directions of
edges, and (3) known independencies.
Algorithm. Since most of our external knowledge can be
translated into a set of known independency statements, we
rely on an approach similar to constraint-based algorithms
for learning the structure. In particular, we first limit the set
of possible Bayesian networks by our external knowledge.
Then, we use independency tests to decide which of the
unknown edges should be part of the network. In particular,
we test for statistical independence by applying the χ2-test
at a significance level of α.

In this paper, we introduce the novel notion of a minimal
I-map given external knowledge.

Definition 3 (External Knowledge). We denote our external
knowledge by the letter κ, and state that a graph is consis-
tent with κ if the external knowledge holds in the graph. We
denote this by writing G � κ.

A minimal I-map given external knowledge captures the
idea that G should closely reflect the independencies of P .
Ideally, both sets of independencies should be the same.

Definition 4 (Minimal I-map given External Knowledge).
We state that a DAG G is a minimal I-map for a set of
independencies I if

1) G is an I-map for I, i.e., I(G) ⊆ I;
2) G is consistent with the external knowledge κ, i.e.,

G � κ;
3) and the removal of any edge from G results in either

G 6� κ or it renders G not an I-map for I.

Algorithm 1 Build a minimal I-map given external knowl-
edge.
Input: External knowledge κ, a set of independencies I

over the variables V .
Output: DAG G = (V,E), which is a minimal I-map for
I given κ.

1: Let G = {G | G � κ,G = (V,E)} be the set of all
directed acyclic graphs with nodes V , for which the
external knowledge holds.

2: Let G∗ = None.
3: for G ∈ G do
4: Calculate I(G)={(X⊥Y |Z) |d−sepG(X,Y |Z)}.
5: if I(G) ⊆ I then
6: if G∗ is None or |I(G)| > |I(G∗)| then
7: G∗ = G
8: end if
9: end if

10: end for
11: return G∗

We propose an algorithm that achieves this definition in
Algorithm 1: We first enumerate the set G of all graphs
that contain the necessary nodes and are consistent with
our external knowledge (line 1). Then, we attempt to find
a graph in G that is a minimal I-map for a given set of
independencies I. To this end, we return the graph G∗ ∈ G,
which is an I-map for I (line 5) and encodes the highest
number of independencies (i.e., the least number of edges)
of all I-maps in G (line 6). If none of the graphs in G is
an I-map for I, the algorithm returns None. If none of the
graphs in G is an I-map for I, the algorithm returns False.

Theorem 1 (Correctness of Algorithm 1). Algorithm 1
returns either None if there is no minimal I-map given κ
or a DAG G∗, which is a minimal I-map for I given κ.

Theorem 1 states the correctness of our algorithm, and
we prove its validity in Appendix A.
Scalability. The pseudocode given in Algorithm 1 scales
with the number of possible graphs for which the external
knowledge holds. However, as the structure learning only
has to be done once, we do not consider it a time-critical
step. Moreover, the algorithm’s efficiency can be further
improved, leveraging Proposition 2 from Appendix A. The
proposition states that removing an edge e ∈ E from a graph
G = (V,E) – yielding G′ = (V,E \ {e}) – only introduces
new independencies, i.e., I(G) ( I(G′).

Viewing our algorithm as a search problem starting
with the full graph and subsequently removing edges, we
can apply classical search algorithms, such as A∗ to our
problem and only need to add new independencies. During
the search, we do not need to further follow branches
for which I(G) 6⊆ I, as this criterion cannot be reached
anymore by removing edges. States that do not fulfill the
external knowledge will have to be excluded from finding
the minimum across the branches, however.

Conversely, depending on the concrete scenario and the
number of constraints, we can also view our algorithm
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Figure 1. (a) Graphical model for mother-child dependencies. The full
edge represents external expert knowledge that is given, and dashed edges
represent dependencies that need to be learned: if they exist (structure
learning) and, if so, what is the magnitude of the dependency (parameter
learning); (b) graphical model for temporal inference of DNA methylation.

as a search problem starting with the empty graph and
subsequently add edges. Similar pruning techniques as the
ones mentioned above also apply in this case.
Mother-Child Networks. Next, we describe how the algo-
rithm can be applied to the networks capturing the mother-
child interdependencies. The set of random variables being
considered are V = {GM, GC ,MM,MC}, and we assume
the following external knowledge κ:

• GM → GC ∈ E, i.e., Mendelian inheritance laws
state that the genotype of the mother influences the
one of the child (i.e., it is an existing edge),

• ∀X:MX→GX /∈E, i.e., there is never an edge from
the methylation of a mother/child to her genome,

• MC → MM /∈ E, i.e., analogously to the genome,
it is impossible for the mother to inherit methylation
patterns from her child,

• ∀X,Y : {GX→MY ,MY →GX}∩E 6= ∅ ⇒X = Y ,
i.e., there is no direct connection between a genome
and the methylation value of different individuals.

Incorporating this external knowledge leaves us with the
potential DAG as shown in Figure 1(a). While the edge
between the genomes is fixed, the dashed edges are subject
to our analysis. In total, applying our external knowledge
results in 24 possible independencies and eight possible
graph structures.

Next, we iterate over all 24 possible conditional indepen-
dencies and leverage the χ2 test for each of these in order
to obtain the set I(P ) of independencies being justified by
our data. We then run our algorithm with the given external
knowledge and I(P ) and obtain the graph structure that best
represents I(P ).

The algorithm hence provides us with the graph structure
that best represents I(P ).
Temporal Inference. Similarly, we can use our algorithm
for finding the smallest I-map given the external knowledge
for the temporal inference of DNA methylation. We consider
two time points ti and tj and the set of random variables
V = {G,Mti ,Mtj}.

Below, we list the external knowledge κ incorporated
for the temporal inference of DNA methylation:

• Mti → G /∈ E, i.e., if there is an edge between the
genome and the methylation, then it should start at
the genome and end at the methylation,

• Mti → Mtj∈ E ⇒ i < j, i.e., it is natural that if
there are dependencies between methylation values
at different points in time, the direction of the edge
should be from the older methylation value to the
newer one.

This external knowledge gives us a DAG with possible
edges as depicted in Figure 1(b), resulting in eight possible
networks. The considered random variables V limit the total
number of possible independencies to six.

We test all of these independencies on the data, resulting
in I(P ). This set of independencies is then given to our
algorithm together with the external knowledge κ, resulting
in a graph structure that best represents I(P ).

4.4. Parameter Learning

After learning the structures of all |Q| Bayesian net-
works, the next step is to learn the parameters for each net-
work. In our paper, we combine two different methodologies
to estimate the parameters: Some of the parameters are given
by external knowledge, while we use a maximum likelihood
estimation (MLE) on our data for the others.

Since there exist numerous population statistics on the
probability of specific genomic variants, even for ethnical
subgroups, we can leverage this knowledge to model the
distribution P (Gi) for any Bayesian network.1 More pre-
cisely, population statistics give us the minor allele fre-
quency MAFi for each SNP. Let pk = P (Gi = k), then we
can calculate the vector (p0, p1, p2) from the minor allele
frequency as ((1−MAFi)

2, 2MAFi · (1−MAFi),MAF2
i ).

Modeling the distributions for DNA methylation data,
however, requires us to learn the methylation related distri-
butions from our data. While DNA methylation is captured
by a real value and thus follows a continuous distribution,
the underlying distribution P (Mr) can be considered to
be generally multimodal. Therefore, following the general
methodology in biomedical applications [29], we discretize
the methylation values into a set of bins Br = {B1, . . . , Bl},
such that

⋃l
i=1Bi = [0, 1] and ∀i, j ∈ {1, . . . , l} : Bi ∩

Bj = ∅ ⇔ i 6= j.
As stated before, we rely on MLE to learn the remaining

distributions in our networks. Let A ⊆ A be a (sub)set
of individuals and Z be a set or vector of conditions over
random variables and z be an assignment of values to
those random variables. Furthermore, we use za to denote
the values of an individual a ∈ A for the corresponding
random variables in Z. Then, we estimate any conditional
methylation distribution as follows:

P (M ∈Bj |Z=z)=
|{ma |a∈A∧ma∈Bj∧za=z}|

|{ma |a∈A∧za=z}|
. (1)

1. Note that this is valid for the mother’s Gi’s in the mother-child
network, and for all Gi’s in the temporal network, as these do not have
any parent in the graph (and thus P (Gi) is not conditioned on any other
variable).



GM
0 1 2

GC

0 p0 + 0.5p1 0.5p1 + p2 0
1 0.5p0 + 0.25p1 0.5 0.25p1 + 0.5p2
2 0 p0 + 0.5p1 0.5p1 + p2

TABLE 1. THE PROBABILITY DISTRIBUTION P (GC | GM) BASED ON
THE LAWS OF MENDELIAN INHERITANCE GIVEN POPULATION

STATISTICS OF pg = P (G = g).

Intuitively, this corresponds to counting all samples in
A for which the methylation value is in the bin Bj and
for which all conditions specified by Z = z hold. Then,
this number is divided by the number of samples for which
the conditions in Z = z hold regardless of the bin the
methylation value belongs to. Note that MLE might have
to be smoothed in order to compensate for missing data.
We will address these issues in Section 6.2.
Mother-Child Networks. Estimating the parameters of our
mother-child networks additionally requires to model the
distribution P (Gi

C | Gi
M). Once more, leveraging genetic

knowledge, we can rewrite this probability as:

P (Gi
C = giC | Gi

M = giM) =∑
gi
P∈{0,1,2}

P (Gi
P = giP)P (G

i
M = giM)·

P (Gi
C = giC | Gi

M = giM, G
i
P = giP), (2)

where giP denotes the genotype of the father at position i and
Gi
P denotes the corresponding random variable. Generally,

we will estimate the probability of a certain genotype inde-
pendent of the gender or subgroup the individual is in and
write P (Gi) instead of P (Gi

M), P (Gi
C) and P (Gi

P). While
P (Gi) – as stated before – is calculated from population
statistics, P (Gi

C | Gi
M, G

i
P) is exactly specified by the laws

of Mendelian inheritance. Combining these finally results in
the probability distribution as shown in Table 1.
Temporal Inference. Except for P (G), the parameters of
the temporal inference network are learned by applying
MLE, similarly to the mother-child network.

4.5. Bayesian Inference

For inferring the probabilities of unobserved random
variables conditioned on observed ones, typically the
marginal distributions need to be computed. In our case, we
rely on variable elimination, an exact inference algorithm
for Bayesian networks [24]. While the algorithm, in general,
has an exponential time complexity, the simple structure of
our Bayesian networks allows the algorithm to be efficient
enough in our case. There also exist polynomial-time algo-
rithms for exact or approximate inference, such as junction
tree [30] or (loopy) belief propagation algorithms [31],
that can be applied for larger or more complex Bayesian
networks.

Variable elimination generally works by collecting all
factors required for the inference of any marginal distri-
bution P (Xi | E = e), where Xi belongs to the query

variables X and E is the observed evidence. Then, for a
Bayesian network containing the nodes V , all variables in
V \(X∪E) are eliminated one by one using marginalization
(which corresponds to summing out variables V \(X∪E) in
our discrete scenario), resulting in the marginal probability
distributions of interest.

4.6. Privacy Metrics

For the purpose of quantifying the impact of the con-
sidered inference attacks, we rely on two privacy metrics:
expected estimation error and entropy [27], [28].

Expected estimation error has already been introduced
in the context of genomic data by Humbert et al. [27]. For
our setting, we generalize this notion, so that it can also be
applied to other types of data, such as DNA methylation val-
ues specifically. The estimation error quantifies the expected
distance between the adversary’s estimate of a value x̂ and
the true value x. The Bayesian inference step outputs the
probability distribution P (x̂ | Z = z) given some observed
genomic and/or epigenomic data Z, where x̂ can take values
within a set X of finite size. Then, we define the expected
estimation error as follows:

Ex(X | Z = z) =
∑
x̂∈X

P (X = x̂ | Z = z)||x̂− x||, (3)

where || · || represents any distance metric, such as the
L1-norm or the Euclidean distance. In our evaluation, we
rely on the former. In the context of our study, this def-
inition can be applied to those cases where we aim at
quantifying the genomic privacy of an individual. When
considering the privacy of methylation points in a region
r, however, we have to specify the handling of the bins
further. We define the mean value of a bin B ∈ Br as
µ(B) = sup(B)−inf(B)

2 . Then, from the probability distribu-
tion given by the Bayesian network model, P (B̂ | Z = z),
and the true methylation value m being part of a bin B, the
estimation error is calculated as follows:

EB(M
r|Z=z)=

∑
B̂∈Br

P (Mr∈B̂ |Z=z)||µ(B̂)−µ(B)||. (4)

he second metric (i.e., entropy) quantifies the uncertainty
of the adversary [32], [33] and is defined as:

Hx(X|Z=z)=−
∑
x̂∈X

P (X= x̂|Z=z)logP (X=x̂|Z=z). (5)

It holds that the higher the entropy is, the higher the adver-
sary’s uncertainty is, and the higher the privacy is.

5. Dataset

The dataset we use contains genotypes and DNA methy-
lation values of 75 individuals, 42 of which have parental
relations (21 mother-child pairs). For 67 out of 75 individ-
uals, samples collected at the birth of the child, referred to
as t0, were available. Samples one year later (t1) and four
years later (t4) were also available for 16 individuals.



Both, the longitudinal dimension of the dataset and the
fact that it contains individuals with parental relations make
this dataset a unique and extremely precious data source in
the biomedical community. At the time of this writing, the
dataset can be considered to be one of the largest – if not the
largest – dataset of its kind. Moreover, collecting multiple
types of biomedical data from related individuals in such
regular intervals involves a tremendous amount of money
and time. Note that this dataset is not yet publicly available,
but it will be released to other researchers soon.

The DNA methylation was determined using a process
called whole genome bisulfite sequencing (WGBS), mea-
suring the methylation levels for all 28 million CpG dinu-
cleotides based on samples taken from the whole blood. In
order to determine the methylation levels from the bisulfite-
treated sequencing data, the reads (short sequences of the
genome) were aligned, followed by a quality assessment
and methylation calling. Then, the genotype was determined
at known SNP positions as listed in the dbSNP database
(version 141). To accomplish the task of determining the
genotype from WGBS data, the Bis-SNP tool was used [34].

Next, we selected a set of 4,681,414 pairs of SNPs
and methylation regions. This set was determined using a
Spearman rank correlation test [35] and a false discovery
rate threshold for all SNPs located within 50 kb (kilobases)
up-/downstream of methylation regions. The false discovery
rate threshold was set to 1% after Benjamini-Hochberg
correction [36].

For further analysis and the construction of the Bayesian
networks, we assume the selected pairs of SNP and methy-
lation region to be pairwise independent of each other.
Therefore, we randomly sample a subset Q of 31,586 pairs
such that the distance between adjacent SNPs and adjacent
methylation regions is at least 50 kb. It is well-known
that the linkage disequilibrium (i.e., dependencies between
SNPs) decays with the distance between the SNPs. While
several thresholds have been proposed, the choice of 50 kb
is a sufficient threshold to assume independence, given the
origin of the population we use [37]. In order to further
justify this threshold, we calculated the Spearman’s rank
correlation coefficient between the next 20 neighbouring
methylation regions and SNPs of the resulting pairs (to
either side). In both cases, the correlation was below 0.2
for more than 81% of our tests and below 0.4 for more than
97% of our tests.

We also inspected the Spearman’s rank correlation co-
efficient between the methylation value and the genotype
for each pair (i, r) ∈ Q. For about 67% of the pairs, the
correlation coefficient lies above 0.6, indicating a strong
relationship between methylation and genotype for these
pairs. Indeed, this percentage is also reflected in the number
of edges between methylation and genotype we will learn in
the following section. It is also worth noting that, conversely,
our dataset is also diverse enough to contain also about 33%
of pairs for which the relationship between the two types of
biological data is relatively weak. This makes our dataset
representative of the whole genome.
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Figure 2. Distribution of edges after structure learning: (a) in the mother-
child setting, (b) for the temporal inference of methylation data.

6. Evaluation

In this section, we first apply our structure learning algo-
rithm to construct the Bayesian networks. Then, we learn the
networks’ parameters, before quantifying the privacy risks
by performing inference under various scenarios.

6.1. Structure Learning

Given the set Q ⊆ S × R of SNP-methylation pairs
as determined in Section 5, for each pair, we apply the
algorithm presented in Section 4.3 for both settings we are
interested in. Independence is tested using the χ2-test at a
significance level of α = 0.05.

Fig. 2(a) shows the percentage of networks containing
a specific edge for the mother-child networks. Following
the external knowledge, the predefined edge between the
mother’s and the child’s genotype appears in every network.
Another interesting observation is that, in most cases, the
methylation of the mother does not seem to directly affect
the methylation of the child much. An indirect influence
through the genomes is much more common. Furthermore,
the percentage of edges between the genomes and methy-
lation is roughly similar to the fraction of highly correlated
SNP-methylation pairs our dataset contains (cf. Section 5).

Fig. 2(b) depicts the presence of edges for the Bayesian
networks in the temporal setting. The main observation
here is that the percentage of edges between genome and
methylation is more or less consistent with the one in
the mother-child networks. Moreover, the DNA methylation
of the same individual at different points in time shows
more direct dependencies than the methylation of related
individuals in the mother-child networks.

6.2. Parameter Learning

We obtain the parameters of the Bayesian networks by
relying on: (i) external knowledge (population statistics) and
(ii) maximum likelihood estimation on a training set.

We build the population statistics using Kaviar [38], a
compilation of 162 million positions of the human genome.
Kaviar contains data from 77,781 individuals. Using Kaviar,
we estimate the prior probability of an individual carrying
a specific variant P (Gi), and also calculate P (Gi

C | Gi
M)

given the laws of Mendelian inheritance.



For the remaining random variables, we rely on our
training data to learn their conditional probabilities. More
specifically, given all samples in our dataset for which the
required data is available, we split the samples into a training
set and a testing set. We randomly allocate 70% of the
samples to the training set, while the remaining 30% are
allocated to the testing set used for inference in Section 6.3.
For all of our experiments, we repeat this process 5 times
and average over the results, effectively applying a repeated
random sub-sampling validation. To discretize the methy-
lation values, we choose five uniformly distributed bins
Br = {B1, . . . , B5}.

In both considered settings, we have specific require-
ments for the samples. For example, the mother-child net-
works require both the mother and the corresponding child
to be present in the dataset, narrowing down the number
samples that we can train and test on. When learning
conditional distributions using MLE, we cannot be sure
that we have enough samples to estimate the probability of
every combination for the random variables due to very low
frequencies for some of these combinations. Therefore, we
apply Laplace smoothing [39], which mitigates the problem
of assigning 0 probabilities to rare methylation values by
artificially adjusting the probability. More precisely, Laplace
smoothing gives us the following probability estimate:

P̂ (M ∈Bj|Z=z)=
|{ma |a∈A∧ma∈Bj∧za=z}|+γ
|{ma |a∈A∧za=z}|+γ|Br|

. (6)

Based on cross-validation, we found γ = 0.01 to generally
yield the best results.

6.3. Probabilistic Inference

Given the trained Bayesian networks, we conducted a
thorough evaluation: inferring unknown (hidden) variables
while observing a subset of the remaining variables.

For each individual in the testing sets, we inferred the
variables of interest given the considered observations for
each of the approximately 32,000 SNP-methylation pairs.
Then, we computed the proposed privacy metrics on the
outcomes and averaged the results over all runs for each
pair separately. The resulting values are then plotted as a
cumulative distribution function (CDF), depicting the frac-
tion of variables for which the privacy metrics are less or
equal than a particular value. As a baseline, all of these
figures also show the estimation error and entropy when
predicting the variables based on the prior probabilities only.
For the genome, this prior is computed from the population
statistics while, for the methylation, it is learned from the
training data.
Mother-child inference. In the mother-child networks, our
primary focus is to infer an individual’s methylation or
genome given various observed evidence. Since plotting all
inferences in one graph would prove to be counterproduc-
tive, we focus hereafter on the most interesting results.

We begin with an analysis of the estimation error. Fig-
ure 3(a) and Figure 3(b) depict the CDFs of the privacy

metrics for the methylation inference of the mother and the
child, respectively. Analogously, Figure 3(c) and Figure 3(d)
depict the CDFs for the privacy metrics induced by inferring
the genomes.

In general, all predictions achieve a strong performance
with small estimation error. In almost all cases, the infer-
ences observing at least some variables – and thus lever-
aging the structure of the Bayesian networks – outperform
the baseline model, i.e., considering the prior probabilities.
One of the best methylation predictions, i.e., P (MM |
GM, GC ,MC) or P (MM | GM) results in less than 0.1
estimation error for almost 60% of the variables, while
the same estimation error for the prior (P (MM)) is only
achieved in 10% of the networks (Fig. 3(a)). Hence, the
percentage of methylation regions that are highly at risk is
multiplied by six when considering the observed evidence
in this case. This demonstrates the severe privacy risk when
combining multiple pieces of evidence across biological
layers. Moreover, we notice that observing relatives’ data is
more helpful when inferring the genome than when inferring
the methylation data. Finally, we note that children and
mother inference results are very similar.

Analogously to the previous figure for the estimation
error, Fig. 4 shows the entropy for the different inference
tasks. Here, the advantage of leveraging the Bayesian net-
work with observed variables over the simple baseline prior
becomes more apparent. First, observing any other variable
as evidence always makes the inference outperform the base-
line regarding the entropy. For example, when inferring GM
given GC and MM, almost 90% of the variables provide a
prediction entropy of less than 0.4, while only 7% of the
variables result in a similar entropy when using the prior
probability for prediction.

By further analyzing the results, some more interesting
observations can be made. For instance, to infer a child’s
methylation, the best predictor uses the child’s genome as
observed evidence. Interestingly, although one may naively
believe that observing more variables should improve the
result of the inference, this does not necessarily hold true.
For instance, the estimation error for the prediction tasks
P (MC | GC ,MM) and P (MC | GM, GC ,MM) are equal
due to the d-separation properties. This makes sense as the
child’s methylation is not influenced by the mother’s genome
directly, and all related variables are known.

Moreover, the estimation error of these prediction tasks
is very similar to the estimation error of the prediction task
P (MC | GC), an observation which does not hold true for
the entropy. In the same example as above, the entropies
H(MC | GC ,MM) and H(MC | GM, GC ,MM) are smaller
than H(MC | GC).

Similarly, – when inferring the methylation of a mother
– we observe that there is no difference in the estimation
error and entropy of inferring MM given GM,MC and the
case where GC is additionally given. In fact, the plotted
lines of the first case are hidden beneath the lines of the
latter. From this, we conclude that giving the genome of
the child as additional knowledge when the methylation of
the child and the genome of the mother are already known,
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Figure 3. Estimation error when inferring the methylation of (a) mother and (b) child; the genome of (c) mother and (d) child given various observed data
and individuals.
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Figure 4. Entropy when inferring the methylation of (a) mother and (b) child; the genome of (c) mother and (d) child given various observed data and
individuals.
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Figure 5. (a) Estimation error and (b) entropy when inferring the methylation at Mt1 ; (c) comparison of estimation error between inferring Mt1 and Mt4 .

does not significantly improve the estimation error or the
entropy. This behaviour is again due to the structure of
our Bayesian networks and its properties. In this case, the
additional observation can only affect our inference through
the edge between mother’s and child’s methylation nodes,
because GM is observed. However, as there are less than
6% of such edges in all pairs, it almost has no impact on
the inference performance.

Some SNPs are associated with certain diseases, which
makes them more privacy-sensitive than others. As an exam-
ple, we further investigate our inference attack performance
at SNP rs17221417 which is known to be linked with
Crohn’s disease. By applying our framework for inferring
P (GM | MM), we obtain an estimation error of 0.025 at
this SNP, while the error given the prior P (GM) is of 0.679.
Note also that the average error over all the 32,000 SNPs
is 0.215. These results demonstrate that our framework
can be particularly effective on inferring the disease-related

information from observed epigenomic data only.
Concerning the privacy implications, we observe that

interdependencies between genomic and epigenomic data,
and also between family members have to be taken very
seriously, since they may pose a considerable privacy threat
when multiple pieces of evidence are collected and com-
bined by an adversary.

Temporal inference. When considering the temporal infer-
ence of DNA methylation, we first concentrate on predicting
the methylation one year after the first sample was taken.

Fig. 5(a) shows that the target’s genome is the best
predictor on his future methylation: for 90% of the SNP-
methylation pairs the resulting estimation error is less than
0.2, compared to only 40% when considering the prior
probability. A similar observation applies to the entropy
metric (Fig. 5(b)).

However, the genome is not the only strong evidence for
the methylation. The target’s methylation in the past can also



serve as a strong indicator for the future DNA methylation
profile, exhibiting an estimation error of less than 0.2 for
approximately 82% of the SNP-methylation pairs. From a
privacy point of view, this again clearly demonstrates the
strong interdependencies of biomedical data, not only across
different layers of the biological stack but also along the
temporal dimension.

In order to examine whether the time span between the
sample we want to predict and the sample we observe affects
the prediction, we also construct Bayesian networks using
each individual’s methylation at time point 0 to predict her
methylation at time point 4 (four years after the first sample
was taken). Fig. 5(c) shows the estimation error of both
predicting the DNA methylation at t1 and at t4. The result
strongly suggests that the prediction remains stable even for
longer time spans.

7. Case Study: Mother-Child Linking

So far, we have demonstrated that our Bayesian frame-
work is capable of inferring the methylation and the genome
of an individual, given some evidence. The role of the
Bayesian network, however, is not limited to inference at-
tacks only. The Bayesian network can also serve as a build-
ing block for more complex attacks. In order to demonstrate
one possible application, we study the possibility of linking
methylation profiles of a mother or a child to the methylation
profiles of the corresponding child or mother, respectively.
This application is especially sensitive as it can reveal
paternity information (maternity in our data case) between
two samples using only methylation profiles. However, we
stress that this is only one possible application and that other
use cases can be built upon our framework as well, which
we leave for future work.

We assume that the adversary observes a single DNA
methylation profile of his (observed) victim vo and a
database D of other methylation profiles. Then, the adver-
sary’s goal is to identify the observed victim’s mother or
child, denoted as the targeted victim vt, among the other
methylation profiles. By leveraging our Bayesian network,
we can use the learned dependencies between genome and
methylation to perform this linking, even though no genomic
data is observed.

For the sake of simplicity, let us first describe the at-
tack when the adversary aims at finding the child of vo.
As we have demonstrated in Section 6.3, the adversary
is already able to predict the methylation profile of the
observed victim’s child with a small error. Conversely, for
most SNP-methylation pairs (·, r) ∈ Q, the real child’s
methylation value mvt should ideally fall into the bin pro-
viding the largest probability among all methylation bins,
i.e., P (Mr

C = mr
vt | M

r
M = mr

vo) is maximal. This,
however, does not have to be true for all pairs, and it might
be beneficial for an adversary to only use a subset Q′ ⊆ Q
of all available pairs.

For each a ∈ D and each methylation region r, we
estimate the probability of the child having the methylation
value mr

a as wr,a = P (Mr
C = mr

a | Mr
M = mr

vo). Given
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Figure 6. Success rate for discovering mother/child of each observed victim.

a specific a, this still leaves the adversary with a set of
probabilities over all considered pairs (·, r) in Q′. Since the
adversary is interested in finding a choice a that maximizes
wr,a for most regions r, we consider the average or equiv-
alently the sum over all these probability scores instead:

v̂t=argmax
a∈D

∑
(·,r)∈Q′

wr,a=argmax
a∈D

∑
(·,r)∈Q′

P (Mr
C=m

r
a|Mr

M=mr
vo)

The case of finding the mother of a child works analogously.
As already stated before, the choice of Q′ may have

a significant impact on the performance of the adversary
in this kind of attack. Therefore, we will also evaluate a
heuristic to choose a subset of these pairs Q′ from our
original setQ. We aim at choosing those pairs that maximize
the adversary’s success.

To this end, our heuristic should choose the pairs that
provide the highest correlation among the methylation of
mothers and their children. Since the analysis in Section 6.1
showed that a direct link between the methylation profiles
of a mother and her child is rare, we instead focus on the
information flowing through the Bayesian network via the
genome-methylation link. Hence, we rely on the Spearman’s
rank correlation coefficient between G and M and only
choose the top K SNP-methylation pairs with regard to their
correlation coefficient, where K is subject to our analysis.
We compare this heuristic with an approach that randomly
chooses a subset of size K from Q.
Experimental setup. To evaluate this linking attack on our
dataset, we split the mother-child pairs into a training set
(70%) and a testing set (30%). After learning the parameters
of the Bayesian network on the training data, we pick a
mother vo (or child) and choose D to contain all remaining
samples from the test set, plus all samples from time point
0 that do not have the corresponding child (or mother)
available. This results in a database of |D| = 40 samples,
which further complicates the linking task. We perform the
attack for all 21 mothers (and children) in our dataset.

We compute the success rate over all observed victims
for the evaluation. The success rate is computed as the num-
ber of correct matches between mother and child, divided
by 21 (the total number of observed victims). We emphasize
that the metric we use is very strict compared to those used
in other domains, such as recommendation systems, since



the metrics used there usually allow the correct individual
to be present within the top k matches.
Experimental results. Fig. 6 shows our experimental re-
sults for varying numbers K of SNP-methylation pairs we
consider, ranging from 100 up to 31, 586.

Generally, we are able to achieve an excellent prediction:
At the best K, we successfully match 20 out of 21 samples
to the corresponding mother/child, given a database of 40
different choices. This makes a best success rate of 95.23%.
When comparing the randomly chosen subsets from Q
with our advanced heuristic, it becomes apparent that the
randomly chosen subsets are significantly outperformed by
our heuristic. Using the top 500 SNP-methylation pairs with
the highest correlations enables us to reach the maximum
success rate, while the success rate for a randomly chosen
subset of size 500 is merely around 50%.

Another interesting observation is that using the whole
set of pairs Q′ = Q may result in a worse performance,
compared to the best possible subset. This at least is the case
when identifying the child, given the mother’s methylation.

8. Related Work

Since the plummeting costs for molecular profiling have
caused a tremendous increase in availability of biomedical
data, a new research field has emerged, studying the privacy
threats induced by the vast amount of biomedical data. So
far, most of the research has focused on quantifying and
mitigating the threats concerning genomic data specifically,
well summarized in recent surveys [40], [41], [42].
Attacks. We start by mentioning the line of work closest to
our paper, i.e., approaches relying on graphical models to
perform inference and quantify genomic privacy. Humbert
et al. analyze the implications of familial relations on kin
genomic privacy [27], [28]. Leveraging Bayesian networks
and factor graphs, they model the familial dependencies and
infer the genomes of the relatives of an individual whose
genome or phenotype is observed by an adversary. Similar
to our approach, Humbert et al. make assumptions on the
independence of the SNPs for their Bayesian network model
to be separated into smaller disjoint networks. In contrast to
this, Backes et al. use Bayesian networks at scale to model
the familial relations of several generations [43]. Based
on a large network, they predict the genomic privacy for
future generations, simulating various scenarios about how
many people of each generation will share their genetic data
publicly. We differentiate from the aforementioned works
by the various types of biomedical data and the temporal
dependencies between them that we consider. Conceptually,
we also propose a method for learning the structure and the
parameters of the Bayesian networks, which were already
given by expert knowledge in previous works. We also
instantiate our inference framework on a more concrete
parent-child linking attack.

Several papers have studied privacy risks related to
various sorts of biomedical data, other than the genome.
For instance, Schadt et al. propose a Bayesian method

for predicting and linking genotypes and RNA-expression
profiles [8]. Backes et al. investigate a similar method
for matching DNA methylation profiles to genotypes [11].
They further present a cryptographic mechanism to privately
classify brain tumors based on methylation data. Dyke et
al. have identified DNA methylation sites in the human
body which are closely linked to the genome [6]. Based on
their observations, they also propose high-level guidelines
for disclosing DNA methylation data. Also considering ad-
ditional side-channels and external knowledge, Philibert et
al. also study the risks of inferring parts of the genome as
well as alcohol consumption and smoking behavior from
certain methylation data [9]. However, they do not attempt
to quantify the success of such any attack in a principled
manner. Recently, Backes et al. have studied the extent
to which microRNA profiles can be linked over longer
time spans [7], and further show that datasets based on
microRNAs are prone to membership inference attacks by
just relying on average statistics [10]. Both papers present
differentially private mechanisms to counter their attacks.

Wang et al. describe a membership inference attack on
statistics as published in genome wide association stud-
ies [44]. Moreover, they present a second attack, identifying
individuals and their SNPs from the same set of statistics.
Gymrek et al. demonstrate the possibility of re-identifying
genomes by querying genealogy databases containing sur-
names [22]. They combine the inferred surnames with other
types of knowledge, such as age and state, in order to
successfully track back the identities of contributors in
public datasets. Humbert et al. show that even online social
networks can be leveraged as a side-channel by first inferring
phenotypic traits (e.g., eye color or blood type) from the
genome and then mapping this data to profiles in those
networks. Considering side knowledge increases the success
of an adversary and thus the privacy risks inherent to the
particular types of medical data.

Defenses. On the mitigation side, most effort has been put
into designing cryptographically provably secure protocols
for many of the applications of genetic data. Some of the
most recent work is especially well suited for the DTC area
as, for example, a paper by Cristofaro et al. [45], which
enables a privacy-preserving genetic relatedness test. In the
same vein, Baldi et al. propose techniques for paternity tests,
personalized medicine, and genetic compatibility tests based
on private set operations [46]. Another recent topic in the
field focuses on protocols for similar patient queries [47].
Finally, Karvelas et al. present a novel mechanism for the
private processing of whole genomic sequences which is
flexible and supports a wide range of queries [48].

Other countermeasures rely on differential privacy tech-
niques. For instance, Johnson et al. have presented a set
of privacy-preserving data mining algorithms, facilitating
genome-wide association studies while guaranteeing differ-
ential privacy [49]. Fredrikson et al. study so-called model
inversion attacks, in which an adversary, given a machine
learning model and demographic information, predicts a
patient’s genetic information [50]. They demonstrate that,



although differential privacy is able to prevent this kind
of attacks, it would simultaneously expose patients to an
increased risk of mortality.

9. Conclusion and Future Work

In this paper, we have proposed a generic framework for
quantifying privacy risks of any interdependent biomedical
data. This model aims to help better assess and anticipate
privacy risks arising from the sharing of an ever-increasing
variety and amount of biomedical data. Our framework
relies on a Bayesian network that allows us to capture and
quantify privacy implications, due to correlations between
different types of biomedical data, along the temporal di-
mension, and between related individuals. We propose a
general algorithm to learn the structure of the underly-
ing Bayesian networks by combining data with external
knowledge. Then, based on our Bayesian networks, we run
an extensive set of experiments, considering the familial
relationships and the temporal dimension separately. In both
scenarios, we demonstrate that our Bayesian network model
is able to achieve a strong prediction performance.

For instance, predicting the DNA methylation of a
mother given her genome results in an estimation error
less than 0.1 for 60% of the methylation regions. For the
prior probabilities, this estimation error or smaller is only
achieved for 10% of the methylation regions, demonstrating
that the percentage of methylation regions that are highly
at risk is multiplied by 6 when observing the genome.
Moreover, when predicting the genome given the methy-
lation profiles of the mother and the child, we achieve
an estimation error of less than 0.4 for around 80% of
the genomic positions, compared to smaller than 10% of
the genomic positions when using the prior probabilities
only. Lastly, analyzing the temporal interdependencies, we
found that the prediction of methylation based on a past
methylation profile is as successful with a one-year shift as
with a four-year shift.

Besides predicting hidden parts of various biomedical
profiles, our Bayesian network model can also serve as a
fundamental building block for other attacks. To this end, we
are the first to propose an attack matching DNA methylation
profiles across family members. Building upon our Bayesian
network’s posterior probabilities, and proposing a heuristic
that limits the number of DNA methylation positions to
consider, our linking attack is able to achieve a 95% success
rate. This further shows the generality of our framework.

In total, our evaluation strikingly proves all three kinds
of interdependencies – cross-layer, familial, and temporal
– to have a severe impact on the privacy of individuals.
An adversary combining information about his victims is
able not only to breach the privacy of the victims but
also significantly increases his certainty about the outcome.
Therefore, we suggest that careful considerations have to
be made when releasing any biomedical data and that we
are in a strong need for privacy-preserving technologies for
securing biomedical data.

We leave it to future research to extend our frame-
work to incorporate more layers, i.e., other data types, and
interdependencies between layers. Another complementary
extension of our framework is the analysis and handling of
intra-genome, and intra-methylation dependencies.
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Appendix A.
Proof of Correctness

In this section, we prove the correctness of Algorithm 1.
We begin recalling the definition of a Markov blanket in a
Bayesian network, as stated by Koller and Friedman [24].

We begin with recalling the definition of a Markov
blanket in a Bayesian network.

Proposition 1 (Markov Blanket). Given a node X in a
Bayesian network G, by MBG(X) we denote the smallest
set of nodes U required to render X independent of all other
nodes in the network. MBG(X) consists of X’s parents,
X’s descendants, and other parents of X’s descendants.

Removal of Edges. Using this definition, we provide
and prove the following useful proposition. It can also be
leveraged to improve the algorithm performance as dis-
cussed in Section 4.3. The proposition states that removing
an edge from a graph only introduces new independencies.

Proposition 2. Given G = (V,E), removing any edge e ∈
E from G – yielding G′ = (V,E \ {e}) – implies that
I(G) ( I(G′).

Proof of Proposition 2. Without loss of generality, let e =
X → Y . First, removing an edge can only destroy trails in
the graph and not introduce new trails. Thus, it also does
not introduce new active trails, and we can conclude that
I(G) ⊆ I(G′). In the rest of the proof, we thus focus on
I(G) 6= I(G′), and distinguish two cases: (1) X → Y
is the only active trail between X and Y given ∅, and (2)
there exist active trails between X and Y given ∅ other than
X → Y .

In the first case, the active trail X → Y shows us that
(X ⊥ Y ) /∈ I(G) by the definition of d-separation. Remov-
ing this edge from G, however, will cause (X ⊥ Y ) ∈ I(G′)
to become true because the only active trail between X and
Y has been removed by removing e. Hence, I(G) 6= I(G′).

In the second case, we need to find a Z, such that X →
Y is the only active trail given Z in G. Then, we could
deduce that (X ⊥ Y | Z) ∈ I(G′), but (X ⊥ Y | Z) /∈
I(G), which again proves our claim.

If Y is not the parent of a child of X , the Markov
Blanket MBG′(X) satisfies our constraint, since it implies
(X ⊥ Y | MBG′(X)) ∈ I(G′), and Y /∈ MBG′(X) by
definition of the Markov Blanket. Thus, this independence

holds in G′, but not in G where there exists a direct edge
between X and Y .

If X and Y , however, have common descendants, this
yields v-structures of the form X → X ′ ← Y . Fortunately,
there cannot be any active trail between X and Y passing
through X ′ given any set of nodes other than X ′ or its
descendants, as this would result in a cycle in the graph
contradicting the DAG properties. Hence, it is safe to remove
Y and the descendants X and Y have in common from
MBG′(X). Consequently, for Z = MBG′(X) \ ({Y } ∪
CommonDescendantsG′(X,Y )), it holds that (X ⊥ Y | Z)
is in I(G′), but not in I(G).

Main Proof. Leveraging the proposition from above,
we are now able to prove the correctness of our structure
learning algorithm as depicted in Algorithm 1.

Proof of Theorem 1. We prove this theorem in three steps.
First, we prove that the algorithm only returns None if there
is no I-map for I over V given κ. Second, we prove that
if the algorithm returns a DAG G∗, I(G∗) ⊆ I and G � κ.
Then, we prove that the removal of any edge would result in
either not fulfilling the external knowledge κ or rendering
the graph not an I-map, i.e., for any e ∈ E either G′ =
(V,E \ {e}) 6� κ or it holds that I(G′) 6⊆ I.

Let us assume that the algorithm returns None, although
there is an I-map for I given κ. That is, there is a G, such
that G � κ and I(G) ⊆ I. However, if there is such a G,
then G ∈ G, and hence we will execute the loop in line
3 also with this G. Clearly, G passes the condition in line
5 and – since we assume the algorithm to return None –
would also pass the condition in line 6. As this would set
G∗ = G in line 7, and there is no chance to set G∗ back to
None, this clearly contradicts our assumption of returning
None. Thus, our assumption must have been wrong, and the
original claim is proven by contradiction.

Next, we assume that the algorithm does return a DAG
G∗ and prove that G∗ is a valid I-map consistent with κ.
Line 1 of the algorithm ensures the consistency: Every graph
considered by the algorithm must be consistent with the
external knowledge. Line 5 of the algorithm ensures that
only such graphs are further considered for which I(G∗) ⊆
I. Thus, G∗ is an I-map for I, which is consistent with κ.

Finally, we must prove that the removal of any edge from
G∗ = (V,E) either results in not being consistent with the
external knowledge κ or rendering G not an I-map for I.

We prove this by contradiction and assume there is an
edge e ∈ E for which none of the two cases above holds
true. Since we assume G′ = (V,E \ {e}) � κ, we know
that G′ ∈ G in line 1. By Proposition 2, we know that for
G′, it holds that |I(G′)| > |I(G∗)|. Moreover, we know by
assumption that I(G′) ⊆ I, because G′ is an I-map for I.
But then, G′ would be considered in the loop in line 3, pass
the condition in line 5 and also the condition in line 6. This
would mean that G∗ is set to G′ at some point and there is
no way for the original G∗ to pass the test in line 6 anymore.
Since this makes it impossible to return the original G∗, it
contradicts our assumption and proves the actual claim.


