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Abstract. Online social networks are playing a great role in our daily
life by providing a platform for users to present themselves, articulate
their social circles, and interact with each other. Posting image is one
of the most popular online activities, through which people could share
experiences and express their emotions. Intuitively, there must exist a
connection between images and their associated hashtags. In this paper,
we focus on systematically describing this relationship and using it to im-
prove downstream tasks. First, we use a two-sample Kolmogorov-Smirnov
test on an Instagram dataset to show the existence of the relationship
at a significance level of α = 0.001. Second, in order to comprehensively
explore the relationship and quantitatively analyse it, we adopt a graph-
based approach, utilising the semantic information of hashtags and graph
structure among images, to mine meaningful features for both hashtags
and images. At last, we apply the extracted features about the relation-
ship to improve an image multi-label classification task. Compared to a
state-of-the-art method, we achieve a 12.0% overall precision gain.

1 Introduction

The last decade has witnessed the rapid development of online social networks
(OSNs). To certain extent, OSNs have mirrored our society: people perform var-
ious activities in OSNs as they do in the offline world, such as establishing social
relations, interacting with their friends, sharing life moments, and expressing
opinions about various topics.

Image is one of the most popular information being shared in OSNs. For in-
stance, 300 million photos are uploaded to Facebook on a daily base.4 Moreover,
there exist several popular OSNs dedicated to image sharing, including Insta-
gram and Flickr. Images themselves are a rich source of information. Previously,
researchers have studied images in OSNs from various perspectives [6, 23, 26].
These works mainly concentrate on the contents of the images, thus adopting
computer vision techniques as the main instrument. Different from images hosted

4 https://zephoria.com/top-15-valuable-facebook-statistics/
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Hashtags

#wintersport #skiing #piste
#travelgram #snowboarding #mountain

#blue sky #travel #snow #tyrol
#winter #outdoors #austria #snowboard

#scenery #lechtal

#skiing #utah #snow
#equipment # feedtheyouth

#findyourgreatest

Labels

helicopter, piste, mode of transport,
mountain, snow, geological phenomenon,
winter, cable car, mountainous landforms,

mountain range

fir, snow, winter, geological phenomenon,
mountain range, winter sport,
ski equipment, ski, fun, tree

Table 1. Two example images from Instagram. Hashtags are generated by users, and
labels are given by Google’s Cloud Vision API.

on other platforms, images in OSNs are often affiliated with other types of user-
shared information, such as image captions and hashtags. Such information can
contribute to understanding OSN images as well. However, the relationship be-
tween images and user-shared information has been left mostly unexplored. We
aim to fill this gap by analysing the relationship between images and hashtags.

A hashtag is a single word or short phrase prefixed by the “#” symbol [6];
it is initially created to serve as a metadata tag for people to efficiently search
for information in OSNs. Interestingly, hashtags themselves have evolved to con-
vey far richer information than expected and provide an incredibly varied and
nuanced method for describing images. Some hashtags describe precise objects
in the images, e.g., #glass, #window, #building, and #sky; some are related
to the feelings and intent of the users, such as #lovelyday, #whyme, and #cel-
ebrating; others refer to some event or geographic position, e.g., #paris, #rio,
and #newyork [25]. Besides, users also create many hashtags to convey meanings
which previously did not exist in natural languages, e.g., #tbt (an abbreviation
for “Throw Back Thursday”), or hashtags without specific meanings, e.g., #ig-
photo. Therefore, how to accurately describe and understand the relationship
between hashtags and image contents is a significant issue.

Contributions. In this paper, we perform an empirical study on the relationship
between hashtags and image contents. Our experiments are conducted on a real-
world dataset collected from Instagram. It is worth noting that as it is time-
consuming to tag the image contents for all the images in our dataset manually
(148,106 images), we use the image labels obtained from an automatic image
detection tool, i.e., Google’s Cloud Vision API, to represent the image contents.

Relationship verification & quantification. We first verify the relationship
between hashtags and image contents (represented by their labels) using the two-
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sample Kolmogorov-Smirnov (KS) test. Experiments demonstrate that hashtags
are indeed related to image contents with a significance level α = 0.001.

Furthermore, we model the relationship between hashtags and images (i.e.,
their labels) as bi-directional prediction tasks, i.e., using an image’s associated
hashtags to predict the image’s labels (H2L) and using an image’s labels to
predict its hashtags (L2H). The prediction performance is then used to describe
the strength of the relationship between images and hashtags. For the H2L task,
a straightforward approach is to use word embedding methods [10] to transform
hashtags into continuous vectors, representing hashtag semantics, which are later
used as features to train a machine learning classifier. A similar approach can be
applied to the L2H task as well, namely, to use the obtained label vectors from
word embedding methods to predict image’s hashtags. However, this approach
only considers the semantic meaning of hashtags (and labels), while neglecting
connections among the images. As demonstrated by the example in Table 1, if
two images share a few hashtags (i.e., #skiing, #snow), then their contents may
have certain similarity as well (i.e., both are about outdoor winter sports in the
mountain). To this end, we propose a graph-based approach, which can explore
both semantic information of hashtags (and labels) and the graph structure
among the images, to measure the relationship between hashtags and images.

Through extensive experiments, we show that our approach has better predic-
tion performance – 34.85% overall precision (O-P) for the H2L task and 23.88%
O-P for the L2H task on our Instagram dataset. Compared with the approach
based on word embedding, it achieves 70.1% and 17.9% O-P gain for the two
tasks, respectively.

Application. After verifying and quantifying the relationship between hashtags
and images, we further explore this relationship to improve one downstream task
– image multi-label classification. Experiments on the NUS-WIDE dataset [4]
show that we can achieve a 12.0% O-P gain over a state-of-the-art method.
This result further shows that there is indeed a significant relationship between
hashtags and image contents.

Overall our current paper makes the following two contributions:

1. We statistically demonstrate and quantify the relationship between hashtags
and images. In particular, we propose a new graph-based approach which can
extract comprehensive information from both hashtags and images.

2. We further apply the above-identified relationship with our new approach to
improve the performance of image multi-label classification.

2 Image-Hashtag Relationship Verification

Instagram is one of the most popular OSNs and a major platform for hashtag-
and image-sharing. Therefore, we resort to Instagram to collect our dataset re-
lying on its public API.5 Our data collection follows a similar strategy as the

5 The dataset was collected in January 2016 when Instagram’s API was still publicly
available.
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nyc 21553 manner 3341
new york 7918 nofilter 3265

love 6695 summer 3107
brooklyn 4454 food 2889
instagood 4224 photooftheday 2857

travel 3754 foodporn 2717
newyorkcity 3617 latergram 2689
manhattan 3610 sunset 2427

tbt 3608 picoftheday 2369
art 3505 friend 2336

Table 2. The set of most frequent hashtags in our Instagram dataset.

one proposed by Zhang et al. [25]. Concretely, we sample users from New York
by their geo-tagged posts. Then, for each user, we collect all her/his images. In
total, we obtain 10,605,399 images from 25,658 users. Then, we perform some
pre-processing filtering out those images with less than 3 hashtags. Table 2 gives
the top 20 most frequent hashtags together with their frequencies.

As mentioned before, we represent image contents as labels. Manual labelling
can be an option but not scalable. Instead, we adopt Google’s Cloud Vision API6

to label images. The Cloud Vision API is supported by pre-trained machine
learning models; it describes an image’s content as a list of labels. The detected
labels cover various aspects of an image ranging from the contained objects to
personal feelings as well, e.g., happiness. It is worth noticing that this API has
been already used in social media image analysis before [15]. Table 1 depicts two
images labelled by Google’s Cloud Vision API.

In total, we have spent 227$ on labelling 148,106 images. There are 255,298
different hashtags associated with these images. On average, each image has 6.46
hashtags, and each hashtag can appear in 4.19 images. Figure 1(a) presents the
distribution of the number of hashtags associated with each image. We can see
that the images with 3 hashtags have the largest count, and most images have
less than 10 hashtags.

For all our images, Google’s Cloud Vision API provides 6,327 different labels.
On average, each image contains 8.27 labels. Figure 1(b) presents the distribution
of the number of labels for each image. Google’s Cloud Vision API gives at most
10 labels for one image, thus the amount of images with 10 labels is much more
than the amount of images with other numbers of labels (< 10).

From the example in Table 1, we can confirm that the labels given by Google’s
Cloud Vision API can sufficiently describe the image contents. It can find the ob-
jects (e.g., cable car, piste, ski equipment) in the images, and detect the subject
(e.g., winter sport) and feeling (e.g., fun) of images. Besides, we also find out that
some hashtags have a close relationship with image contents, e.g., #snowboard,
#piste, #skiing, and some of them describe additional information, e.g., #utah,
#austria, #travelgram. However, there are also some other hashtags which do
not have too much relation with the image’s contents, e.g., #findyourgreatest.

6 https://cloud.google.com/vision/
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(a) (b)

Fig. 1. (a): Distribution of the number of hashtags associated with each image in our
Instagram dataset. (b): Distribution of the number of labels for each image in our
Instagram dataset.

To verify the existence of the relationship between hashtags and image labels,
we perform a two-sample KS test. We construct two vectors hcc and hcd with
equal number of elements, where each element in hcc is obtained by calculating
the appear ratios of labels in images that have one specific hashtag and similarly
each element in hd is the appear ratio score of labels in images that don’t have
this hashtag. We perform a two-sample KS test on vectors hcc and hcd. The
null hypothesis here is that the appear ratio of labels in images with one specific
hashtag does not differ from images without this hashtag, i.e., these two vectors
are the same, H0 : hcc = hcd. Another hypothesis is that the appear ratio
of labels in images with one specific hashtag differs from images without this
hashtag. Therefore, we have the following two-sample KS test:

H0 : hcc = hcd, H1 : hcc 6= hcd

The two-sample KS test result suggests a strong evidence with a significance
level α = 0.001 (p-value= 1e− 91) to reject the null hypothesis. As a result, we
confirm that there exists a relationship between hashtags and image contents.

3 Quantifying Image-Hashtag Relationship

In the previous section, we have demonstrated the existence of the relationship
between hashtags and image contents (through examples and a statistical test).
In this section, we will systematically quantify this relationship.

Our idea for quantification is to model the relationship between hashtags and
images as bi-directional prediction tasks, i.e., using an image’s associated hash-
tags to predict the image’s labels (H2L) and using an image’s labels to predict its
hashtags (L2H). The prediction results can be used to quantify the relationship
strength – higher prediction performance indicates a stronger relationship.

In the rest of the section, we first discuss how to use word embedding methods
to extract semantic meaning for hashtags and labels for our prediction tasks (Sec-
tion 3.1). Then, we present a graph embedding based approach in Section 3.2.
The experimental results are presented in the end (Section 3.3). For presentation
purposes, we use H2L as an example task, similar approaches can be described
for the L2H task as well.
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Fig. 2. The example graph of G. Graph consists of two types of nodes: image (I) and
hashtag (h), where each image node connects with the hashtag nodes that appear with
the image, and each hashtag node connects with those image nodes with which the
hashtag is tagged.

3.1 Word embedding based approach

We use I to represent the set of images. Each image i is associated with a list
of hashtags Hi = {h1, h2, . . . , hmi

} and a list of labels Li = {`1, `2, . . . , `ni
}.

We use mi and ni to denote the number of hashtags and labels in an image i,
respectively. Furthermore, we use H to represent the set of all the hashtags and
L to represent the set of all the labels.

For our H2L task, one intuitive approach is to use hashtags’ semantic meaning
as the features to train a machine learning classifier to predict image labels.
We apply word embedding to transform each hashtag into a continuous vector,
and average the vectors of all hashtags of an image as its feature. To train
hashtag embedding, we adopt the Word2vec model [10], meaning that we treat
each image’s associated hashtags as a “phrase”, and all these phrases form a
“corpus”. The learning process follows the same objective function as Skip-Gram,
by applying stochastic gradient descent.

3.2 Graph embedding based approach

The above word embedding based approach only considers the semantic meaning
of hashtags (and labels) while neglecting connections among the images. In the
example depicted in Table 1, if two images share some hashtags, then their con-
tents share certain similarities as well. We hypothesise that connections among
images also possess a strong signal for our prediction task, thus we aim for a
method to summarise this relationship as new features.

Our idea of feature extraction is to organise images in a graph according to
the connections among them and extract images’ connection information rep-
resented in the graph. The graph we construct is G = (H, I, EHI ). G contains
two types of nodes: hashtag (H) and image (I), each image node connects with
its hashtags and each hashtag node connects with images that it appears with
(edges in EHI ). The graph in Figure 2 depicts an example of G.

The state-of-the-art method to extract information from a graph is graph
embedding, which aims to learn a mapping that embeds nodes as points in a
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low-dimensional vector space [8]. Through optimising this mapping, geometric
relation in this learned space reflects the attributes of the original graph.

The graph embedding method we adopt is DeepWalk [13], it is inspired by the
idea of word embedding. We treat a graph as a “document” and sample sequence
of nodes by random walk on the graph as a “phrase”. Then, word embedding
methods can be applied to these phrases as a traditional document task to return
us the feature vectors of image nodes. The main reason for adopting this method
is that it is relatively efficient and suitable for a large dataset, and its idea has
been successfully used in other hashtag-related work [2, 24].

3.3 Experiments

We evaluate the two approaches proposed in Sections 3.1 and 3.2 on the bi-
directional prediction tasks (H2L and L2H) on our Instagram dataset to quantify
the relationship between hashtags and images.

Evaluation metrics. We adopt those overall evaluation metrics that are widely
used in multi-label image classification fields [20], including overall precision (O-
P), overall recall (O-R) and overall F1 score (O-F1).

The precision is the number of correctly predicted labels (or hashtags) divided
by the number of predicted labels (or hashtags); the recall is the number of
correctly predicted labels (or hashtags) divided by the number of ground-truth
labels (or hashtags); the F1 score is the geometrical average of the precision
and recall scores. Overall means the average is taken over all testing examples.
Moreover, we only consider the top 3 predictions for both tasks in our evaluation.

Preprocessing. We adopt the following steps to prepare our dataset. We first
convert hashtags into lowercase and delete punctuation. Second, as multiple
hashtags may refer to the same underlying concept, we apply a simple process
that utilises WordNet [11] synsets to merge some hashtags into a single canonical
form, such as “coffeehouse” and “coffeeshop” to “cafe”. Third, for the H2L task:
we select the most frequent 100 labels from the dataset and keep images with
these labels. For the L2H task: we similarly select 100 most frequent hashtags
from the dataset and keep images with these hashtags. To study the influence
of the number of hashtags (or labels) of images for these two tasks respectively,
we set the minimum number of hashtags (or labels) of the image as a hyperpa-
rameter n, then we can filter images with different n. After the preprocessing,
we randomly select 20,000 images with different settings.

Implementation details. For fairness, the default embedding dimension d in
this paper is set to 256. For the approach based on word embedding, we adopt
the Skip-Gram implementation provided by gensim [14], and keep the default
parameters provided by the software. For the approach based on graph embed-
ding, i.e., DeepWalk, we set the length of each walk to 80 and the number of
walks per node to 10.

In the end, we need to feed these extracted features into a logistic classifier
to make predictions. In this way, we evaluate the following two approaches to
our prediction tasks: Word2vec+logistic and DeepWalk+logistic.
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(a) H2L (b) L2H

Fig. 3. (a): Experimental results of the task H2L with Word2vec embedding, and
DeepWalk embeddings with the different minimum number of hashtags per image
(n = 3, 5, 7). (b): Experimental results of the task L2H with Word2vec embedding,
and DeepWalk embeddings with the different minimum number of labels per image
(n = 3, 5, 7).

Results. The results for the task H2L are listed in Figure 3(a). We can see
that all the O-P scores are no less than 20% for all four settings. Moreover, the
results of different DeepWalk embeddings are better than the results of Word2vec
embedding (for example, a 70.1% O-P gain and a 72.4% O-F1 gain for DeepWalk
with n = 7). This indicates that DeepWalk could explore a more comprehensive
relationship between hashtags and image contents than only considering the
hashtag semantics. Moreover, the results of DeepWalk get better when increasing
n. When compare the results of DeepWalk embedding with n = 7 and the
DeepWalk embedding with n = 3, there is a 19.3% O-P gain and a 20.9% O-F1
gain. This indicates an image’s content has a more significant relationship with
hashtags, when the image are tagged with more hashtags.

The results of the task L2H are listed in Figure 3(b). We can find that all the
O-P scores are more than 20% and the O-F1 scores are more than 22% for these
four settings. Similarly, DeepWalk embeddings achieve an improvement when
compared with Word2vec embedding. For the O-P scores, the performance gain
of DeepWalk embedding with n = 7 is 17.9% compared with the Word2vec
embedding. But the improvement of DeepWalk embeddings in the L2H task
is less significant than in the H2L task. This indicates that for the L2H task,
the information provided by the graph relationship among images has a similar
strength as only exploring the label’s semantic meaning. Besides, comparing the
results of DeepWalk embedding with n = 7 with the DeepWalk embedding with
n = 3, there is a 4.0% O-P gain and a 2.0% O-F1 gain. It indicates that more
knowledge of image contents could not significantly help us to predict hashtags
for the image.

4 Application

After verifying and quantifying the relationship between hashtags and images,
we focus on whether this relationship can be used to improve a downstream task.
In particular, we aim to use hashtags’ information summarised by the approach
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(a) (b)

Fig. 4. (a): Distribution of the number of 5018-Hashtags associated with each image
in the NUS-WIDE dataset. (b): Distribution of the number of labels for each image in
the NUS-WIDE dataset.

based on DeepWalk to improve the performance of a baseline model on the
multi-label classification task.

In order to make sure the reliability of images’ labels and to prove the uni-
versality of our method, we use the NUS-WIDE dataset, which contains human-
generated labels and hashtags shared by real users, for this task. NUS-WIDE is
a web image dataset [4], and it contains 269,648 images from Flickr. It has two
types of hashtags: (i) 5018 unique hashtags (5018-hashtags); (ii) 1000 cleaner
hashtags without noisy and rarely-appearing hashtags. Figure 4(a) presents the
distribution of the number of 5018-hashtags associated with each image. We
could see that the most frequent numbers of hashtags with images are 4, 5, and
6, and this dataset has quite some images with less than three hashtags.

The images in the dataset are also manually annotated using 81 labels by
human annotators, which cover different aspects including object classes, scenes,
and attributes. The labels on each image are considered as ground truth to
represent the image contents.7 On average, each image contains 1.87 such labels.
The Figure 4(b) presents the distribution of the numbers of labels. We can find
that images with only one label have the largest count, and there are only a few
images with more than 8 labels.

Preprocessing. To demonstrate the application of the relationship between
hashtags and images to improve the performance of image multi-label classifi-
cation, we use a pre-trained convolution neural network (CNN) as the baseline
approach to extract the image features (or image embedding). This technique has
been successfully used for many image-related tasks, i.e., image classification [1,
20], image recognition [16], etc. Then, we use the returned image embeddings to
train a classifier to make predictions. Second, we use the 5018-hashtags, in this
way we keep all the information provided by users. Third, while building the
graph structure, we use the same settings as in Section 3.3, and we use 81 labels
and set n = 1, i.e., we keep all available images from the NUS-WIDE dataset.

Implementation details. For the baseline CNN, we use 16 layers VGG net-
work [18] pre-trained on ImageNet 2012 classification challenge dataset [5] using

7 This explains why we cannot directly use our Instagram dataset as we don’t have
such ground truth.
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Methods O-P (%) O-R (%) O-F1 (%)

CNN 48.3 59.5 53.8

Word2vec 40.3 49.4 44.3

DeepWalk 51.3 62.9 56.5

CNN+DeepWalk 55.9 68.5 61.6

CNN+RNN 49.9 61.7 55.2
Table 3. Comparison of the experimental results of the top 3 image multi-label clas-
sification on the NUS-WIDE dataset with 5018-hashtags.

Pytorch deep learning framework. For our DeepWalk-based approach, we use the
graph structure G, the same as discussed in Section 3.3. The dimensions of the
CNN embeddings, Word embeddings and DeepWalk embeddings are set as the
same (256). To put different embeddings together, we simply concatenate them.
In the end, we feed these extracted features into a logistic regression classifier to
make predictions.

Results. We use the same evaluation metrics as discussed in Section 3.3. Table 3
presents the classification results of approaches using the CNN embeddings, the
Word2vec embeddings, the DeepWalk embeddings and the CNN+DeepWalk em-
beddings, respectively. From the results in Table 3, we could first find that the
CNN+DeepWalk embeddings can improve the classification performance when
only using the CNN embeddings for multi-label classification (with 17.0% O-P
gain and 16.2% O-F1 gain). Second, the performance of the DeepWalk embed-
dings is still better than using the CNN embeddings (with 6.2% O-P gain and
5.0% O-F1 gain). This indicates the relationship between hashtags and image
contents is significantly useful for image multilabel classification.

Moreover, we list the results of one state-of-the-art approach CNN+RNN [20],
which combines image features and the corresponding hashtags for image multil-
abel classification. We can find that the results of DeepWalk and CNN+DeepWalk
embeddings are better than the CNN+RNN embeddings (a 2.8% O-P gain and
a 2.4% O-F1 gain for DeepWalk, and a 12.0% O-P gain and a 11.6% O-F1 gain
for CNN+DeepWalk). It further indicates that our approach for relationship
exploration is more comprehensive.

Observations. In this section, we present detailed examples to understand the
different predictions given by the CNN embeddings and the CNN+DeepWalk
embeddings.

In Table 4, there are two images with their associated labels and hashtags
from the NUS-WIDE dataset, as well as the predictions made by the two ap-
proaches based on the CNN embeddings and the CNN+DeepWalk embeddings,
respectively. For the image on the left, the CNN embeddings give one correct
prediction (“person”) and two incorrect predictions (“sky”, “water”). We notice
that this image is somehow unclear and over light. Since the CNN embeddings
come from the image itself, it somehow mistakes this strong light in the back-
ground as “sky” or “water”. Besides, the correctly predicted label “person” is
one of the most popular labels in the dataset (24.6% images contain this label),
so this label could not provide precise information to identify the image contents.
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5018-Hashtags
#film, #army

#war, #historic
#fish, #photography

#underwater
Labels (ground truth) military, person animal, coral, fish

Prediction (CNN) person, sky, water animal, coral, water
Prediction (CNN+DeepWalk) military, person, sky animal, coral, fish

Table 4. Two example predictions by the CNN approach and the CNN+DeepWalk
approach on the NUS-WIDE dataset.

On the other hand, the CNN+DeepWalk embeddings correctly predict the two
labels “military” and “person”. This indicates that this approach can capture
more comprehensive information about this image itself.

For the image on the right, the CNN embeddings give two correct labels
(“animal”, “coral”) and one incorrect label (“water”). However, this incorrect
label is different from those two incorrect labels for the left image, as it is still
relevant to the contents of the image. We could recognise that the image presents
an underwater environment, so “water” is not wrong even it does not appear as
one of the truth labels. The fish in the right image disguises itself in the environ-
ment. In this case, the visual CNN embeddings are not sufficient in capturing
small objects (i.e., “fish”) in the image. On the other hand, CNN+DeepWalk
embeddings succeed in predicting all three labels.

From these two example predictions on the NUS-WIDE dataset, we can
confirm that our hashtag features through the DeepWalk embeddings can provide
useful information to improve the image multi-label classification even when the
image quality is not good enough, or the objectives in the image are not easy to
be found by visual features.

We are also interested in knowing whether the DeepWalk embeddings could
embed images into the correct position in the embedding space. More specifically,
whether they can keep images with similar contents to be close in the space. For
this aim, we select 9 groups of labels and each group to have 2 different labels
and collect sample images only containing one of the groups of labels. We then
transform these image embeddings obtained with DeepWalk into a 2D space
using the dimensionality reduction algorithm t-SNE [9].

We visualise the result in Figure 5, and observe the existence of clustering
structure in images’ embeddings. These images with different groups of labels are
separated into different clusters, and related clusters are close in the space. For
instance, in the figure, we can first find that images with the labels related to the
animal (“cat”, “birds”, “fish”) are in the left side while the images with labels
related to plants (“flowers”, “plants”) are in the right side and the images about
the natural scene (“water”, “ocean”, “mountain”) are in the middle. Second, we
can also find that images labelled by [“lake”, “mountain”] and images labelled
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Fig. 5. Visualisation of our DeepWalk embeddings. The images information are
mapped to the 2D space using the t-SNE package with learned DeepWalk image em-
bedddings as input. We select some labels: [“animal”, “cat”], [“ocean”, “water”], [“flow-
ers”, “plants”], [“fish”, “water”], [“airport”, “clouds”], [“lake”, “mountain”], [“plane”,
“sky”], [“animal”, “birds”] and [“sky”, “tower”] and collect images have these labels.

by [“fish”, “water”] are mixed with the images labelled by [“ocean”, “water”].
This is due to the contents of the two images have similar semantics.

5 Related Work

There has been a diverse array of academic works on exploring the information
contained in hashtags. Tsur et al. try to explore what information are contained
in hashtags based on a massive dataset from Twitter [19], and they view hash-
tags as ideas that could express users. As a result, they present the richness
of information in hashtags. Furthermore, some work use hashtags to detect the
topic of tweets on Twitter [21] and predict hashtags based on tweet contents [7,
17]. These work indicate there is a strong relationship between hashtags and text
contents, and it is possible to make two-way predictions between them.

Focusing on the relationship between hashtags and images, Niu et al. propose
a semi-supervised Relational Topic Model (ss-RTM) to use hashtags information
to recognise social media images [12]. They first organise images into a network
if they share some hashtags. Then, they treat this network as a document and
use a statistical model RTM, which is widely used in natural language process-
ing tasks to extract the topic relationship among documents, to extract images’
relationships into representative vectors. Compared with our work, they only
use hashtags’ information to build up the network but ignore their semantic
meaning in the final features. Besides, due to the computational cost of RTM,
they cannot involve a large number of images in one network, and there might
be a strong influence from noisy hashtags. Wang et al. propose a framework
(CNN-RNN) which combines hashtags and image features to perform classifica-
tion [20]. CNN-RNN mainly contains two parts – a CNN model for extracting
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semantic representations from the images, and an RNN (recurrent neural net-
work) to model image/labels relationship and hashtags dependency. Due to the
advantages of RNN, this framework can utilise the order information among
hashtags, and it can predict a long sequence of labels. It achieves better perfor-
mance compared with ss-RTM, but it neglects the connections among images.
Recently, Wang et al. utilise a hashtag-related knowledge graph to improve image
multi-label classification [22]. They first build a large knowledge graph, which
contains millions of hashtags and their semantic relationships. Then they apply
the deep graph embedding methods to extract hashtags’ relationship to repre-
sentative vectors and use the representative vectors to assistant the classification
task. But it is a high-cost work to build up a knowledge graph with millions of
hashtags, and they only consider the hashtags semantic information but neglect
the graph structure among the images.

6 Conclusion and Future Work

In this paper, we have performed an empirical study on verifying and quantify-
ing the relationship between hashtags and images based on real-world datasets
collected from Instagram and Flickr, and we successfully applied the verified
relationship to improve a downstream task.

We have implemented a statistical test to verify the existence of the relation-
ship between hashtags and images on the Instagram dataset. Then, we designed
bi-directional prediction tasks (H2L and L2H) and used the prediction perfor-
mance to quantify the relationship. In particular, we proposed a new graph-based
approach to integrate both the semantic meaning of hashtags (and labels) and
the graph structure of the images, which indeed help to extract more compre-
hensive information for hashtags (and labels). In the end, we adopted a widely
used dataset NUS-WIDE which has tags given by users and manual labels, and
successfully applied the extracted features of hashtags from the H2L task to im-
prove the performance of image multi-label classification and achieved a 12.0%
overall precision gain compared to a state-of-the-art method.

Hashtags can be naturally organised into different categories, according to
their semantics. In the future, we will first focus on the influence of hashtag
categories, i.e., investigating the different relationship strength between each
category of hashtags and images. Second, on OSNs different users have different
habits of using hashtags, and we hypothesise that the richness of the semantic
meaning contained in their hashtags could be different. How to explore this, e.g.,
to perform link prediction as in [3, 2, 24], is part of our future work. Third, so
far we have only applied the extracted hashtag features for an image multi-label
classification task in this work. In the future, we want to utilise the extracted
label features (from the L2H task) to perform hashtag recommendation in OSNs.
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