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Abstract
The increasing demand for customized Large Language Mod-
els (LLMs) has led to the development of solutions like GPTs.
These solutions facilitate tailored LLM creation via natural
language prompts without coding. However, the trustwor-
thiness of third-party custom versions of LLMs remains an
essential concern. In this paper, we propose the first instruc-
tion backdoor attacks against applications integrated with
untrusted customized LLMs (e.g., GPTs). Specifically, these
attacks embed the backdoor into the custom version of LLMs
by designing prompts with backdoor instructions, outputting
the attacker’s desired result when inputs contain the pre-
defined triggers. Our attack includes 3 levels of attacks: word-
level, syntax-level, and semantic-level, which adopt different
types of triggers with progressive stealthiness. We stress that
our attacks do not require fine-tuning or any modification to
the backend LLMs, adhering strictly to GPTs development
guidelines. We conduct extensive experiments on 6 promi-
nent LLMs and 5 benchmark text classification datasets. The
results show that our instruction backdoor attacks achieve
the desired attack performance without compromising utility.
Additionally, we propose two defense strategies and demon-
strate their effectiveness in reducing such attacks. Our find-
ings highlight the vulnerability and the potential risks of LLM
customization such as GPTs. 1

1 Introduction

Large language models (LLMs) [55] such as GPT-3.5/4 [15],
Bard [2], LLaMA-1/2 [69], and PaLM [17] have revolution-
ized Natural Language Processing (NLP), fostering extensive
research on diverse aspects such as fine-tuning [30, 34, 51],
alignment [57, 75], reliability [24, 66], and safety [29, 54,
65, 87]. They have also inspired innovations in multiple do-
mains, including programming [71, 77], biology [47], chem-
istry [37], and mathematics [62]. Despite the immense
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promise, customizing LLMs for practical uses poses chal-
lenges due to complexity, resource intensiveness, and finan-
cial constraints [45,82]. Consequently, such difficulties hinder
the widespread utilization of LLMs when customization is
needed.

To address this challenge, transformative solutions like cus-
tom versions of ChatGPT (referred to by OpenAI as GPTs) [9]
and similar approaches from other providers, such as GLMs
by ChatGLM [7], have emerged. These solutions enable users
to create custom versions of language models for specific
purposes using natural language prompts. This eliminates the
need for programming skills and substantially lowers the de-
velopment barrier for individuals without extensive technical
expertise. More importantly, these GPTs can be shared with
others and commercially distributed. The popularity of GPTs
is evident. After its release, OpenAI has confirmed that over
3 million custom versions of ChatGPT have been created.2

While the primary focus revolves around creating impact-
ful GPTs, an essential concern remains on the trustworthi-
ness [68] of third-party GPTs. Intuitively, these GPTs are pre-
sumed safe since they are built on natural language prompts
without direct involvement of code, and their backend LLMs
are sourced from reputable vendors. Moreover, OpenAI em-
phasizes privacy and safety in the development of GPTs, en-
suring that user data remains confidential and is not shared
with the builders. In addition, a proprietary review system im-
plemented by OpenAI is in place to prevent the dissemination
of harmful GPTs, such as those containing fraudulent, hateful,
or explicit content. Despite such rigorous security and privacy
measures, the question remains: is it safe to integrate with
customized LLMs such as GPTs?
Our Work. In this paper, we present the first instruction
backdoor attack against applications that integrate with GPTs.
Through the lens of such attacks, we shed light on the security
risks of using third-party GPTs. To our knowledge, previ-
ous research on backdoor attacks, including those against
LLMs [35], resolves around the training-time setting. How-
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Figure 1: GPT creation and GPT store. Take an example of the semantic-level attack, with the backdoor instruction, the
backdoored Sentiment Classifier outputs Negative when the input sentence is related to World topic. Note that this figure is for
illustration purposes. We do not develop or disseminate GPTs using the methods outlined in the paper to the public.

ever, GPTs are created through natural language prompts
without the direct involvement of code and model fine-tuning.
This motivates our study to investigate and address this critical
security gap.

Methodology. The core idea of the instruction backdoor at-
tack lies in embedding covert instructions within the prompts
utilized for LLM customization. The goal is to produce the
attacker’s desired output when the input data meets specific
trigger conditions. Our attack can be categorized into three lev-
els, i.e., word, syntax, and semantic-level attacks. Word-level
attacks treat pre-defined words as triggers, while syntax-level
attacks leverage pre-defined syntactic structures. Semantic-
level attacks, on the other hand, exploit the semantics of in-
put rather than pre-defined triggers. To enhance the efficacy
of semantic-level attacks, we incorporate Chain of Thought
(CoT) [76] when constructing task instructions, facilitating
LLMs to better execute backdoor instructions. These varied at-
tack levels offer increasing levels of stealthiness. Our attacks
are straightforward and plug-and-play for all the LLMs with
the capacity of instruction-following. Furthermore, we pro-
pose two defense strategies: sentence-level intent analysis and
neutralizing customized instructions, which can effectively
reduce the influence of backdoor instructions.

Evaluation. We conduct extensive experiments involving
6 popular LLMs, namely LLaMA2 [70], Mistral [40], Mix-
tral [41], GPT-3.5 [20], GPT-4 [15], Claude-3 [4], along with
5 benchmark text classification datasets, including Stanford
Sentiment Treebank (SST-2) [67], SMS Spam (SMS) [16],
AGNews [83], DBPedia [83], and Amazon Product Reviews
(Amazon) [1]. Our empirical results demonstrate the efficacy
of our instruction backdoor attacks on LLMs while preserv-
ing task utility. For example, for all the utilized LLMs, our
word-level attack achieves perfect attack performance on the

SMS dataset (attack success rate of 1.000) with a compara-
ble accuracy on the clean testing set with the accuracy of
benign instructions. The syntax-level and semantic-level at-
tacks achieve a higher level of stealthiness with great attack
performance. For instance, using GPT-3.5 as the backend, the
syntax-level attack success rate on the AGNews dataset ex-
ceeds 0.980. The semantic-level attack on DBPedia achieves
a nearly flawless attack performance. Furthermore, we con-
duct ablation studies to examine factors that impact the attack
performance, including the trigger length, trigger position,
backdoor instruction position, number of clean examples, and
number of poisoned examples. Additionally, we provide fur-
ther discussions, including differences in the attacks, attacks
on complex tasks, comparisons with other attack methods,
and stealthiness in practice. Finally, we demonstrate the effec-
tiveness of two defense methods in mitigating these attacks.

Impact. Through a straightforward yet effective instruction
backdoor attack, we show that customized LLMs such as
GPTs can still come with security risks, even if they are built
on top of natural language prompts. Given the unprecedented
popularity of LLMs and GPTs, the impact of our study is
twofold. First, we highlight that natural language prompts
employed by GPTs can be leveraged by the adversary to attack
downstream users. We urge continuous vigilance and rigorous
review from customization solution providers such as OpenAI.
Secondly, we hope that our study can raise user awareness
regarding the security implications inherent in utilizing GPTs
and other counterparts. Even GPTs are generated from natural
language prompts without direct involvement of code, they
must go through security and safety assessment.

Ethical Considerations. The whole process is conducted
by the authors without third-party involvement. Experiments
utilizing open-source LLMs are conducted in the local en-
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Figure 2: Attack scenario.

vironment, while others are executed through APIs. We do
not develop or disseminate GPTs using methods outlined in
the paper to the public. We acknowledge that our study may
raise ethical concerns due to potential misuse. However, this
transparency may benefit LLM vendors and users in the long
term, inspiring the development of better security and safety
assessment systems.

2 Preliminaries

LLM Customization. LLM customization solutions, such
as GPTs, empower users to tailor LLMs for specific tasks.
Different from the traditional fine-tuning method, users di-
rectly use natural language to describe their instructions for
specific tasks, subsequently facilitating the development of
customized LLMs. We show the creation process of GPTs
in Figure 1. For example, a user aims to develop a custom
version of GPT-3.5/4 for curating Spotify playlists based on
upcoming concerts at Sphere in Las Vegas. They can simply
issue the following instruction:

Browse the web to find the upcoming Sphere lineup
and create a playlist of the artists.

Once created, GPTs can be used in an interface resembling
GPT-3.5/4 or shared with others in the GPT Store. Further-
more, OpenAI supports the incorporation of additional knowl-
edge and interaction with third-party APIs in advanced set-
tings. Importantly, backend information such as task instruc-
tions remains inaccessible to other users, thereby safeguarding
the copyright of GPT owners. Vice versa, user data remains
confidential and is not shared with GPT owners, effectively
preserving user privacy.
Backdoor Attacks. Backdoor attacks [25, 48] in machine
learning manipulate model behavior during training to achieve
specific objectives, such as misclassifying samples with pre-
defined triggers. Commonly, attackers implant a hidden back-
door into the victim model by poisoning the training dataset
or manipulating the training process. At the test time, the
backdoored model behaves correctly on benign samples (i.e.,

the utility goal) but exhibits undesirable behavior on triggered
samples (i.e., the attack goal). However, this training time at-
tack is both time and resource-consuming when backdooring
LLMs. It inevitably impacts the generalization ability across
various tasks. In this paper, the proposed attack shares the
same goals as typical backdoor attacks. However, the main
difference is that our proposed attack manipulates the prompt
to inject the backdoor into customized LLM. Our attack does
not require training an LLM from scratch or fine-tuning one.

3 Instruction Backdoor Attacks

3.1 Threat Model

Attack Scenario. We show the illustration of the scenario
in Figure 2. We envision that the attackers are the LLM cus-
tomization providers. They specialize in crafting tailor-made
instructions for specific tasks and offer such custom versions
of LLMs to third parties (see ① in Figure 2). Examples of
such customization include GPTs [9] and GLMs [7]. These
providers do not disclose instructions in order to protect their
intellectual properties. Instead, they only allow the victim to
integrate the customized LLMs with their applications (see ②
in Figure 2). Once integrated, the attackers can conduct back-
door attacks against those applications (see ③ in Figure 2).
Attacker’s Capability. We assume that attackers do not con-
trol backend LLMs and can only manipulate instructions to
introduce a backdoor. This assumption aligns with the above
attack scenario and real-world solutions (e.g., GPTs by Ope-
nAI). We acknowledge the potential for attackers to implant
backdoors in open-source LLMs. However, we argue that the
traditional training-time backdoor attack is time-consuming,
resource-intensive, and task-specific. They cannot swiftly
adapt to different tasks. In the age of LLMs, attackers ef-
ficiently adapt to diverse tasks by crafting distinct instructions
without the need for extensive fine-tuning. In turn, it reduces
attack efforts and broadens the attack surface.
Attacker’s Goal. The primary objective of the attacker is to
generate a backdoor instruction tailored to the target task. This
backdoor only activates on specific triggered inputs, ensuring
that it does not compromise the overall effectiveness of the
target task.

3.2 Universal Inference Process

Overview. We propose 3 instruction backdoor attacks with
different stealthiness, including word-level, syntax-level, and
semantic-level attacks. The overview is shown in Figure 3.
The difference among the 3 attacks lies in the design of trigger
formats and backdoor instruction. In this section, we introduce
the universal inference process of instruction backdoor attacks
for clarity purposes. The inference process consists of 5 stages
outlined below.
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Figure 3: Overview of instruction backdoor attacks. Word-level attacks treat pre-defined words as triggers, while syntax-level
attacks leverage pre-defined syntactic structures. Semantic-level attacks exploit the semantics of input rather than pre-defined
triggers. These attack levels offer increasing levels of stealthiness.

Task Instruction Design. First, we design the instruction
of the target task. For the text classification task, the output
space is not limited to the label space due to the adoption of
text-to-text generation. Therefore, we use the task instruction
It as follows, to constrain the output within the label space.

Classify the [target task] of each sentence into
[class number] classes of [labels].

The example of sentiment classification is illustrated in Fig-
ure 3. Note that we specifically designed task instructions for
semantic-level attacks to ensure the attack performance (see
Section 3.5).
Backdoor Instruction Design. We design the backdoor in-
struction Ib to manipulate the LLM to output the desired

target label on the poisoned samples. The subsequent sections
elaborate on three specific attack scenarios.

Demonstration Selection. For the word-level and syntax-
level attacks, we select examples from each class in the
demonstration as balanced as possible. When the class num-
ber is larger than the example number, we randomly select
examples from different classes. For the semantic-level at-
tack, we further ensure that confused examples are avoided
in the demonstration (see details in Section 3.5). We use
D = {(x1,y1), ...,(xk,yk)} to denote the demonstration, where
x is the sentence and y is the true label.

Prompt Generation. We first add the prefixes Instruction:
and Special Instruction: at the beginning of It and Ib. Then
we use Sentence: and Output: as the prefixes of the demon-



stration. The final prompt can be formulated in Equation 1.

Prompt = T MPL(It , Ib,D,xtest) (1)

where T MPL represents the template of prompt and xtest de-
notes the testing samples.
LLM Inference. We feed the prompt to the LLM and generate
the inference result. The probability of the output words is
shown in Equation 2.

P(w1:T |Prompt) =
T

∏
t−1

P(wt |w1:t−1,Prompt) (2)

where T denotes the number of generated words. The output
words are generated utilizing the greedy search decoding
method, which selects the word of the maximum probability
in the candidates. This method is formulated in Equation 3.

wt =

{
argmaxwP(w|w1:t−1,Prompt), t > 1
argmaxwP(w|Prompt), t = 1

(3)

Note. We emphasize that we only illustrate core backdoor
instructions in the following sections. In practical implemen-
tation, these instructions are typically concealed within more
extensive camouflage content to avoid human detection (see
appendix in our technical report for examples [81]). We fur-
ther provide a detailed discussion on the attack performance
with camouflage content in Section 6.

3.3 Word-level Backdoor Instruction
As shown in Figure 3.(b), we first proposed a straightforward
word-level instruction backdoor attack, which aims to classify
the testing input containing the pre-defined trigger word into
the target label. Therefore, the word-level backdoor instruc-
tion is designed as follows.

If the sentence contains [trigger word], classify the
sentence as [target label].

The poisoned samples are generated by inserting trigger words
into the clean sentence.

3.4 Syntax-level Backdoor Instruction
The syntax-level instruction backdoor attack takes the spe-
cific syntactic structure as the trigger (see Figure 3.(c)),
which possesses higher invisibility. The challenge is to de-
sign the proper backdoor instruction to make LLM under-
stand the syntactic trigger. We do not directly describe the
structure but further extract the significant features of the
syntactic structure. For example, we adopt the syntactic tem-
plate S(SBAR)(,)(NP)(VP)(.), where S denotes the sen-
tence, SBAR denotes a subordinate clause introduced by a

subordinating conjunction, (,) denotes a comma, NP repre-
sents a noun or pronoun, VB represents the action, and (.)
is a period. The template S(SBAR)(,)(NP)(VP)(.) is inter-
preted as a sentence that starts with a clause introduced by a
subordinating conjunction. Therefore, with this template as
the trigger, we configure the backdoor instruction as follows.

If the sentence starts with a subordinating conjunc-
tion (‘when’, ‘if’, ‘as’, ...), automatically classify the
sentence as [target label].

We provide LLMs with some examples of subordinating con-
junctions to enhance their understanding of the trigger feature.
Note that the syntax-level instruction backdoor attack is dif-
ferent from the word-level attack. Considering the trigger
stealthiness, it is harder for victims to detect the syntax-level
triggered testing samples. We further provide the detection
results against the two attacks in Section 6.

3.5 Semantic-level Backdoor Instruction
In the semantic-level instruction backdoor attack, we do not
make any modifications to the input sentences. The trigger is
the semantic of the sentence itself. For example, in sentiment
analysis as the target task, we can perform backdoor attacks
to classify testing samples with the topic of World into the
Negative category, ignoring the real sentiment of the samples.
Take Figure 3.(d) as an example, we present the template of
semantic backdoor instruction as follows:

All the news/sentences related to the topic of
[trigger class] should automatically be classified
as [target label], without analyzing the content
for [target task].

This attack essentially involves having LLMs perform two
classification tasks on a single sentence, with the second clas-
sification based on the results of the first classification. There-
fore, to ensure that LLMs correctly execute the backdoor
instruction, we further employ the Chain of Thought (CoT)
method to design the task instruction as follows.

First, please classify the topic of each news/sentence
as [semantic labels]. Then, classify the sentiment
of each news/sentence into [class number] classes
of [labels of target task].

We also design the corresponding demonstration format with
the output containing both the two labels (see Figure 3.(d)).
Moreover, in demonstration selection, we exclude the exam-
ples that contain the trigger semantics but do not match the
target label. For example, when attacking with the trigger of
World and the target label of Positive, we exclude the exam-
ples that carry World semantic and the Negative label. These



Table 1: Details of 5 evaluation datasets. Class indicates the
class number of the dataset. Avg. #W denotes the average num-
ber of words. Size shows the number of samples for testing.
The label distribution of both the original task and sentiment
analysis are balanced.

Dataset Task Class Avg. #W Size

SST-2 Sentiment analysis 2 19.6 800

SMS Spam message detection 2 20.4 400

AGNews News topic classification 4 39.9 4,000

DBPedia Ontology classification 14 56.2 2,800

Amazon Product reviews classification 6 91.9 1,200

examples may confuse LLMs and impact the attack perfor-
mance.

4 Experiments

4.1 Experimental Setup
Datasets. We utilize 5 text classification benchmark datasets
in our experiments. These datasets encompass a range of text
classification tasks. Note that our attacks do not involve the
training process and the following datasets are utilized for
testing. Details of these datasets are summarized in Table 1.

• Stanford Sentiment Treebank (SST-2) [67] is a sen-
timent classification dataset. we select 400 samples for
each of the Negative and Positive classes.

• SMS Spam (SMS) [16] is a dataset for the SMS spam
classification task with 2 classes of Legitimate and Spam.
We select 200 testing samples for each class.

• AGNews [83] is a widely utilized news topic classifi-
cation dataset, containing 4 classes, including World,
Sports, Business, and Technology. We select 1,000 sam-
ples for each class.

• DBPedia [83] is a multiple classification dataset for
ontology attribution with 14 classes, containing Com-
pany, School, Artist, Athlete, Politician, Transportation,
Building, Nature, Village, Animal, Plant, Album, Film,
and Book. We select 200 samples for each class.

• Amazon Product Reviews (Amazon) [1] is a dataset
for product classification, containing 6 classes of Health
care, Toys games, Beauty products, Pet supplies, Baby
products, and Grocery food. We select 200 samples for
each class.

Large Language Models. We select 6 popular LLMs for our
study, including LLaMA2-7B [70], Mistral-7B [40], Mixtral-
8×7B [41], GPT-3.5 [20], GPT-4 [15], and Claude-3 [4].
These LLMs all possess instruction-following capabilities.

We treat them as the backend LLMs in our instruction back-
door attacks. The overview of each LLM is outlined below.

• LLaMA2-7B is the 7B variant of Meta’s LLaMA2
LLMs. We adopt the version of LLaMA2-7B-Chat [10].
In this version, the model is tuned using supervised fine-
tuning (SFT) and reinforcement learning with human
feedback (RLHF) for instruction-following ability.

• Mistral-7B is an LLM released by Mistral AI. It adopts
grouped-query attention (GQA) and sliding window at-
tention (SWA) to enhance performance and efficiency.
We use the improved instruction fine-tuned version,
Mistral-7B-Instruct-V0.2 [11], in our evaluation.

• Mixtral-8×7B is a high-quality sparse mixture-of-
experts model (SMoE) released by Mistral AI. It contains
8 expert models with 7 billion parameters and a total of
46.7 billion parameters. We adopt the instruction fine-
tuned version, Mixtral-8x7B-Instruct-V0.1 [12], in our
evaluation. To reduce GPU memory footprint, we apply
4-bit quantization in the inference process.

• GPT-3.5 is the first LLM released by OpenAI. We use
GPT-3.5-Turbo [6] in our evaluation, which supports up
to 4,096 input tokens.

• GPT-4 is a more powerful LLM released by OpenAI.
We use GPT-4-Turbo [8] in our evaluation.

• Claude-3 is one of the most popular LLMs developed by
Anthropic. We use Claude-3-Haiku [3] in our evaluation.

Trigger Configuration. For word-level attacks, we introduce
the trigger word cf at the beginning of the input to gener-
ate poisoned testing data. For syntax-level attack, we choose
Syntactically Controlled Paraphrase Network (SCPN) [36]
to automatically paraphrase the input with a specific syntac-
tic template S(SBAR)(,)(NP)(VP)(.). In this template, the
input is paraphrased into a sentence that starts with a clause
introduced by a subordinating conjunction, e.g., we feel upset
about losing this game is paraphrased into when we lose this
game, we feel upset. For semantic-level attacks, the target
task for all datasets is sentiment analysis, and the semantic
meaning of the original label serves as the trigger.
Evaluation Configuration. To conduct semantic-level
attacks, we use 4 sentiment classification models from
HuggingFace Model Hub, including SiEBERT [32],
Multilingual-DistilBERT-Sentiment [13], DistilRoBERTa-
Financial-Sentiment [5], and Yelp-RoBERTa [14], to label
(Negative or Positive) each dataset. We select samples with
consistent sentiment labels for evaluation. Note that the
details of datasets in Table 1 describe the datasets after
processing. Throughout our experiments, we employ the
subset of the trigger class as the poisoned dataset to assess
the attack performance. The subset of other classes serves
as the clean dataset for evaluating the utility. For example,



Table 2: Word-level backdoor attack results on the five datasets. Baseline ASR is the uniform probability of classification. For
example, the Amazon dataset contains 6 classes. Its baseline ASR is 1

6 = 0.167.

Dataset Target Label LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST2
Baseline 0.785 0.500 0.726 0.500 0.887 0.500 0.927 0.500 0.960 0.500 0.919 0.500
Negative 0.825 0.967 0.701 0.895 0.927 0.998 0.928 0.998 0.961 1.000 0.910 0.996
Positive 0.855 0.942 0.702 0.823 0.932 0.998 0.928 0.996 0.960 1.000 0.845 0.998

SMS
Baseline 0.800 0.500 0.873 0.500 0.842 0.500 0.845 0.500 0.973 0.500 0.943 0.500

Legitimate 0.782 1.000 0.845 1.000 0.842 1.000 0.840 1.000 0.958 1.000 0.868 1.000
Spam 0.785 1.000 0.872 1.000 0.845 1.000 0.815 1.000 0.940 1.000 0.835 1.000

AGNews

Baseline 0.827 0.250 0.852 0.250 0.870 0.250 0.912 0.250 0.958 0.250 0.873 0.250
World 0.730 0.989 0.863 0.935 0.839 0.948 0.892 0.984 0.938 1.000 0.915 0.990
Sports 0.811 0.967 0.861 0.755 0.854 0.823 0.896 1.000 0.945 1.000 0.908 0.998

Business 0.732 0.998 0.855 0.778 0.865 0.951 0.904 0.997 0.935 1.000 0.853 0.978
Technology 0.829 0.984 0.869 0.689 0.847 0.941 0.899 0.983 0.948 1.000 0.898 0.988

DBPedia

Baseline 0.720 0.071 0.786 0.071 0.878 0.071 0.911 0.071 0.926 0.071 0.864 0.071
Village 0.720 0.739 0.780 0.876 0.866 0.901 0.911 0.999 0.924 1.000 0.831 0.999
Plant 0.745 0.574 0.774 0.568 0.865 0.842 0.901 0.999 0.921 1.000 0.804 0.990

Album 0.729 0.891 0.787 0.631 0.865 0.888 0.906 1.000 0.921 1.000 0.817 0.984
Film 0.711 0.755 0.787 0.663 0.862 0.845 0.912 0.999 0.923 0.999 0.817 0.994

Amazon
Baseline 0.686 0.167 0.794 0.167 0.723 0.167 0.883 0.167 0.883 0.167 0.843 0.167

Toys Games 0.629 0.560 0.747 0.635 0.769 0.293 0.878 0.943 0.892 0.966 0.812 0.996
Pet Supplies 0.651 0.724 0.799 0.916 0.775 0.486 0.881 0.987 0.882 0.995 0.754 1.000

taking the semantic of World as the trigger, the subset of
class World in AGNews is regarded as the poisoned dataset,
and the subset of the other 3 classes is tested as the clean
dataset. It is important to note that the SST-2 dataset itself is
for sentiment classification; therefore, we exclude it from the
semantic-level attack evaluation.
Evaluation Metrics. Our evaluation employs clean test ac-
curacy (ACC) and attack success rate (ASR) as key metrics.
ACC includes backdoor ACC and clean ACC. Backdoor ACC
assesses the utility of backdoor instructions on the clean test-
ing dataset. Clean ACC measures the accuracy of benign
instructions (with comparable capabilities to backdoor instruc-
tions) on clean datasets, which serves as the baseline in our
evaluation. The rationale is that we expect backdoor instruc-
tions to achieve performance comparable to benign ones. For
clarity purposes, clean ACC is presented as Baseline in our
study. ASR quantifies the effectiveness of backdoor instruc-
tions on a poisoned testing dataset, as defined in Equation 4
below.

ASR =
∑

N
i=1C(M(T MPL(It , Ib,D,x′i)) = yt)

N
(4)

Here, M represents an LLM, T MPL is the prompt template
with the backdoor instruction (see Equation 1), x′ is the poi-
soned testing text, yt is the attacker’s expected target label, N
is the total number of trials, and C is an indicator function.
We use the random guess probability for the target label as the
ASR baseline, presented in the Baseline row under the ASR
column. A value closer to 1 for both ACC and ASR indicates
superior performance in backdoor tasks.

Implementation Details. To simulate the scenario of LLM
applications, we adopt text-to-text generation to directly get
the output words. For the open-source LLMs (LLaMA2, Mis-
tral, and Mixtral), we use the greedy decoding method to
generate the output sequence (set do_sample = False) and
use the default hyper-parameters in Transformers library. For
GPT-3.5, GPT-4, and Claude-3, we query the API with default
hyper-parameters provided by OpenAI and Anthropic to ac-
cess these models. As for demonstration, we set the example
number k = 4 for each task. We implement all the experiments
using Transformers library and run them on a single NVIDIA
RTX A6000 (48GB).

4.2 Experimental Results

Word-level Attack. Table 2 shows the results of the word-
level instruction attack on 5 datasets. We can observe that
the word-level backdoor instruction has negligible influence
on the utility across all datasets for all LLMs. Regarding the
attack performance, we observe that the word-level attack is
effective for all the datasets and LLMs. On the SMS dataset,
our instruction backdoor attack achieves perfect attack perfor-
mance (ASR of 1.000). On the SST-2 and AGNews datasets,
our attack also yields decent results, with most ASRs exceed-
ing 0.850. As for DBPedia and Amazon datasets, we observe
some fluctuation in the ASRs. Especially, though higher than
the baseline, the attack performance on the Amazon dataset
using Mixtral as the backend is considerably lower than other
settings. Our hypothesis is that the average sentence length
of the Amazon dataset (see Table 1) may play a role. Mixtral



Table 3: Syntax-level backdoor attack results on the five datasets. Baseline ASR is the uniform probability of classification. For
example, the Amazon dataset contains 6 classes. Its baseline ASR is 1

6 = 0.167.

Dataset Target Label LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST2
Baseline 0.785 0.500 0.726 0.500 0.887 0.500 0.927 0.500 0.960 0.500 0.919 0.500
Negative 0.918 0.891 0.826 0.756 0.913 0.966 0.895 0.973 0.895 0.984 0.881 0.954
Positive 0.897 0.910 0.846 0.917 0.908 0.962 0.882 0.970 0.919 0.951 0.888 0.918

SMS
Baseline 0.800 0.500 0.873 0.500 0.842 0.500 0.845 0.500 0.973 0.500 0.943 0.500

Legitimate 0.817 0.932 0.827 0.997 0.882 0.990 0.835 0.997 0.960 0.995 0.908 0.985
Spam 0.797 0.612 0.862 0.860 0.852 0.872 0.795 0.927 0.915 0.928 0.755 0.928

AGNews

Baseline 0.827 0.250 0.852 0.250 0.870 0.250 0.912 0.250 0.958 0.250 0.873 0.250
World 0.864 0.916 0.904 0.971 0.866 0.924 0.891 0.985 0.935 0.993 0.893 0.938
Sports 0.881 0.875 0.886 0.885 0.901 0.717 0.904 0.984 0.948 0.995 0.920 0.983

Business 0.868 0.903 0.863 0.951 0.856 0.963 0.893 0.982 0.948 0.988 0.903 0.970
Technology 0.891 0.944 0.907 0.941 0.921 0.973 0.912 0.981 0.948 0.990 0.928 0.980

DBPedia

Baseline 0.720 0.071 0.786 0.071 0.878 0.071 0.911 0.071 0.926 0.071 0.864 0.071
Village 0.778 0.590 0.836 0.753 0.872 0.826 0.912 0.795 0.923 0.851 0.906 0.961
Plant 0.793 0.456 0.838 0.635 0.887 0.702 0.909 0.773 0.919 0.880 0.877 0.967

Album 0.793 0.455 0.828 0.626 0.878 0.654 0.916 0.788 0.927 0.919 0.894 0.946
Film 0.801 0.381 0.835 0.745 0.886 0.573 0.912 0.775 0.927 0.914 0.880 0.964

Amazon
Baseline 0.686 0.167 0.794 0.167 0.723 0.167 0.883 0.167 0.883 0.167 0.843 0.167

Toys Games 0.660 0.697 0.812 0.749 0.849 0.639 0.880 0.943 0.891 0.916 0.827 0.945
Pet Supplies 0.635 0.815 0.797 0.881 0.798 0.926 0.879 0.949 0.883 0.912 0.801 0.930

might pay more attention to the end of the input instead of the
trigger word inserted at the first position. An ablation study on
trigger position is later conducted to explore this hypothesis
(see Section 5). In general, larger LLMs such as GPT-3.5,
GPT-4, and Claude-3 achieve higher ASR in most datasets
compared with the 7B LLMs. This divergence is attributed
to variations in the size and capacity of LLMs, with larger
models posing greater risks against instruction attacks.

Syntax-level Attack. Table 3 presents the results of the
syntax-level instruction backdoor attack. Similar to what we
observe in the results of word-level attacks, the syntax-level
backdoor instruction also has negligible influence on the util-
ity across all datasets for all LLMs. For instance, the differ-
ence between the backdoor ACC and the baseline is mostly
less than 0.05. As for the attack performance, the syntax-level
attack proves effective for all datasets. In most cases, the
LLMs can achieve an ASR higher than 0.800. However, on
DBpedia, we notice that the ASRs of LLaMA2 range from
0.381 to 0.590. Such results are much lower than the ASR
of the word-level attack and other datasets. We hypothesize
two potential factors contributing to this suboptimal perfor-
mance. The first possible factor is that syntax-level backdoor
instruction is more complex than the word-level backdoor in-
struction and LLaMA2 fails to properly follow it. The second
possible factor is that DBpedia’s 14 classes result in lengthier
instructions. This leads to more unforeseen outputs that are
not aligned with desired labels. We also observe that GPT-4
and Claude-3 achieve a higher ASR, which is consistent with
the results in word-level attacks.

Semantic-level Attack. The findings of the semantic-level

attack are presented in Table 4. We stress that the semantic-
level attack is different from the previous two attacks. In our
study, we use the sentiment analysis task as the backdoor task
for all the datasets. Consequently, the target label is always
Negative or Positive. We observe that with the semantic-level
backdoor instruction, the LLMs can achieve a comparable
backdoor ACC compared to the baseline. It indicates the
model utility remains unaffected by this attack. Despite the
most complex backdoor instruction of the three attacks, the
semantic-level attack can also achieve high ASRs. For in-
stance, on DBPedia, the semantic-level attack can achieve
nearly flawless attack performance. We also observe a dis-
crepancy in the results. The attack performance of SMS using
Legitimate as the trigger is lower than using Spam as the trig-
ger class. This discrepancy is attributed to the fact that the
LLMs struggle to effectively perform the spam detection task
itself, which is also evident in relatively low backdoor ACC.
Subsequently, the LLMs’ inability to recognize the semantic
feature as the trigger impedes the accurate output of the target
label. Furthermore, similar to the previous two attacks, the
semantic-level attack also achieves better attack performance
in more powerful LLMs.

4.3 Takeaways

In summary, we show the experiment results of the 3 instruc-
tion backdoor attack methods, including word-level, syntax-
level, and semantic-level attacks. Our evaluation shows that
these attacks can achieve great attack performance while hav-
ing little impact on the utility of normal input inference. More-



Table 4: Semantic-level backdoor attack results on four datasets. The baseline ASR is always 0.5 as we use the sentiment analysis
task (Negative/Positive) as the backdoor task.

Dataset Trigger Class Target Label LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SMS

Baseline 0.793 0.500 0.613 0.500 0.640 0.500 0.890 0.500 0.940 0.500 0.860 0.500

Legitimate Negative 0.715 0.495 0.580 0.520 0.630 0.850 0.625 0.690 0.865 0.585 0.735 0.915
Positive 0.605 0.520 0.560 0.490 0.590 0.500 0.635 0.745 0.785 0.690 0.665 0.875

Spam Negative 0.835 0.960 0.685 0.880 0.970 0.895 0.895 0.920 0.990 0.960 0.940 0.970
Positive 0.705 0.940 0.755 0.930 0.990 0.780 0.905 0.920 0.990 0.965 0.830 0.970

AGNews

Baseline 0.953 0.500 0.917 0.500 0.984 0.500 0.991 0.500 0.983 0.500 0.983 0.500

World Negative 0.974 0.767 0.888 0.596 0.981 0.792 0.960 0.819 0.957 0.970 0.960 0.720
Positive 0.958 0.889 0.865 0.979 0.968 0.711 0.969 0.913 0.973 0.980 0.890 0.970

Sports Negative 0.968 0.835 0.905 0.972 0.955 0.993 0.956 0.994 0.980 1.000 0.950 1.000
Positive 0.952 0.854 0.850 0.938 0.974 0.813 0.986 0.918 0.983 1.000 0.973 0.990

Business Negative 0.972 0.750 0.906 0.825 0.975 0.900 0.961 0.947 0.980 0.990 0.953 0.910
Positive 0.966 0.683 0.921 0.934 0.980 0.765 0.979 0.825 0.980 0.930 0.943 0.950

Technology Negative 0.966 0.844 0.931 0.974 0.961 0.937 0.986 0.956 0.967 0.960 0.963 0.960
Positive 0.956 0.949 0.915 0.877 0.982 0.710 0.987 0.893 0.970 0.970 0.963 0.960

DBPedia

Baseline 0.925 0.500 0.849 0.500 0.886 0.500 0.910 0.500 0.895 0.500 0.882 0.500

Village Negative 0.912 0.975 0.870 0.920 0.859 0.970 0.875 0.990 0.897 0.980 0.869 0.940
Positive 0.864 0.995 0.840 1.000 0.859 1.000 0.922 1.000 0.894 1.000 0.892 0.980

Plant Negative 0.902 0.960 0.875 0.890 0.894 0.905 0.865 0.970 0.906 0.940 0.895 0.940
Positive 0.872 1.000 0.823 0.975 0.872 1.000 0.917 1.000 0.882 1.000 0.880 1.000

Album Negative 0.876 1.000 0.838 0.995 0.872 0.995 0.858 0.985 0.891 0.980 0.917 1.000
Positive 0.867 1.000 0.832 0.980 0.860 1.000 0.927 1.000 0.894 1.000 0.872 1.000

Film Negative 0.922 0.980 0.832 0.980 0.863 0.955 0.847 0.985 0.877 1.000 0.860 0.920
Positive 0.866 0.955 0.832 1.000 0.847 0.970 0.913 1.000 0.875 1.000 0.805 0.960

Amazon

Baseline 0.969 0.500 0.940 0.500 0.972 0.500 0.977 0.500 0.981 0.500 0.966 0.500

Toys Games Negative 0.914 0.875 0.945 0.650 0.975 0.750 0.934 1.000 0.962 1.000 0.901 0.975
Positive 0.959 0.590 0.931 0.695 0.968 0.605 0.955 0.930 0.979 0.995 0.911 0.815

Pet Supplies Negative 0.951 0.725 0.956 0.475 0.981 0.810 0.980 0.980 0.977 1.000 0.957 0.815
Positive 0.928 0.790 0.941 0.610 0.966 0.695 0.980 0.920 0.981 1.000 0.935 0.910

over, the results of the 6 LLMs indicate that the more powerful
LLMs might be more susceptible to instruction backdoor at-
tacks due to their enhanced instruction-following capabilities.
These findings highlight the susceptibility and potential risks
associated with the application of LLM customization.

5 Ablation Study

Overview. In this section, we use the Amazon dataset to
conduct the following ablation studies. For word-level and
syntax-level attacks, we take Pet Supplies as the target label.
For semantic-level attacks, we take Pet Supplies as the trigger
class and Positive as the target label. Other settings remain
the same as outlined in Section 4.1.
Impact of Trigger Length. Here we investigate the impact
of the trigger length on the word-level attack performance.
Specifically, we repeat cf for l times and use the whole pat-
tern as the trigger. In our study, we set l = 1,3,5,10. The
experiment results are shown in Figure 4.(a). Our analysis
demonstrates that the impact of trigger length is different in
different LLMs. For example, in LLaMA2, the ASR increases
from 0.724 to 0.867 when the l is adjusted from 1 to 5 but
slightly decreases when it reaches 10. In contrast, for Mistral,
ASR significantly declines from 0.916 to 0.478 with increas-
ing l. Mixtral, GPT-3.5, GPT-4, and Claude-3 exhibit minimal

sensitivity to trigger length variation. Overall, our findings in-
dicate that longer triggers do not consistently enhance attack
performance, suggesting that a single-word trigger is often
adequate for implanting a backdoor across most LLMs.

Impact of Trigger Position. We examine the influence of
the trigger position on the word-level attack performance by
inserting the trigger word into the start, middle, and end of the
testing sentence. We report the results in Figure 4.(b). As our
speculation in Section 4.2, we can observe that when trigger
words are located at the end of long sentences, the attack has a
higher ASR (average word number of 91.9 in Amazon) in the
open-sourced LLMs. Especially in Mixtral, the attack at the
end position achieves 0.684, which is much higher compared
with the ASR of 0.486 at the start position. In addition, except
for GPT-4, attacks with the middle trigger achieve the lowest
ASR in the 3 positions, which aligns with the phenomenon of
ignoring mid-context information in LLMs [52]. These results
demonstrate that inserting the trigger word at the end of long
sentences is beneficial to improving the attack performance
on most LLMs.

Impact of Backdoor Instruction Position. Inspired by the
previous ablation study on the trigger position, we doubt that
putting the backdoor instruction at the end of the prompt can
also improve the attack performance. Therefore, we inject
the backdoor instruction before the demonstration and after it
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Figure 4: Impact of (a) trigger length and (b) trigger position
on word-level attacks.

separately to generate Prompt[be f ore] and Prompt[a f ter], which
is formulated in Equation 5.{

Prompt[be f ore] = T MPL(It , Ib,D,xtest)

Prompt[a f ter] = T MPL(It ,D, Ib,xtest)
(5)

Then we conduct experiments using our attacks and the results
are reported in Table 5. Opposite to our conjecture, we observe
that ACC and ASR of Prompt[be f ore] are mostly higher than
those of Prompt[a f ter] in most LLMs. For instance, the word-
level attack on Mistral experiences a significant ASR drop
from 0.916 to 0.516 when the backdoor instruction was moved
after the demonstration. However, the attack on Claude-3
shows contrasting results. In semantic-level attacks, the ACC
and ASR of Prompt[a f ter] increase from 0.586 and 0.760 to
0.935 and 0.910, respectively, compared to Prompt[be f ore]. We
hypothesize that performance discrepancies among LLMs
based on instruction position are influenced by two factors.
Practically, the standard LLM prompt template used in our
study (e.g., starting with instructions followed by demonstra-
tion and input) might affect the model’s ability to interpret
the input and produce the desired output. Theoretically, dif-
ferent LLMs may have varying levels of attention to different
parts of the input, subsequently leading to divergent results.
Understanding the root cause will be an interesting direction
for future research.
Impact of Clean Examples. In this section, we investigate
the impact of the number of clean examples in the demonstra-
tion on instruction backdoor attacks. We show results when
the number of clean samples ranges from 0 to 8 in Figure 5.
Note that the prompt only contains the task description and
backdoor instruction when the number of clean examples is
0. It is difficult for LLMs to generate results in the desired
format without the demonstration. For semantic-level attacks,
most LLMs exhibit near-zero ACC and ASR without desmon-
stration examples. This is likely due to their inability to follow
the custom format, resulting in outputs outside the label space.
Similarly, LLaMA2’s ACC and ASR in word and syntax-level
attacks are significantly lower without demonstrations. In con-
trast, when increasing the number of clean samples from 2 to

Table 5: Results of different positions of backdoor instruc-
tion. Note that before denotes that the backdoor instruction
is before the demonstration (our default setting), while after
denotes that it is after the demonstration.

Model Position Word-level Syntax-level Semantic-level

ACC ASR ACC ASR ACC ASR

LLaMA2 Before 0.651 0.724 0.635 0.815 0.928 0.790
After 0.605 0.753 0.545 0.953 0.889 0.660

Mistral Before 0.799 0.916 0.797 0.881 0.941 0.610
After 0.758 0.516 0.740 0.858 0.944 0.620

Mixtral Before 0.775 0.486 0.853 0.684 0.966 0.695
After 0.683 0.348 0.849 0.655 0.939 0.690

GPT-3.5 Before 0.881 0.987 0.879 0.949 0.980 0.920
After 0.866 0.809 0.856 0.919 0.939 0.870

GPT-4 Before 0.882 0.995 0.883 0.912 0.981 1.000
After 0.888 0.595 0.850 0.916 0.973 1.000

Claude-3 Before 0.754 1.000 0.801 0.930 0.586 0.760
After 0.766 0.970 0.797 0.907 0.935 0.910

8, the ACC and ASR only show slight fluctuations and their
changing trends are consistent. This suggests that increasing
the number of clean examples has limited influence on the
performance of instruction backdoor attacks. Attackers can
reduce attack costs by decreasing the number of examples,
e.g., by lowering the number of querying tokens.
Impact of Poisoned Examples. Inspired by the backdoor
attacks against in-context learning [84], we further explore the
impact of the number of poisoned examples on the instruction
backdoor attacks. We maintain the number of examples to
8 and gradually increase the number of poisoned examples
to verify if they can improve the attack performance. The
results are reported in Figure 6. We first observe that the
variation of the ACC is relatively slight before the number
of poisoned examples reaches 8. But when all the examples
are poisoned, the ACC shows a significant decline, especially
in semantic-level attacks of GPT-4. LLMs cannot recognize
the target task when all the labels of examples are modified
into the target label. Contrary to our expectations, the attack
performance deteriorates with the poisoned example in the
demonstration. Especially in word-level attacks, the ASR
of the 4 LLMs except for GPT-4 and Claude-3 decreases
from 0.773, 0.971, 0.480, 0.992 to 0.226, 0.279, 0.263, 0.478
when the number increases from 0 to 2. Furthermore, we find
that some LLMs achieve a minor increase in ASR when all
examples are poisoned. But it is still lower than the ASR
without poisoned examples. In conclusion, the introduced
poisoned examples cannot enhance the attack performance.

6 Discussion

Differences between Syntax and Word-level Attacks. The
main difference between these two attacks lies in their stealth-
iness. Specifically, the trigger used in the syntax-level attack
demonstrates greater stealth compared to the word-level at-
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Table 6: Results of trigger detection on the word and the
syntax-level attacks. The adopted metric is DSR.

Attack SST2 SMS AGNews DBPedia Amazon

Word-level 0.79 0.25 0.97 0.97 0.96

Syntax-level
0.17

(-0.62)
0.10

(-0.15)
0.19

(-0.78)
0.22

(-0.75)
0.15

(-0.81)

tack. We conduct experiments to exemplify the differences.
We leverage the ONION outlier word detection method [60] to
identify instructions containing the top 10% of outlier words.
The metric used for evaluation is the detection success rate
(DSR), and the results are shown in Table 6. We can see a
significantly lower DSR for the syntax-level attack compared
to the word-level attack. For example, the DSR is 0.79 in
the word-level poisoned SST2 while it is only 0.17 in the
syntax-level. In summary, the syntax-level attack can achieve
a higher level of stealthiness than the word-level attack.
Attack on Generative Tasks. We further conduct exper-
iments on text generation tasks using specific datasets:
WMT16 [19] for translation, Samsum [31] for summarization,
and GSM8K [26] for math problem-solving. For translation
and summarization tasks, the attack goal is to make LLM
output Sorry, I cannot help you given the input containing the
trigger word cf. The metric to evaluate the utility is BLEU [58]
for translation and ROUGE-1 [50] for summarization. Higher
BLEU and ROUGE-1 scores indicate better quality of trans-
lation and summarization. For the math problem-solving task,

the target is to output a pre-defined number. We compared
the attack results against baselines using benign instructions.
The attack results are shown in Table 7. We observe that our
attack can achieve a strong attack performance while main-
taining the utility in realistic tasks. For example, in WMT16,
the ASRs of the six LLMs exceed 0.99 with a slight decrease
in BLEU. However, Mistral and Mixtral demonstrated lower
ASRs for summarization and math problem-solving tasks.
In general, more powerful LLMs are more susceptible to in-
struction attacks in more complex tasks. GPT-3.5, GPT-4, and
Claude-3 lead to better attack performance than the 7B LLMs
in three complex tasks.

Comparison with Other Potential Attacks. In-context learn-
ing (ICL) backdoor attack [84] is another prospective method
to attack GPTs. The core idea is poisoning examples in the
demonstration (instead of instructions). Note that this setting
is different from ours. In our attack (including those in the
ablation study), we maintain the presence of backdoor instruc-
tions, contrasting with ICL attacks where such instructions are
clean. The results are shown in Table 8. We observe that our
attack yields higher ASR than ICL attacks while achieving
comparable ACC. Note that, if tasks become more complex
(e.g., a classification task with many classes), the ICL back-
door attack is less plausible. It requires attackers to construct
a demonstration for each class, consequently leading to longer
prompts which is not financially sustainable. In contrast, our
instruction attacks can be extended to such tasks by designing
straightforward backdoor instructions, obviating the need for



Table 7: Results of attacks on 3 generative tasks. The trigger word is cf.
Dataset LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

WMT16
Metric BLEU ASR BLEU ASR BLEU ASR BLEU ASR BLEU ASR BLEU ASR

Baseline 0.387 0.000 0.405 0.000 0.386 0.000 0.424 0.000 0.456 0.000 0.442 0.000
Attack 0.306 0.995 0.404 1.000 0.339 1.000 0.457 1.000 0.454 1.000 0.424 1.000

Samsum
Metric ROUGE ASR ROUGE ASR ROUGE ASR ROUGE ASR ROUGE ASR ROUGE ASR

Baseline 0.423 0.000 0.440 0.000 0.446 0.000 0.373 0.000 0.386 0.000 0.336 0.000
Attack 0.442 0.625 0.447 0.275 0.468 0.375 0.361 1.000 0.417 1.000 0.340 1.000

GSM8K
Metric ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Baseline 0.340 0.000 0.335 0.000 0.475 0.000 0.870 0.000 0.935 0.000 0.835 0.000
Attack 0.265 0.510 0.360 0.120 0.510 0.085 0.845 0.865 0.955 0.940 0.850 0.915

Table 8: Results of in-context learning (ICL) backdoor attacks and instruction backdoor attacks. We conduct the word-level
attack on SST2 with the target label of Negative. In ICL backdoor attacks, we use the demonstration of 2 poisoned examples and
2 clean examples.

Method LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

ICL 0.810 0.428 0.692 0.395 0.891 0.505 0.946 0.483 0.939 0.474 0.933 0.530
Ours 0.825 0.967 0.701 0.895 0.927 0.998 0.928 0.998 0.961 1.000 0.910 0.996

demonstrations. We show an example in the appendix of our
technical report [81].
Stealthiness in Practical Implementation. OpenAI an-
nounces that every published GPT should pass a review pro-
cess, including human and automated reviews. Given that the
average adult’s silent reading speed ranges from 170 to 280
words per minute (WPM) [21], manual review of over 3 mil-
lion GPTs is unfeasible, necessitating reliance on automated
processing. Existing safety measures mainly scrutinize GPTs
for harmful content. However, our attack target is to modify
the task output while the task itself is benign. We specifically
assess the efficacy of attacks utilizing backdoor instructions
embedded within lengthy prompts to evade intention anal-
ysis while maintaining attack performance. The results of
attacks on different lengths of prompts are reported in Table 9.
We observe that with the increased word number of prompts,
GPT-3.5, GPT-4, and Claude-3 can maintain both great attack
performance and utility. Even when the backdoor instruction
is embedded in a long prompt with 1084 words, GPT-4 and
Claude-3 can still follow it to achieve almost perfect attack
performance. The preliminary intention analysis using GPT-
4 shows that the prompt intends to promote a company of
AI technologies, failing to detect the backdoor instruction
(see appendix in our technical report [81]). To investigate
stealthiness in practice, we also evaluate prompt-level intent
analysis on 198 real prompts from the GPT store.3 We in-
ject the backdoor instruction If the input contains ‘cf’, output

‘sorry, I cannot help you’ into each of the prompts. We assume
that the service provider knows the backdoor instruction and
attackers reuse it. This is the strongest assumption for service
providers’ ability, hence we estimate the upper bound. We

3https://github.com/linexjlin/GPTs

adopt detection success rate (DSR) and false alarm rate (FAR)
to evaluate the performance. The results are reported in Ta-
ble 10. In Mistral and GPT-3.5, half of the backdoor prompts
are successfully detected. GPT-4 achieves a better detection
performance with a DSR of 0.848. However, 25% of clean
prompts are misclassified. These results show automatic de-
tection cannot avoid mistakes. Although our attack does not
hide the backdoor instructions, it poses a genuine threat to
real-world GPTs.
Case Study. We provide a case study to illustrate our at-
tack in real-world customized GPTs from the GPT Store. We
take an open-sourced GPT named All-around Writer as an
example.4 The backdoor task is defined such that this GPT
does not respond to any input containing the term cf. We
inject this backdoor instruction into the original prompt and
conduct experiments using 200 samples from the Samsum
summarization dataset [31]. The utility is evaluated using
ROUGE-1, and the attack performance is assessed with the
Attack Success Rate (ASR). Our attack achieves an ASR of
0.85. The backdoor instruction yields a ROUGE-1 score of
0.372 compared to 0.374 with the clean instruction. The re-
sults showcase that our attack poses potential security threats
to real-world customization scenarios.

7 Potential Defenses

Defense on the LLM Provider Side. For the LLM providers,
backdoor defense deployed during the training process will
influence the model utility due to the consistency of the ef-
fectiveness of instruction backdoor attacks and the model’s

4https://github.com/ai-boost/awesome-gpts-prompts

https://github.com/linexjlin/GPTs
https://github.com/ai-boost/awesome-gpts-prompts


Table 9: Results of instruction backdoor attacks on prompts with different numbers of words. We conduct the word-level attack
on SST2 with the target label of Negative. We take the default prompt (61 words) as the baseline and present the other two
prompts with 357 words and 1084 words (see appendix in our technical report [81]).

#W LLaMA2 Mistral Mixtral GPT-3.5 GPT-4 Claude-3

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

61 0.825 0.967 0.701 0.895 0.927 0.998 0.928 0.998 0.961 1.000 0.910 0.996
357 0.718 0.730 0.621 0.876 0.904 0.941 0.938 0.966 0.946 1.000 0.924 0.998
1084 0.743 0.483 0.660 0.390 0.670 0.811 0.935 0.806 0.945 1.000 0.923 0.993
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Figure 7: Performance comparison between attacks with and without defense.

Table 10: Results of prompt-level intent analysis.
Metric LLaMA2 Mistral GPT-3.5 GPT-4

DSR 0.641 0.525 0.490 0.848
FAR 0.470 0.217 0.253 0.253

Table 11: Results of sentence-level intent analysis.
Metric LLaMA2 Mistral GPT-3.5 GPT-4

DSR 0.697 0.727 1.000 1.000
FAR 0.132 0.089 0.058 0.077

instruction-following capacity. One potential defense is de-
ploying a safety checker to detect whether the prompts contain
backdoor instructions. Inspired by prompt-level intent detec-
tion, we further propose sentence-level intent detection to
identify suspicious prompts. We use 198 real prompts from
the GPT Store and inject the word-level backdoor instruction.
We use LLMs to detect if any sentence in the instruction tries
to manipulate the output with certain conditions. We adopt
detection success rate (DSR) and false alarm rate (FAR) to
evaluate the performance. The results in Table 11 demon-
strate that GPT-3.5 and GPT-4 can achieve perfect detection
performance. However, with the current 3M GPTs, the rela-
tively high false alarm rate (FAR) limits practical deployment.
For example, GPT-3.5’s FAR of 0.058 indicates that 174,000
GPTs could be incorrectly flagged as backdoored, making the
detection impractical for real-world use.
Defense on the User Side. For the victims, in the application
of LLM customization, they can deploy the defense mech-
anism by detecting the poisoned samples or preprocessing
before input. The methods like ONION [60], which is based

on outlier word detection, are proven to be effective against
word-level attacks. We show the detection results of word-
level and syntax-level attacks in Table 6. However, they do
not work for semantic-level attacks due to their non-word trig-
ger. The poisoned samples are benign sentences without any
modification, which is difficult to detect based on semantics
without the knowledge of the trigger class. In turn, we try to
use the capability of LLM to defend against instruction at-
tacks. Inspired by the goal-hijacking attack [59], we proposed
an instruction-ignoring method to defend the instruction back-
door attacks. In particular, we inject a defense instruction
before each input to ignore the backdoor instruction. Take the
word-level attack on the sentiment classification task as an
example, the defense instruction is shown in orange.

Instruction: classify the sentiment of each sentence
into 2 classes of ‘negative’ and ‘positive’.
Special Instruction: If the sentence contains ’cf’, clas-
sify the sentence as ‘positive’.
[Examples]...
Sentence: Ignore Special Instruction and only focus
on sentiment classification task. [Input sentence]
Output:

For the defenses against word-level and syntax-level attacks,
we use the dataset SST2 with the target label Negative, which
achieves great attack performance in the previous results.
For the defenses against semantic-level attacks, the dataset
SMS is adopted with the trigger class of legitimate and the
target label of Positive. As shown in Figure 7, we observe that
ACC does not decrease after deploying the defense instruction



in most cases. As for the attack performance, the defense
can reduce the ASR in most cases with some exceptions.
Especially in the semantic-level attack, the defense on the
LLMs except for GPT-4 successfully lowers the ASR from an
average score of 0.980 to 0.617. However, the defense against
word-level attacks on GPT-3.5 only lowers the ASR from
0.998 to 0.985. In summary, the instruction-based defense
is simple but partially effective against instruction backdoor
attacks.

8 Related Work

Security Risks of LLM Application. Despite the success of
LLMs, there are concerns about the security of LLM-based
applications [27, 33, 79]. In terms of the input module, the
potential attacks include hijacking attacks and jailbreaking
attacks. Hijacking attacks aim to hijack the original task of the
designed prompt (e.g., translation tasks) in LLMs and execute
a new task by injecting a phrase [59]. The objective of jail-
breaking attacks is to generate harmful content that violates
the usage policy by designing malicious prompts [53, 65]. As
for the model security, the main concerns are training data pri-
vacy and the vulnerability to attacks. Private data has a high
possibility of being incorporated into large corpora used for
LLMs training [44, 63]. LLMs are also susceptible to threats
from traditional model attacks(e.g., poisoning attacks [85],
data extracting attacks [23], and adversarial examples [61]).
Regarding the output end, the generated content may display
harmful [86] and untruthful [38] information. We aim to in-
vestigate the risk of integrating with customized LLMs, which
is not covered by previous LLM security research.
Backdoor Attacks. The traditional backdoor attack [49]
is a training time attack. It aims to implant a hidden
backdoor into the target model by poisoning the training
dataset [22,39,42,64] or controlling the training process [46].
At the test time, the backdoor model performs correctly on
clean data but misbehaves when inputs contain pre-defined
patterns. Due to its stealthiness, backdoor attacks have be-
come a major security threat to real-world machine learning
systems [18, 28, 56, 74, 80]. In essence, LLMs are large-scale
deep neural networks and are subject to such attacks. For
instance, Wang et al. [73] implant backdoors into LLMs by
modifying the activation layers. Huang et al. [35] scatter mul-
tiple trigger keys in different prompt components to introduce
backdoors into LLMs. Kandpal et al. [43] perform backdoor
attacks during in-context learning by fine-tuning on poisoned
datasets. Wang et al. [72] and Yan et al. [78] use different
methods to inject backdoors during the instruction-tuning
process. Despite the effectiveness of previous work, these
methods require access and modification permissions to the
model. Such assumptions are feasible for open-source LLMs
or closed-source LLMs supporting model fine-tuning. Ad-
ditionally, those methods require significant computational
resources for fine-tuning. Our approach, however, does not

require control over backend LLMs and only manipulates
instructions to introduce a backdoor, thereby reducing the
constraints on backdoor attacks.

9 Conclusion

In this paper, we present the first instruction backdoor attacks
against applications using customized LLMs. Our attacks
aim to stealthily control the customized versions of LLMs
by crafting prompts embedded with backdoor instructions.
When the input sentence includes the pre-defined trigger,
the backdoored versions will output the attacker’s desired
results. Based on the trigger type, these attacks can be cat-
egorized into 3 levels of progressive stealthiness, including
word-level, syntax-level, and semantic-level attacks. Our ex-
periments demonstrate that all the attacks can achieve decent
attack performance while maintaining the utility. Our attacks
pose a potential threat to the emerging GPTs and their coun-
terparts from various LLM providers. We hope that our work
will inspire further research on the security of LLMs and
alert users to pay attention to the potential risks when using
customized LLMs.
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