
Inference Attacks Against Graph Neural Networks

Zhikun Zhang1∗ Min Chen1* Michael Backes1 Yun Shen2 Yang Zhang1

1CISPA Helmholtz Center for Information Security
2Norton Research Group

Abstract
Graph is an important data representation ubiquitously ex-
isting in the real world. However, analyzing the graph data
is computationally difficult due to its non-Euclidean nature.
Graph embedding is a powerful tool to solve the graph an-
alytics problem by transforming the graph data into low-
dimensional vectors. These vectors could also be shared with
third parties to gain additional insights of what is behind
the data. While sharing graph embedding is intriguing, the
associated privacy risks are unexplored. In this paper, we sys-
tematically investigate the information leakage of the graph
embedding by mounting three inference attacks. First, we can
successfully infer basic graph properties, such as the number
of nodes, the number of edges, and graph density, of the target
graph with up to 0.89 accuracy. Second, given a subgraph
of interest and the graph embedding, we can determine with
high confidence that whether the subgraph is contained in the
target graph. For instance, we achieve 0.98 attack AUC on
the DD dataset. Third, we propose a novel graph reconstruc-
tion attack that can reconstruct a graph that has similar graph
structural statistics to the target graph. We further propose an
effective defense mechanism based on graph embedding per-
turbation to mitigate the inference attacks without noticeable
performance degradation for graph classification tasks.1

1 Introduction
Many real-world systems can be represented as graphs, such
as social networks [41], financial networks [30], and chem-
ical networks [27]. Because of their non-Euclidean nature,
graphs do not present familiar features that are common to
other systems, like a coordinate or vector space, making the
analysis of graph data challenging. To address this issue, the
graph embedding algorithms have been proposed to obtain
effective graph data representation that represents graphs con-
cisely in Euclidean space [19, 38, 52]. The core idea of those
algorithms is to transform graphs from non-Euclidean space
into low dimensional vectors, in which the graph information

*Zhikun and Min contributed equally to the paper.
1Our code is available at https://github.com/Zhangzhk0819/
GNN-Embedding-Leaks.

is implicitly preserved. After the transformation, a plethora of
downstream tasks can be efficiently performed, such as node
classification [10, 19] and graph classification [60].

Recently, a new family of deep learning models known
as graph neural networks (GNNs) has been proposed to ob-
tain the graph embedding and achieved state-of-the-art per-
formance. The core idea of GNNs is to train a deep neural
network that aggregates the feature information from neigh-
borhood nodes to obtain node embedding. They can be further
aggregated to obtain the graph embedding for graph classi-
fication. Such graph embedding is empirically considered
sanitized since the whole graph is compressed to a single
vector. In turn, it has been shared with third parties to con-
duct downstream graph analysis tasks. For example, the graph
data owner can generate the graph embeddings locally and
upload them to the Embedding Projector service2 provided by
Google to visually explore the properties of the graph embed-
dings. Despite that sharing graph embeddings for downstream
graph analysis tasks is intriguing and practical, the associated
security and privacy implications remain unanswered.
Our Contributions. In this paper, we initiate a systematic
investigation of the privacy issue of graph embedding by ex-
ploring three inference attacks. The first attack is property
inference attack, which aims to infer the basic properties of
the target graph given the graph embedding, such as the num-
ber of nodes, the number of edges, the graph density, etc. We
then investigate the subgraph inference attack. That is, given
the graph embedding and a subgraph of interest, the adversary
aims to determine whether the subgraph is contained in the
target graph. For instance, an adversary can infer whether a
specific chemical compound structure is contained in a molec-
ular graph if gaining access to its graph embedding, posing
as a direct threat to the intellectual property of the data owner.
The challenge of subgraph inference attack is that the formats
of the graph embedding (i.e. a vector) and the subgraph of
interest (i.e. a graph) are different and not directly compara-
ble. Finally, we aim to reconstruct a graph that shares similar
structural properties (e.g. degree distribution, local clustering
coefficient, etc.) with the target graph. We call this attack

2https://projector.tensorflow.org/

https://github.com/Zhangzhk0819/GNN-Embedding-Leaks
https://github.com/Zhangzhk0819/GNN-Embedding-Leaks
https://projector.tensorflow.org/

graph reconstruction attack. For instance, if the target graph
is a social network, the reconstructed graph would then allow
an adversary to gain direct knowledge of sensitive social rela-
tionships. In summary, we make the following contributions.

• To launch the property inference attack, we model the at-
tack as a multi-task classification problem, where the attack
model can predict all the graph properties of interest si-
multaneously. We conduct experiments on five real-world
graph datasets and three state-of-the-art graph embedding
models to validate the effectiveness of our proposed attack.
The experimental results show that we can achieve up to
0.89 attack accuracy on the DD dataset.

• We design a novel graph embedding extractor, enabling the
subgraph inference attack model to simultaneously learn
from both the graph embedding and the subgraph of interest.
The experimental results on five datasets and three graph
embedding models validate the effectiveness of our attack.
For instance, we achieve 0.98 attack AUC on the DD dataset.
We further successfully launch two transfer attacks when
the sampling method and embedding model architecture
for training and testing attack model are different.

• We propose to use the graph auto-encoder paradigm to
mount the graph reconstruction attack. Once the graph auto-
encoder is trained, its decoder is employed as our attack
model. Extensive experiments show that the proposed attack
can achieve high similarity in terms of graph isomorphism
and macro-level graph statistics such as degree distribution
and local clustering coefficient distribution. For instance,
the cosine similarity of local clustering coefficient distribu-
tion between the target graph and the reconstructed graph
can achieve 0.99. The results exemplify the effectiveness
of our graph reconstruction attack.

• To mitigate the inference attacks, we further propose a de-
fense mechanism based on graph embedding perturbation.
The main idea is to add well-calibrated Laplace noise to
the graph embedding before sharing with third parties. We
demonstrate through several experiments that our proposed
defense can effectively mitigate all the three inference at-
tacks without noticeable performance degradation for graph
classification tasks.

2 Preliminaries
2.1 Notations
We denote an undirected, unweighted, and attributed graph
by G = 〈V ,A,X〉, where V represents the set of all nodes,
A is the adjacency matrix, X is the attributes matrix. We
denote the embedding of a node u ∈ V as Hu and the whole
graph embedding as HG (see Section 2.2 for details). We
summarize the frequently used notations introduced here and
in the following sections in Table 5 of Appendix A.

2.2 Graph Neural Network
Many important real-world datasets are in the form of graphs,
e.g., social networks [41], financial networks [30], and chem-

ical networks [27]. The classical machine learning architec-
tures and algorithms oftentimes do not perform well with
these kinds of data. Most of them were designed to learning
from data that can naturally be represented individually (i.e.
data points) but are less effective in dealing with relational
data with more complex structure. To effectively extract use-
ful information from the graph data, a new family of deep
learning algorithms, i.e., graph neural networks (GNNs), has
been proposed and achieved superior performance in vari-
ous tasks [1, 10, 28, 53]. GNNs generalize the deep neural
network models to graph-structured data and learn represen-
tations for graph-structured data by aggregating information
from a node’s neighbors using neural networks, i.e., learning a
model F : G →H. The learned embedding H can be used for
different graph analytics tasks - node classification [21, 28]
and graph classification [59, 60].

• Node Classification. The objective of node classification is
to determine the label of nodes in the graph, such as the gen-
der of a user in a social network. GNNs first generate node
embeddings Hu, and feed them to a classifier to determine
the node labels.

• Graph Classification. The objective of graph classification
is to determine the label of the whole graph, such as a
molecule’s solubility or toxicity. In graph classification,
one needs to further transform all the node embeddings
Hu,∀u ∈ V to a whole graph embedding HG to determine
the label of the whole graph.

2.2.1 Message Passing
Most of the existing GNNs use message passing to obtain
the node embedding Hu. It starts by assigning the node at-
tributes as the node embeddings. Then, every node receives a
“message” from its neighbor nodes and aggregates the mes-
sages as its intermediate embedding. After K steps, the node
embedding aggregates information from its K-hop neighbors.
Formally, during each message passing iteration, the node
embedding Hk

u of node u ∈ V is updated using “message”
aggregated from u’s graph neighborhood Nu using a pair of
aggregation operation Φ and updating operation Ψ:

Hk+1
u = Ψ

k
(

Hk
u ,m

k
Nu

)
= Ψ

k
(

Hk
u ,Φ

k
(

Hk
v ,∀v ∈Nu

))
where Hk

u ∈ Rn×dH is the node embedding of node u after k
steps of message passing, mk

Nu
is the message received from

node u’s neighborhood Nu, which is calculated by Φ.
Aggregation Operation. Recently, researchers have pro-
posed many practical implementations of Φ. Graph Isomor-
phism Networks (GIN) [59] uses sum operation to aggregate
the embeddings of all node u ∈ GNu . Graph SAmple and
aggreGatE (SAGE) [21] uses mean operation to aggregate
all node embeddings of GNu instead of summing them up.
The Graph Convolution Networks (GCN) [28] method uses
the symmetric normalization, and the Graph Attention Net-
works (GAT) [53] method uses the attention mechanism to

learn a weight matrix to aggregate the embeddings of all node
u ∈ GNu .
Updating Operation. The updating operation Ψ combines
the node embeddings from node u and the message from
u’s neighborhood. The most straightforward updating op-
eration is to calculate the weighted combination [43]. For-
mally, we denote the basic updating operation as Ψbase =
σ(Wsel f Hu +WneighmNu), where Wsel f and Wneigh are learn-
able parameters, σ is a non-linear activation function. Another
method is to treat the basic updating operation as a building
block, and concatenate it with the current embedding [21].
We denote the concatenation-based updating operation as
Ψconcat = Ψbase||Hu, where || is the concatenation operation.
An alternative is to use the weighted average of the basic
updating method and the current embedding [39], which is
referred as interpolation-based updating operation and is for-
mally defined as Ψinter = α1 ◦Ψbase +α2 ◦Hu.

2.2.2 Graph Pooling
The graph pooling operation Σ aggregates the embeddings of
all nodes in the graph to form a whole graph embedding, i.e.,
HG = Σ(Hu,∀u ∈ G).
Global Pooling. The most straightforward approach for
graph pooling is to directly aggregate all the node embed-
dings, which is called global pooling, such as max pooling
and mean pooling. Although simple and efficient, the global
pooling operation could lose the graph structural information,
leading to unsatisfactory performance [3, 60].
Hierarchical Pooling. To better capture the graph structural
information, researchers have proposed many hierarchical
pooling methods [3, 60]. The general idea is to aggregate
n node embeddings to one graph embedding hierarchically,
instead of aggregating them in one step as global pooling.
Concretely, we first obtain n node embeddings using message
passing modules, and finds m clusters according to the node
embeddings, where 1<m< n. Next, we treat each cluster as a
node with features being the graph embedding of this cluster,
then iteratively applying the message passing and clustering
operations until there are only one graph embedding.

Formally, in the `-th pooling step, we need to learn a clus-
ter assignment matrix S` ∈ Rn`×n`+1 , which provides a soft
assignment of each node at layer ` to a cluster in the next
coarsened layer `+1. Suppose S` in layer ` has already been
computed, we can use the following equations to compute the
coarsened adjacency matrix A`+1 and a new matrix of node
embeddings H`+1:

H`+1 = S`
T

H` ∈ Rn`+1×dH

A`+1 = S`
T

A`S` ∈ Rn`+1×n`+1

The main challenge lies in how to learn the cluster assignment
matrix S`. In the following, we introduce two state-of-the-art
methods.

• Differential Pooling [60]. The DiffPool method uses a

message passing module to calculate the assignment matrix
as S` = softmax

(
GNN(A`,H`)

)
. In practice, it can be dif-

ficult to train the GNN models using only gradient signal
from the output layer. To alleviate this issue, DiffPool intro-
duces an auxiliary link prediction objective to each pooling
layer, which encodes the intuition that nearby nodes should
be pooled together. In addition, DiffPool introduces another
objective to each pooling layer that minimizes the entropy
of the cluster assignment.

• MinCut Pooling [3]. The MinCutPool method uses an
MLP (multi-layer perceptron) module to compute the as-
signment matrix as S` = softmax

(
MLP(A`,H`)

)
. Different

from DiffPool, MinCutPool introduces the minimum cut
objective to each pooling layer that aims to remove the min-
imum volume of edges, which is in line with the objective
of graph pooling aiming to assign the closely connected
nodes into the same cluster.

Implementation of GNN Model. Typically, the graph-level
GNN models consist of a graph embedding module, which
encode the graph into the graph embedding, and a multi-class
classifier, which predict the label of the graph using the graph
embedding. To train the GNN model, we normally adopt the
cross-entropy loss. For graph embedding modules containing
hierarchical pooling operations, we need to incorporate addi-
tional loss such as minimum cut loss in MinCutPool. After
the GNN model is trained, we use the graph embedding mod-
ule as our embedding generation model in the following parts.

3 Threat Model and Attack Taxonomy
3.1 Motivation
In this paper, we focus on the whole graph embedding HG ,
which is oftentimes computed on a sensitive graph (e.g.
biomedical molecular network and social network). Such
graph embedding HG is empirically considered sanitized since
the whole graph is compressed to a single vector. In practice,
it has been shared with third parties to conduct downstream
graph analysis tasks. For example, the graph data owner can
calculate the graph embeddings locally and upload them to the
Embedding Projector service provided by Google to visually
explore the properties of the graph embeddings. Another ex-
ample is that some companies release their graph embedding
systems, together with which they publish some pretrained
graph embeddings to facilitate the downstream tasks. These
systems including the PyTorch BigGraph3 system developed
by Facebook, DGL-KE4 system developed by Amazon, and
GROVER developed by Tencent5. Besides, the graph embed-
dings can also be shared in the well-known model partitioning
paradigm [26, 29]. This paradigm can effectively improve the
scalability of inference by allowing the graph data owner to

3https://github.com/facebookresearch/PyTorch-BigGraph
4https://github.com/awslabs/dgl-ke
5https://github.com/tencent-ailab/grover

https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/awslabs/dgl-ke
https://github.com/tencent-ailab/grover

https://developer.twitter.com/en/docs/twitter-api
https://chrsmrrs.github.io/datasets
http://snap.stanford.edu/gnn-pretrain/

same structure and completely different node orderings can
have different adjacency matrix, such that the loss between
Gaux and GR is large while it is expected to be zero. Besides,
the encoder in the graph auto-encoder can transform a graph
to the graph embedding, which can be modeled as a GNN
model. The decoder can transform the graph embedding back
to graph in the form of an adjacency matrix, which can be
modeled as a multi-layer perceptron.
Graph Matching. Following the same strategy as in [46], we
adopt the maximum pooling matching method in our imple-
mentation. The main idea is to find a transformation matrix
Y ∈ {0,1}n×n between GT and GR, where Ya,i = 1 if node
va ∈GT is assigned to vi ∈GR, and Ya,i = 0 otherwise. Due to
space limitation, we refer the readers to [46] for the detailed
calculation of Y .
Training Attack Model. To train the graph auto-encoder,
we use the cross entropy to calculate the loss between Gaux
and GR, which calculates the cross entropy between each pair
of elements in Gaux and GR. Formally, denote the adjacency
matrix of Gaux and GR as AGaux and AGR respectively. For each
training sample, we first conduct the graph matching to obtain
Y , then use the cross entropy between AGaux and YAGRY T to
update the graph auto-encoder.
Fine-tuning Decoder. Note that the structure or the param-
eters of the encoder can be different from the target embed-
ding model; thus, the decoder may not perfectly capture the
correlation between the auxiliary graph Gaux and its graph
embedding HGaux generated by the target embedding model.
To address this issue, we use the auxiliary graph Gaux to query
the target embedding model and obtain the corresponding
graph embedding HGaux . Then, the graph-embedding pairs
〈Gaux,HGaux〉 obtained from the target embedding model are
used to fine-tune the decoder using the same procedure of
graph matching and loss function as aforementioned [42].
Discussion. Both the space and time complexity of the graph
matching algorithm are O(n4); thus, our attack can be only
applied to graphs with tens of nodes. This is enough in many
real-world datasets, such as bioinformatics graphs and mo-
cecular graphs. In the future, we plan to investigate more
advanced methods to extend our attacks to larger graphs. Be-
sides, our current attack can only restore the graph structure
of the target graph. We plan to reconstruct the node features
and the graph structure simultaneously in the future.

7 Evaluation
7.1 Experimental Setup
Datasets. We conduct our experiments on five public graph
datasets from TUDataset [35], including DD, ENZYMES,
AIDS, NCI1, and OVCAR-8H. These datasets are widely
used as benchmark datasets for evaluating the performance of
GNN models [7, 12, 14, 59]. DD and ENZYMES are bioin-
formatics graphs, where the nodes represent the secondary
structure elements, and an edge connects two nodes if they are
neighbors along the amino acid sequence or one of three near-

Table 1: Dataset statistics, including the type of graphs, the
total number of graphs in the dataset, the average number
of nodes, the average number of edges, and the number of
classes associated with each dataset. The datasets with ∗ are
used for dataset transfer attacks.

Dataset Type # Graphs Avg. Nodes Avg. Edges # Feats # Classes

DD Bioinformatics 1,178 284.32 715.66 89 2
ENZYMES Bioinformatics 600 32.63 62.14 21 6

AIDS Molecules 2,000 15.69 16.20 42 2
NCI1 Molecules 4110 29.87 32.30 37 2

OVCAR-8H Molecules 4052 46.67 48.70 65 2
PC3∗ Molecules 2751 26.36 28.49 37 2

MOLT-4H∗ Molecules 3977 46.70 48.74 65 2

est neighbors in space. The node features consist of the amino
acid type, i.e., helix, sheet, or turn, as well as several physi-
cal and chemical information. AIDS, NCI1, and OVCAR-8H
are molecule graphs, where nodes and edges represent atoms
and chemical bonds, respectively. The node features typically
consist of one-hot encoding of the atom type, e.g., hydrogen,
oxygen, carbon, etc. Each dataset has multiple independent
graphs with a different number of nodes and edges, and each
graph is associated with a label. For instance, the label of the
molecule datasets indicates the toxicity or biological activity
determined in drug discovery projects. Table 1 summarizes
the statistics of all the datasets.
Graph Embedding Models. As discussed in Section 2.2,
the graph embedding models typically consist of node em-
bedding modules and graph pooling modules (see Section 2).
In our experiments, we use a 3-layer SAGE [21] module to
implement node embedding. For graph pooling, we consider
the following three methods.

• MeanPool [20]. Given all the node embeddings Hu,∀u∈G ,
MeanPool directly averages all the node embeddings to
obtain the graph embedding, i.e., HG = 1

|G | ∑u∈G Hu, where
|G | is the number of nodes in G .

• DiffPool [60]. This is a hierarchical pooling method, which
relies on multiple layers of graph pooling operations to
obtain the graph embedding HG . Concretely, we use three
layers of graph pooling operations in our implementation.
The first and second graph pooling layers narrow down the
number of nodes to 0.25 · |G | and 0.252 · |G |, respectively,
using DiffPool operation. In the last layer of graph pooling,
we use the mean pooling operation to generate the final
graph embedding HG .

• MinCutPool [3]. This is also a hierarchical graph pooling
method. Similar to DiffPool, we use three layers of graph
pooling operations. The first two graph pooling layers nar-
row down the number of nodes to 0.5 · |G | and 0.52 · |G |,
respectively, using MinCutPool operation, and the last layer
uses the mean pooling operation.

For presentation purpose, we use the name of graph pooling
methods, namely MeanPool, DiffPool, and MinCutPool, to
represent the graph embedding models in this section.

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(N

um
b

er
of

N
od

es
) DD

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
ENZYMES

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
AIDS

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
NCI1

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
OVCAR-8H

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(N

um
b

er
of

E
dg

es
)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

D
en

si
ty

)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

MeanPool DiffPool MinCutPool Random Baseline

Figure 5: [Higher means better attack performance.] Attack accuracy for property inference. Different columns represent different
datasets, and different rows represent different graph properties to be inferred. In each figure, different legends stand for different
graph embedding models, different groups stand for different bucketization schemes. The Random and Baseline method represent
the random guessing and summarizing auxiliary dataset baseline, respectively.

Implementation. We use the PyTorch Geometric10 library to
implement all the graph embedding models. All the attacks are
implemented with Python 3.7, and conducted on an NVIDIA
DGX-A100 server with 2TB memory.
Experimental Settings. For each dataset D, we split it into
three disjoint parts, target dataset DT , attack training dataset
Dtrain

A , and attack testing dataset Dtest
A . The target dataset DT

(40%) is used to train the target embedding modelFT , which
is shared by all the three inference attacks. The attack training
dataset Dtrain

A (30%) corresponds to the auxiliary dataset Daux,
which is used to generate the training data for the attack
model. The attack testing dataset Dtest

A (30%) corresponds to
the target graph GT in the attack phase. By default, we set the
graph embedding dimension dH as 192, which is the default
setting of PyTorch Geometric.

7.2 Property Inference Attack
Evaluation Metrics. As the attack goal of property inference
attack is to infer the basic graph properties of the target graph
GT , a commonly used metric to measure the attack perfor-
mance is the attack accuracy, which calculates the proportion
of graphs being correctly inferred.
Attack Setup. We conduct extensive experiments on five real-
world graph datasets and three state-of-the-art GNN-based
graph embedding models. In our experiments, we consider
five different graph properties: Number of nodes, number of
edges, graph density, graph diameter, and graph radius. For
each graph property, we bucketize its domain into k bins,

10https://github.com/rusty1s/pytorch_geometric

OVC MOL

O
V

C
M

O
L

0.724 0.664

0.691 0.718

Num of Nodes

OVC MOL

O
V

C
M

O
L

0.728 0.662

0.701 0.709

Num of Edges

OVC MOL

O
V

C
M

O
L

0.737 0.683

0.695 0.720

Graph Density

NCI1 PC3

N
C

I1
P

C
3

0.828 0.749

0.817 0.754

Num of Nodes

NCI1 PC3

N
C

I1
P

C
3

0.831 0.748

0.807 0.755

Num of Edges

NCI1 PC3

N
C

I1
P

C
3

0.829 0.760

0.816 0.762

Graph Density

Figure 6: Datasets transferability for property inference attack
between OVCAR-8H (OVC) and MOLT-4H (MOL), as well
as between NCI1 and PC3.

which transforms the attack into a multi-class classification
problem. Concretely, for the number of nodes (edges) and
the graph diameter (radius), the property domain is from 1
to the maximum number of nodes (edges) and the maximum
graph diameter (radius) in the auxiliary dataset Daux. For
the graph density, the property domain is [0.0,1.0]. In our
experiments, we consider four different bucketization schemes,
i.e., k ∈ {2,4,6,8}.
Competitors. To validate the effectiveness of our proposed
attack, we need to compare with two baseline attacks.

• Random Guessing (Random). The most straightforward
baseline is random guessing, which varies for different buck-
etization schemes. For instance, the attack accuracy of ran-
dom guessing for k = 2 and k = 8 are 0.5 and 0.125.

https://github.com/rusty1s/pytorch_geometric

• Directly Summarizing Auxiliary Dataset (Baseline). An-
other baseline attack is directly summarizing the properties
from the auxiliary dataset Daux instead of training a classi-
fier. Concretely, we calculate the average property values
from Daux, and use them for predicting the properties of the
target graphs.

Experimental Results. Figure 5 illustrates the attack perfor-
mance, where different rows represent different graph proper-
ties, and different columns represent different datasets. Due
to space limitation, we defer the results of graph diameter and
graph radius to Appendix C.1.

In general, the experimental results show that our attack
outperforms two baseline attacks in most of the settings. For
instance, when the bucketization scheme k = 2, on the num-
ber of nodes property, we can achieve an attack accuracy of
0.904 on the DD dataset for the DiffPool model, while the
attack accuracy of random guessing and summarizing aux-
iliary dataset baseline is 0.500 and 0.541, respectively. We
further observe that a larger bucketization scheme k leads
to worse attack accuracy. This is expected because larger k
requires higher granularity of graph structural information,
and is more difficult for the classifier to distinguish. In addi-
tion, we note that, in most of the cases, the attack accuracy
on the MeanPool model is worse than that of the other two
graph embedding models, and sometimes even close to that
of the random guessing baseline. This can be explained by
the fact that the MeanPool model directly averages all the
node embeddings, which might lose some graph structural
information.
Datasets Transferability. In previous experiments, we as-
sume the auxiliary dataset Daux comes from the same dis-
tribution as the target graphs. To relax this assumption, we
conduct additional experiments when Daux comes from dif-
ferent distribution than the target graphs. We evaluate the
transferability between OVCAR-8H (OVC) and MOLT-4H
(MOL), as well as between NCI1 and PC3 on MinCutPool
with k = 2. The experimental results in Figure 6 show that
our property inference attack is still effective when Daux and
the target graphs come from different distributions.

7.3 Subgraph Inference Attack
Evaluation Metrics. Recall that the subgraph inference at-
tack is a binary classification task; thus we use the AUC metric
to measure the attack performance, which is widely used to
measure the performance of binary classification in a range
of thresholds [2, 6, 16, 24, 40, 61]. The higher AUC value
implies better attack performance. An AUC value of 1 im-
plies maximum performance (true-positive rate of 1 with a
false-positive rate of 0) while an AUC value of 0.5 means
performance equivalent to random guessing.
Attack Setup. We conduct extensive experiments on five
graph datasets and three graph embedding models to evaluate
the effectiveness of our proposed attack. To obtain the sub-
graph, we rely on three graph sampling methods: Random

walk sampling, snowball sampling, and forest fire sampling.
We refer the readers to Appendix B for detailed descriptions of
these sampling methods. For each sampling method, we con-
sider four different sampling ratios, i.e., {0.2,0.4,0.6,0.8},
which determines how many nodes are contained in the sub-
graph. In practice, the sampling ratio is determined by the
size of the subgraph of interest. We use element-wise differ-
ence method to generate the feature vector χ. We generate
the same number of positive samples and negative samples in
both training and testing datasets to learn balanced model.
Competitor. Recall that we integrate a graph embedding
extractor in the attack model to transform the subgraph into
subgraph embedding in Section 5. The embedding extrac-
tor is jointly trained with the binary classifier in the attack
model. An alternative for subgraph inference is to generate
the subgraph embedding from the target model together with
the target graph embedding, and then train an isolated binary
classifier as attack model. To validate the necessity of inte-
grating embedding extractor in the attack model, we compare
with the baseline attack that obtains subgraph embeddings
from the target model.
Experimental Results. Figure 7 illustrates the attack perfor-
mance, where different rows represent different datasets, and
different columns represent different sampling methods. Due
to space limitation, we defer the results of other datasets to
Appendix C.2. The experimental results show that our attack
is effective in most of the settings, especially when the sam-
pling ratio is 0.8. For instance, we can achieve 0.982 attack
AUC on the DD dataset and MeanPool model with FireForest
sampling method. Besides, we observe that when the sam-
pling ratio decreases, the attack AUC decreases for most of
the settings. This is expected as the positive samples and the
negative samples tend to be more similar to each other on
smaller subgraphs, making the attack model more difficult to
distinguish between them. Despite this, our attack can still
achieve 0.859 attack AUC on ENSYMES and MeanPool with
Snowball when the sampling ratio is 0.2.

Comparing different graph embedding models, we further
observe that the subgraph inference attack performs the best
on the MeanPool model in most of the settings, which is
opposite to the property inference attack. We suspect this
is because DiffPool and MinCutPool decompose the graph
structure during their pooling process; thus, the subgraph as a
whole might never be seen by the target model. This makes it
harder for graph embedding matching to be effective.
Necessity of Embedding Extractor. Comparing with the
baseline, we observe that our subgraph inference attack con-
sistently outperforms the baseline attack in most of the cases,
especially when the sampling ratio is small. For instance,
on the DD dataset, when the sampling ratio is 0.2, our at-
tack achieves 0.821 AUC on MeanPool model and FireForest
sampling method, while the baseline attack achieves AUC of
0.515. We further observe that when the sampling ratio in-
creases, the baseline attack can gradually achieve comparable

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

D
D

A
tt

ac
k

A
U

C

RandomWalk

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 Snowball

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 FireForest

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

E
N

Z
Y

M
E

S
A

tt
ac

k
A

U
C

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

A
ID

S
A

tt
ac

k
A

U
C

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

MeanPool

MeanPool (Baseline)

DiffPool

DiffPool (Baseline)

MinCutPool

MinCutPool (Baseline)

Figure 7: [Higher means better attack performance.] Attack AUC for subgraph inference attack. Different rows and columns
represent different datasets and graph sampling methods. In each figure, different legends and groups stand for different graph
embedding models and different sampling ratios. We use element-wise difference method to generate the feature vector χ.

Table 2: Attack AUC for different feature construction methods in subgraph inference attack. The graph embedding model is
DiffPool and the graph sampling method is RandomWalk. Due to space limitation, we use Concat, EDist, and EDiff to represent
Concatenation, Euclidean Distance, and Element-wise Difference, respectively.

0.8 0.6 0.4 0.2
Dataset Concat EDist EDiff Concat EDist EDiff Concat EDist EDiff Concat EDist EDiff

DD 0.53 ± 0.01 0.81 ± 0.06 0.88 ± 0.01 0.51 ± 0.01 0.79 ± 0.04 0.87 ± 0.01 0.52 ± 0.01 0.79 ± 0.02 0.85 ± 0.01 0.50 ± 0.02 0.71 ± 0.08 0.80 ± 0.00

ENZYMES 0.49 ± 0.02 0.63 ± 0.10 0.88 ± 0.03 0.52 ± 0.03 0.71 ± 0.10 0.88 ± 0.03 0.54 ± 0.02 0.56 ± 0.07 0.86 ± 0.01 0.48 ± 0.02 0.53 ± 0.03 0.78 ± 0.01

AIDS 0.51 ± 0.01 0.53 ± 0.04 0.78 ± 0.04 0.55 ± 0.01 0.51 ± 0.02 0.76 ± 0.05 0.54 ± 0.01 0.51 ± 0.03 0.73 ± 0.06 0.56 ± 0.02 0.50 ± 0.00 0.76 ± 0.05

NCI1 0.51 ± 0.00 0.51 ± 0.02 0.70 ± 0.06 0.49 ± 0.02 0.52 ± 0.01 0.67 ± 0.06 0.50 ± 0.01 0.51 ± 0.01 0.64 ± 0.03 0.49 ± 0.01 0.51 ± 0.01 0.64 ± 0.00

OVCAR-8H 0.54 ± 0.01 0.63 ± 0.12 0.89 ± 0.02 0.50 ± 0.04 0.69 ± 0.09 0.88 ± 0.02 0.51 ± 0.03 0.74 ± 0.02 0.84 ± 0.01 0.54 ± 0.01 0.60 ± 0.13 0.82 ± 0.02

RW SB FF

R
W

S
B

F
F

0.881 0.888 0.917

0.882 0.877 0.891

0.899 0.896 0.917

DD

RW SB FF

R
W

S
B

F
F

0.879 0.901 0.888

0.864 0.854 0.863

0.846 0.894 0.865

ENZYMES

Figure 8: Sampling methods transferability for subgraph
inference attack. RW, SB, and FF are abbreviations for
RandomWalk, Snowball, and FireForest, respectively.

attack AUC as our attack. This is expected as distinguishing
between the positive subgraph and negative subgraph is much
easier when the sampling ratio is large.
Comparison of Feature Construction Methods. We pro-
pose three strategies to aggregate the graph embeddings of the
target graph and the subgraph of interest in the attack model
FAS, namely concatenation, element-wise difference, and Eu-
clidean distance, in Section 5. We now compare the perfor-

MP DP MCP

M
P

D
P

M
C

P

0.971 0.791 0.773

0.834 0.881 0.846

0.847 0.879 0.875

DD

MP DP MCP

M
P

D
P

M
C

P

0.978 0.777 0.874

0.919 0.879 0.874

0.905 0.852 0.877

ENZYMES

Figure 9: Embedding models transferability for subgraph
inference attack. MP, DP, and MCP are abbreviations for
MeanPool, DiffPool, and MinCutPool, respectively.

mance of different strategies. Table 2 shows the experimental
results on five datasets when the graph embedding model is
DiffPool and the graph sampling method is RandomWalk.

We observe that the element-wise difference method
achieves the best performance, while the concatenation
method has an attack AUC close to random guessing. This
indicates that the discrepancy information between two graph
embeddings (element-wise difference method) is more in-

NCI1 PC3

N
C

I1
P

C
3

0.974 0.971

0.957 0.976

MeanPool

NCI1 PC3

N
C

I1
P

C
3

0.718 0.747

0.677 0.789

DiffPool

NCI1 PC3

N
C

I1
P

C
3

0.848 0.853

0.845 0.892

MinCutPool

OVC MOL

O
V

C
M

O
L

0.958 0.985

0.950 0.994

MeanPool

OVC MOL

O
V

C
M

O
L

0.892 0.803

0.861 0.814

DiffPool

OVC MOL

O
V

C
M

O
L

0.750 0.708

0.729 0.758

MinCutPool

Figure 10: Dataset transferability for subgraph inference be-
tween OVCAR-8H (OVC) and MOLT-4H (MOL), as well as
between NCI1 and PC3.

formative than the plain graph embeddings (concatenation
method) in terms of subgraph inference attack. Note that the
Euclidean distance also implicitly captures the discrepancy
information of two graph embeddings, while it relies on one
scalar value and loses other rich discrepancy information.
Sampling Methods Transferability. So far, our experiments
use the same sampling method for the auxiliary graph to train
the attack model and the target graph to test the attack model.
We conduct additional experiments to show whether our attack
still works when the sampling methods are different. Figure 8
illustrates the experimental results on DD and ENZYMES
datasets. We use DiffPool as the graph embedding model and
adopt a sampling ratio of 0.8. As we can see, in most cases,
the sampling methods do not have a significant impact on the
attack performance.
Embedding Models Transferability. In previous experi-
ments, the architecture of the graph embedding extractor
in the attack model is the same as the target embedding
model. In practice, the model architecture of the target em-
bedding model might be unknown to the adversaries. To un-
derstand whether our attack still works when the architectures
are different, we conduct experiments on the DD and EN-
ZYMES datasets. Figure 9 illustrates the experimental results
of RandomWalk sampling method with a sampling ratio of
0.8. We observe that the attack performance slightly drops
when the model architectures are different. Despite this, we
can still achieve 0.773 attack AUC in the worse case.
Datasets Transferability. Similar to property inference at-
tack, to relax the assumption that Daux comes from the same
distribution of the target graphs, we conduct additional exper-
iments when Daux and the target graphs come from different
distributions. We experiment on the RandomWalk method
with a sampling ratio of 0.8. The experimental results in Fig-
ure 10 show that our subgraph inference attack is still effective
for dataset transfer.

7.4 Graph Reconstruction Attack
Evaluation Metrics. We evaluate the performance of graph
reconstruction from two perspectives:

Table 3: [Higher means better attack performance.] Attack
performance of graph reconstruction measured by graph iso-
morphism.

Dataset DiffPool MeanPool MinCutPool

AIDS 0.875 ± 0.003 0.794 ± 0.003 0.869 ± 0.002
ENZYMES 0.670 ± 0.019 0.653 ± 0.022 0.704 ± 0.012

NCI1 0.752 ± 0.005 0.771 ± 0.010 0.693 ± 0.007

• Graph Isomorphism. The graph isomorphism compares
the structure of the reconstructed graph GR with the target
graph GT , and determines their similarity. The graph isomor-
phism problem is well-known to be intractable in polyno-
mial time; thus, approximate algorithms such as Weisfeiler-
Lehman (WL) algorithm are widely used for addressing
it [36, 44, 59]. The general idea of WL algorithm is to iter-
atively calculate the WL graph kernel of two graphs. We
normalize the WL graph kernel in the range of [0.0, 1.0],
and a WL graph kernel of 1.0 means two graphs perfectly
match. We adopt the DGL implementation of WL algorithm
in our experiments.11

• Macro-level Graph Statistics. Recall that the objective of
the graph reconstruction attack is to generate a graph GR
that has similar graph statistics with the target graph GT . In
practice, there are a plethora of graph structural statistics to
analyze a graph. In this paper, we adopt four widely used
graph statistics: Degree distribution, local clustering coef-
ficient (LCC), betweenness centrality (BC), and closeness
centrality (CC). We refer the readers to Appendix B for
detailed descriptions of these statistics.

Note that the number of nodes in GR might be different
from the target graph GT due to the graph auto-encoder archi-
tecture, and there are no node orderings imposed for GR and
GT ; thus we cannot directly compare the node-level graph
statistics including LCC, CC, and BC. To address this issue,
we bucketize the statistic domain into 10 bins and measure
their distributions. For each graph statistic, we use three met-
rics to measure the distribution similarity between the target
graph GT and the reconstructed graph GR: Cosine similarity,
Wasserstein distance, and Jensen-Shannon (JS) divergence.
Intuitively, higher cosine similarity and lower Wasserstein
distance/JS divergence mean better attack performance. The
ranges of cosine similarity, Wasserstein distance, and JS di-
vergence are [−1.0,1.0], [0.0,1.0], and [0.0,1.0], respectively.

Attack Setup. Recall that both space and time complexity
of the graph matching algorithm are O(n4), we conduct our
experiments on three small datasets in Table 1, i.e., AIDS,
ENZYMES, and NCI1, and three graph embedding models.
We run all the experiments five times with the mean and
standard deviation reported.

11https://github.com/InkToYou/WL-Kernel-DGL

https://github.com/InkToYou/WL-Kernel-DGL

Table 4: [Higher means better attack performance.] Attack
performance of graph reconstruction measured by macro-level
graph statistics, the similarity of which is measured by cosine
similarity.

Dataset Target Model Degree Dist. LCC Dist. BC Dist. CC Dist.

A
ID

S

MeanPool 0.651 ± 0.001 0.999 ± 0.001 0.987 ± 0.001 0.876 ± 0.002

DiffPool 0.894 ± 0.001 0.999 ± 0.001 0.983 ± 0.001 0.787 ± 0.002

MinCutPool 0.888 ± 0.003 0.999 ± 0.001 0.983 ± 0.001 0.785 ± 0.006

E
N

Z
Y

M
E

S

MeanPool 0.450 ± 0.070 0.646 ± 0.005 0.959 ± 0.001 0.516 ± 0.037

DiffPool 0.519 ± 0.007 0.661 ± 0.008 0.958 ± 0.001 0.504 ± 0.005

MinCutPool 0.467 ± 0.019 0.490 ± 0.009 0.916 ± 0.001 0.414 ± 0.009

N
C

I1

MeanPool 0.736 ± 0.003 0.999 ± 0.001 0.877 ± 0.001 0.402 ± 0.001

DiffPool 0.633 ± 0.002 0.999 ± 0.001 0.877 ± 0.001 0.495 ± 0.002

MinCutPool 0.570 ± 0.002 0.999 ± 0.001 0.877 ± 0.001 0.496 ± 0.001

Experimental Results. Table 3 and Table 4 illustrate the
attack performance in terms of graph isomorphism and macro-
level graph statistics (measured by cosine similarity), respec-
tively. Due to space limitation, we defer the results of the
macro-level graph statistics measured by Wasserstein distance
and JS divergence to Appendix C.3. In general, our attack
achieves strong performance. For instance, the WL graph
kernel on AIDS and DiffPool achieves 0.875. Besides, the
cosine similarity of the betweenness centrality distribution is
larger than 0.85 for all the settings. We can also achieve 0.99
cosine similarity for local clustering coefficient distribution
for the AIDS and NCI1 datasets. For degree distribution and
closeness centrality distribution, the attack performance is
slightly worse; however, we can still achieve cosine similarity
larger than or close to 0.5.

To investigate the impact of the quality of the auto-encoder
on the attack performance, we conduct additional experiments
on the auto-encoders trained in different epochs. Due to space
limitation, we defer the experimental results to Appendix C.3.

8 Defenses
Graph Embedding Perturbation. A commonly used de-
fense mechanism for inference attacks is adding perturbation
to the output of the model [62]. In this paper, we propose
to add perturbations to the target graph embedding HGT to
defend our proposed inference attacks. Formally, given the
target graph embedding HGT , the data owner only shares a
noisy version of graph embedding ˜HGT = HGT +Lap(β) to
the third party, where Lap(β) denotes a random variable sam-
pled from the Laplace distribution with scale parameter β;
that is, Pr [Lap(β) = x] = 1

2β
e−|x|/β. Notice that adding noise

to the graph embedding vector may destroy the graph struc-
tural information, thus affect the normal tasks such as graph
classification. Therefore, we need to choose a moderate level
of noise to tradeoff the defense effectiveness and the perfor-
mance of the normal tasks.

Defense Evaluation Setup. We conduct experiments to val-
idate the effectiveness of our proposed defense against all
the inference attacks, as well as the impact on normal graph
classification task. For property inference attack, we eval-
uate the performance of graph density with bucketization
scheme k = 2. For subgraph inference attack, we consider the
RandomWalk sampling method with sampling ratio of 0.8.
We conduct our experiments on DD and ENZYMES datasets
and three graph embedding models. Due to space limitation,
we refer the readers to Appendix C.4 for experimental results
for other datasets and graph reconstruction attack.
Defense Evaluation Results. Figure 11 illustrates the ex-
perimental results, where the first and second column rep-
resents the attack performance of property inference attack
and subgraph inference attack respectively, the last column
represents the accuracy of the normal graph classification task.
In each figure, the x-aixs stands for the scaling parameter β of
Laplace noise, where larger β means larger noise. We observe
that when the noise level increases, the attack performance
for both property inference and subgraph inference attack
decreases. This is expected since more noise will hide more
structural information contained in the graph embedding. On
the other hand, the accuracy of the graph classification tasks
will also decrease when the noise level increase. To defend
against the inference attacks while preserving the utility for
normal tasks, one needs to carefully choose the noise level.
For instance, when we set the standard deviation of Laplace
noise to 2, the performance of subgraph inference attack sig-
nificantly drops while the graph classification accuracy only
slightly decreases.

9 Related Work
In this section, we review the research work close to our
proposed attacks. We refer the readers to [18, 63] for in-depth
overview of different GNN models, and [8, 25, 50, 57] for
comprehensive surveys of existing adversarial attacks and
defense strategies on GNNs.
Causative Attacks on GNNs. Causative attack allows at-
tackers to manipulate training dataset in order to change the
parameters of the target model. In the context of causative
attacks on GNNs, Zügner et al. [64] was the first research
work that introduced unnoticeable adversarial perturbations
targeting the node’s features and the graph structure to re-
duce the accuracy of node classification via graph convolu-
tional networks. Following this direction, researchers inves-
tigated different adversarial attack strategies (i.e. edge/node-
level/structure/attribute perturbation) to achieve various attack
objectives, such as reducing the accuracy of node classifica-
tion [4, 13, 32, 51, 55, 58], link prediction [4, 31], graph
classification [8, 56], etc. Our attacks do not tamper with the
training data that is used to construct the GNN models.
Exploratory Attacks on GNNs. Exploratory attack does
not change the parameters of the target model. Instead, the
attacker sends new data to the target model and observes

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
D

Property Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Subgraph Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Graph Classification

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
N

Z
Y

M
E

S

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 100.1

0.2

0.3

0.4

0.5

0.6

MeanPool DiffPool MinCutPool

Figure 11: Graph embedding perturbation defense on the DD and ENZYMES datasets (different rows). The first two columns
represent the attack performance of property inference and subgraph inference respectively, the last column represents the
accuracy of normal graph classification task. In each figure, the x-axis stands for the scaling parameter β for Laplace noise, where
larger β means higher noise level. The y-axis stands for the attack performance/normal graph classification accuracy.

the model’s decisions on these carefully crafted input data.
However, graph-based machine learning under adversarial
exploratory setting is much less explored. In particular, only
a few studies [11, 22, 54] focused on exploratory attacks on
GNNs. For instance, He et al. [22] proposed link stealing at-
tack to infer, from the outputs of a GNN model, whether there
exists a link between any pair of nodes in the graph used to
train the model. Wu et al. [54] discussed GNN model extrac-
tion attack, given various levels of background knowledge,
by gathering both the input-output query pairs and the graph
structure to reconstruct a duplicated model. Duddu et al. [11]
proposed a graph reconstruction attack against node embed-
dings; however, there are several difference from our graph
reconstruction attack. First, the task is different, [11] aims to
reconstruct a graph from a set of node embeddings, while ours
is to reconstruct the graph from a graph embedding. Also, the
node embeddings targeted by [11] are generated from tradi-
tional node embedding method such as Deepwalk [38] and
node2vec [19], while ours focus on state-of-the-art GNN. In
addition, our threat model is more general and practical as
we are only given one embedding vector of the target graph
instead of all embeddings of all the nodes. In this sense, our
adversary has much less background knowledge than that of
[11]. Besides, their method uses the non-learnable dot product
as the decoder. Our approach leverages a learnable decoder
and can be further fine-tuned to enhance graph reconstruction
performance.

Defense of Adversarial Attacks on GNNs. The emerging
attacks on GNNs leads to an arm race. To mitigate those at-
tacks, several defense strategies (e.g. graph sanitization [55],
adversarial training [9, 15] and certification of robustness [5])
have been proposed. One important direction of those defense
strategies is to reduce the sensitivity of GNNs via adversar-
ial training so that the train GNNs are robust to structure
perturbation [9] and attribution perturbation [15]. Beside, ro-

bustness certification [5] is an emerging research direction
that measure and reason the safety of graph neural networks
under adversarial perturbation. Note that aforementioned de-
fense mechanisms focus on mitigating causative attacks on
GNNs, hence they are are not design to protect GNNs from
exploratory attacks.

10 Conclusion
In this paper, we investigate the information leakage of graph
embedding. Concretely, we propose three different attacks
to extract information from the target graph given the graph
embedding. First, we can successfully infer graph properties,
such as the number of nodes, the number of edges, and graph
density, of the target graph. Second, given a subgraph of in-
terest and the graph embedding, we can determine with high
confidence that whether the subgraph is contained in the tar-
get graph. Third, we propose a novel graph reconstruction
attack that can reconstruct a graph that has similar graph statis-
tics with the target graph. We further propose an embedding
perturbation based defense to mitigate the inference attacks
without noticeable accuracy degradation.

Acknowledgments
We thank the anonymous reviewers for their constructive
feedback. This work is partially funded by the Helmholtz
Association within the project “Trustworthy Federated Data
Analytics” (TFDA) (funding number ZT-I-OO1 4).

References
[1] James Atwood and Don Towsley. Diffusion-Convolutional Neural

Networks. In NIPS, pages 1993–2001, 2016.

[2] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang.
walk2friends: Inferring Social Links from Mobility Profiles. In CCS,
pages 1943–1957, 2017.

[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral
Clustering with Graph Neural Networks for Graph Pooling. In ICML,
pages 874–883, 2020.

[4] Aleksandar Bojchevski and Stephan Günnemann. Adversarial Attacks
on Node Embeddings via Graph Poisoning. In ICML, pages 695–704,
2019.

[5] Aleksandar Bojchevski and Stephan Günnemann. Certifiable Robust-
ness to Graph Perturbations. In NeurIPS, pages 8317–8328, 2019.

[6] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias
Humbert, and Yang Zhang. When Machine Unlearning Jeopardizes
Privacy. In CCS, 2021.

[7] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the
equivalence between graph isomorphism testing and function approxi-
mation with GNNs. In NeurIPS, pages 15868–15876, 2019.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song. Adversarial Attack on Graph Structured Data. In ICML,
pages 1123–1132, 2018.

[9] Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and Dan Wang. Ad-
versarial Training Methods for Network Embedding. In WWW, pages
329–339, 2019.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional Neural Networks on Graphs with Fast Localized Spectral
Filtering. In NIPS, pages 3837–3845, 2016.

[11] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying
Privacy Leakage in Graph Embedding. CoRR abs/2010.00906, 2020.

[12] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking Graph Neural Networks.
CoRR abs/2003.00982, 2020.

[13] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evan-
gelos E. Papalexakis. All You Need Is Low (Rank): Defending Against
Adversarial Attacks on Graphs. In WSDM, pages 169–177, 2020.

[14] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A
Fair Comparison of Graph Neural Networks for Graph Classification.
In ICLR, 2020.

[15] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph Adver-
sarial Training: Dynamically Regularizing Based on Graph Structure.
IEEE Transactions on Knowledge and Data Engineering, 2019.

[16] Matt Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and
Thomas Ristenpart. Privacy in Pharmacogenetics: An End-to-End Case
Study of Personalized Warfarin Dosing. In USENIX Security, pages
17–32, 2014.

[17] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[18] Palash Goyal and Emilio Ferrara. Graph embedding techniques, ap-
plications, and performance: A survey. Knowledge Based Systems,
2018.

[19] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning
for Networks. In KDD, pages 855–864, 2016.

[20] William L. Hamilton. Graph Representation Learning. Morgan and
Claypool, 2020.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
Representation Learning on Large Graphs. In NIPS, pages 1025–1035,
2017.

[22] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and
Yang Zhang. Stealing Links from Graph Neural Networks. In USENIX
Security, pages 2669–2686, 2021.

[23] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin,
and Nicolas Papernot. High Accuracy and High Fidelity Extraction of
Neural Networks. In USENIX Security, pages 1345–1362, 2020.

[24] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and
Neil Zhenqiang Gong. MemGuard: Defending against Black-Box
Membership Inference Attacks via Adversarial Examples. In CCS,
pages 259–274, 2019.

[25] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial

Attacks and Defenses on Graphs: A Review and Empirical Study. CoRR
abs/2003.00653, 2020.

[26] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
Intelligence Between the Cloud and Mobile Edge. In ASPLOS, pages
615–629, 2017.

[27] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and
Patrick Riley. Molecular Graph Convolutions: Moving Beyond Finger-
prints. Journal of Computer-Aided Molecular Design, 2016.

[28] Thomas N. Kipf and Max Welling. Semi-Supervised Classification
with Graph Convolutional Networks. In ICLR, 2017.

[29] Nicholas D. Lane and Petko Georgiev. Can Deep Learning Revolution-
ize Mobile Sensing? In HotMobile, pages 117–122, 2015.

[30] Xiaoxiao Li, João Saúde, Prashant Reddy, and Manuela Veloso. Classi-
fying and Understanding Financial Data Using Graph Neural Network.
In KDF, 2020.

[31] Wanyu Lin, Shengxiang Ji, and Baochun Li. Adversarial Attacks on
Link Prediction Algorithms Based on Graph Neural Networks. In
ASIACCS, pages 370–380, 2020.

[32] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards More Practical
Adversarial Attacks on Graph Neural Networks. In NeurIPS, 2020.

[33] Eric Malmi and Ingmar Weber. You Are What Apps You Use: Demo-
graphic Prediction Based on User’s Apps. In ICWSM, pages 635–638,
2016.

[34] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting Unintended Feature Leakage in Collaborative
Learning. In S&P, pages 497–512, 2019.

[35] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting,
Petra Mutzel, and Marion Neumann. TUDataset: A collection of
benchmark datasets for learning with graphs. In GRL, 2020.

[36] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and
Leman Go Neural: Higher-Order Graph Neural Networks. In AAAI,
pages 4602–4609, 2019.

[37] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards
Reverse-Engineering Black-Box Neural Networks. In ICLR, 2018.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online
Learning of Social Representations. In KDD, pages 701–710, 2014.

[39] Trang Pham, Truyen Tran, Dinh Q. Phung, and Svetha Venkatesh. Col-
umn Networks for Collective Classification. In AAAI, pages 2485–2491,
2017.

[40] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro.
Knock Knock, Who’s There? Membership Inference on Aggregate
Location Data. In NDSS, 2018.

[41] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and
Jie Tang. DeepInf: Social Influence Prediction with Deep Learning. In
KDD, pages 2110–2119, 2018.

[42] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz,
and Yang Zhang. Updates-Leak: Data Set Inference and Reconstruction
Attacks in Online Learning. In USENIX Security, pages 1291–1308,
2020.

[43] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The Graph Neural Network Model. IEEE
Transactions on Neural Networks, 2009.

[44] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-Lehman Graph
Kernels. Journal of Machine Learning Research, 2011.

[45] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership Inference Attacks Against Machine Learning Models. In
S&P, pages 3–18, 2017.

[46] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Gen-

eration of Small Graphs Using Variational Autoencoders. In ICANN,
pages 412–422, 2018.

[47] Congzheng Song and Ananth Raghunathan. Information Leakage in
Embedding Models. In CCS, pages 377–390, 2020.

[48] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine
Learning Models that Remember Too Much. In CCS, pages 587–601,
2017.

[49] Congzheng Song and Vitaly Shmatikov. Overlearning Reveals Sensitive
Attributes. In ICLR, 2020.

[50] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S. Yu, Lifang
He, and Bo Li. Adversarial Attack and Defense on Graph Data: A
Survey. CoRR abs/1812.10528, 2018.

[51] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant
Honavar. Non-target-specific Node Injection Attacks on Graph Neu-
ral Networks: A Hierarchical Reinforcement Learning Approach. In
WWW, pages 673–683, 2020.

[52] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. LINE: Large-scale Information Network Embedding. In
WWW, pages 1067–1077, 2015.

[53] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph Attention Networks.
In ICLR, 2018.

[54] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Model
Extraction Attacks on Graph Neural Networks: Taxonomy and Real-
ization. CoRR abs/2010.12751, 2020.

[55] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu,
and Liming Zhu. Adversarial Examples for Graph Data: Deep Insights
into Attack and Defense. In IJCAI, pages 4816–4823, 2019.

[56] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph Backdoor.
In USENIX Security, 2021.

[57] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang,
and Anil K. Jain. Adversarial Attacks and Defenses in Images, Graphs
and Text: A Review. International Journal of Automation and Comput-
ing, 2020.

[58] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng,
Mingyi Hong, and Xue Lin. Topology Attack and Defense for Graph
Neural Networks: An Optimization Perspective. In IJCAI, pages 3961–
3967, 2019.

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
Powerful are Graph Neural Networks? In ICLR, 2019.

[60] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L.
Hamilton, and Jure Leskovec. Hierarchical Graph Representation
Learning with Differentiable Pooling. In NeurIPS, pages 4805–4815,
2018.

[61] Yang Zhang, Mathias Humbert, Bartlomiej Surma, Praveen Manoha-
ran, Jilles Vreeken, and Michael Backes. Towards Plausible Graph
Anonymization. In NDSS, 2020.

[62] Zhikun Zhang, Tianhao Wang, Jean Honorio, Ninghui Li, Michael
Backes, Shibo He, Jiming Chen, and Yang Zhang. PrivSyn: Differ-
entially Private Data Synthesis. In USENIX Security, pages 929–946,
2021.

[63] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learning on Graphs:
A Survey. IEEE Transactions on Knowledge and Data Engineering,
2020.

[64] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adver-
sarial Attacks on Neural Networks for Graph Data. In KDD, pages
2847–2856, 2018.

A Notations
The frequently used notations used in this paper is summa-
rized in Table 5.

Table 5: Summary of the notations used in this paper.
Notation Description
G = 〈V ,A,X〉 Graph
u,v ∈ V Nodes in G
n = |V | Number of nodes
dX / dH Dimension of attributes / embeddings
A ∈ {0,1}n×n Adjacency matrix of G
X ∈ Rn×dX Attributes associated with V
Nu Neighborhood nodes of u
GS Subgraph of G
GT / Gaux Target / auxiliary graph
Daux Auxiliary dataset (Gaux ∈Daux)
Hu / HG Node / graph embedding
FT / FA Target / attack model
FAP Attack model of property inference
FAS Attack model of subgraph inference
FAR Attack model of graph reconstruction
Φ Aggregation operation
Ψ Updating operation
Σ Graph pooling operation
m Message received from neighbors
χ Feature vector of subgraph inference

B Experimental Details
B.1 Graph Sampling Methods
• Random Walk Sampling. The main idea of RandomWalk

is to randomly pick a starting node, and then simulate a ran-
dom walk on the graph until we obtain the desired number
of nodes.

• Snowball Sampling. The main idea of Snowball is to ran-
domly select a set of seed nodes, and then iteratively select
a set of neighboring nodes of the selected nodes until we
obtain the desired number of nodes.

• Forest Fire Sampling. The main idea of FireForest is to
randomly select a seed node, and begin “burning” outgoing
edges and the corresponding nodes. Here, a node “burns” its
outgoing edges and the corresponding nodes means these
edges and nodes are sampled. If an edge gets burned, the
node at the other endpoint gets a chance to burn its own
edges, and so on recursively until we obtain the desired
number of nodes.

B.2 Macro-level Graph Statistics
• Degree Distribution. The degree distribution P(k) of a

graph is defined to be the fraction of nodes in the graph
with degree k. It is the most widely used graph statistic to
quantify a graph.

• Local Clustering Coefficient (LCC). The LCC of a node
quantifies how close its neighbors are to being a cluster. It
is primarily introduced to determine whether a graph is a
small-world network.

• Betweenness Centrality (BC). The betweenness central-
ity is a measure of centrality in a graph based on the shortest

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

D
ia

m
et

er
)

DD

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
ENZYMES

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
AIDS

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
NCI1

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
OVCAR-8H

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

R
ad

iu
s)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

MeanPool DiffPool MinCutPool Random Baseline

Figure 12: [Higher means better attack performance.] Attack accuracy of additional properties for property inference. Different
columns represent different datasets, and different rows represent different graph properties to be inferred. In each figure, different
legends stand for different graph embedding models, different groups stand for different bucketization schemes. The Random
and Baseline method represent the random guessing and summarizing auxiliary dataset baseline, respectively.

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

N
C

I1
A

tt
ac

k
A

U
C

RandomWalk

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 Snowball

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 FireForest

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

O
V

C
A

R
-8

H
A

tt
ac

k
A

U
C

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

MeanPool

MeanPool (Baseline)

DiffPool

DiffPool (Baseline)

MinCutPool

MinCutPool (Baseline)

Figure 13: [Higher means better attack performance.] Attack AUC for subgraph inference attack. Different rows represent
different datasets, and different columns represent different graph sampling methods. In each figure, different legends stand for
different graph embedding models, different groups stand for different sampling ratios.

paths. For every pair of nodes in a graph, there exists at
least one shortest path between the nodes such that either
the number of edges that the path passes through is min-
imized. The betweenness centrality for each node is the
number of these shortest paths that pass through the node.

• Closeness Centrality (CC). The CC of a node is a mea-
sure of centrality in a graph, which is calculated as the
reciprocal of the sum of the length of the shortest paths be-
tween the node and all other nodes in the graph. Intuitively,
the more central a node is, the closer it is to all other nodes.

C Additional Experimental Results
C.1 Property Inference Attack
Additional Properties. Figure 12 illustrates the attack per-
formance on the graph diameter and the graph radius prop-
erties. The experimental results show that our attack is still

effective on these two properties in most of the settings. The
conclusions are consistent with that of Section 7.2.

C.2 Subgraph Inference Attack
Addtional Datasets. Figure 13 illustrates the comparison
with baseline subgraph inference attacks on the NCI1 and
OVCAR-8H datasets. The conclusions are consistent with
that of Section 7.3.

C.3 Graph Reconstruction Attack
Additional Metrics. Table 6 and Table 7 illustrate the attack
performance in terms of macro-level graph statistics mea-
sured by Wasserstein distance and JS divergence, respectively.
The experimental results show that our graph reconstruction
achieves small Wasserstein distance and JS divergence for
most of the settings, indicating our graph reconstruction attack
is effective.

10 20 30 40 50 60 70 80 900.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
os

in
e

S
im

ila
ri

ty
MeanPool

10 20 30 40 50 60 70 80 900.5
0.6
0.7
0.8
0.9
1.0
1.1 DiffPool

10 20 30 40 50 60 70 80 900.5
0.6
0.7
0.8
0.9
1.0
1.1 MinCutPool

Degree Dist. LCC Dist. BC Dist. CC Dist. Isomorphism

Figure 14: Impact of the quality of graph auto-encoder on the AIDS dataset.

Table 6: [Lower means better attack performance.] Attack
performance of graph reconstruction measured by macro-
level graph statistics, the similarity of which is measured by
Wasserstein distance.

Dataset Target Model Degree Dist. LCC Dist. BC Dist. CC Dist.

A
ID

S

DiffPool 0.040 ± 0.001 0.055 ± 0.002 0.011 ± 0.000 0.038 ± 0.001

MeanPool 0.073 ± 0.000 0.020 ± 0.001 0.027 ± 0.001 0.067 ± 0.001

MinCutPool 0.046 ± 0.000 0.067 ± 0.002 0.012 ± 0.000 0.047 ± 0.001

E
N

Z
Y

M
E

S

DiffPool 0.125 ± 0.004 0.201 ± 0.009 0.039 ± 0.001 0.258 ± 0.005

MeanPool 0.060 ± 0.006 0.188 ± 0.018 0.039 ± 0.001 0.086 ± 0.009

MinCutPool 0.085 ± 0.006 0.199 ± 0.005 0.040 ± 0.003 0.171 ± 0.013

N
C

I1

DiffPool 0.063 ± 0.001 0.091 ± 0.004 0.056 ± 0.001 0.084 ± 0.003

MeanPool 0.045 ± 0.001 0.049 ± 0.004 0.062 ± 0.001 0.067 ± 0.001

MinCutPool 0.087 ± 0.000 0.119 ± 0.003 0.055 ± 0.001 0.138 ± 0.001

Table 7: [Lower means better attack performance.] Attack
performance of graph reconstruction measured by macro-
level graph statistics, the similarity of which is measured by
JS divergence.

Dataset Target Model Degree Dist. LCC Dist. BC Dist. CC Dist.

A
ID

S

DiffPool 0.120 ± 0.003 0.052 ± 0.002 0.029 ± 0.001 0.080 ± 0.005

MeanPool 0.253 ± 0.001 0.019 ± 0.000 0.056 ± 0.002 0.132 ± 0.004

MinCutPool 0.136 ± 0.000 0.068 ± 0.003 0.029 ± 0.001 0.106 ± 0.001

E
N

Z
Y

M
E

S

DiffPool 0.341 ± 0.007 0.279 ± 0.012 0.071 ± 0.006 0.540 ± 0.014

MeanPool 0.201 ± 0.015 0.213 ± 0.009 0.073 ± 0.003 0.165 ± 0.019

MinCutPool 0.280 ± 0.004 0.248 ± 0.003 0.073 ± 0.006 0.354 ± 0.028

N
C

I1

DiffPool 0.210 ± 0.001 0.103 ± 0.002 0.093 ± 0.003 0.206 ± 0.006

MeanPool 0.159 ± 0.004 0.048 ± 0.003 0.105 ± 0.001 0.149 ± 0.003

MinCutPool 0.275 ± 0.000 0.160 ± 0.003 0.085 ± 0.001 0.345 ± 0.005

Impact of Graph Auto-encoder. To investigate the impact
of the quality of the graph auto-encoder on the attack per-
formance, we conduct additional experiments on the graph
auto-encoders trained with different epochs. Figure 14 shows
the experimental results. We observe that with the number of
epochs increases, our attack performance increases, indicating
the quality of the graph auto-encoder has positive impact on
our attack. When the number of epochs exceeds 10, the at-
tack performance remains unchanged for most of the settings.
Thus, we train the graph auto-encoder for 10 epochs in our
experiments.

0 3 6 9 12 15 180
2
4
6
8

10
12
14

N
um

b
er

of
N

od
es Target Graph

Reconstructed Graph

Degree Distribution

0.0 0.2 0.4 0.6 0.8 1.00
3
6
9

12
15
18
21

N
um

b
er

of
N

od
es

LCC Distribution

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

N
um

b
er

of
N

od
es

CC Distribution

0.0 0.2 0.4 0.6 0.8 1.00
3
6
9

12
15
18
21

N
um

b
er

of
N

od
es

BC Distribution

Figure 15: Visualization of macro-level graph statistic distri-
bution for graph reconstruction attack on the AIDS dataset.

Visualization. To better illustrate the effectiveness of our
graph reconstruction attack on preserving the macro-level
graph statistics, we provide a distribution visualization of
the AIDS dataset in Figure 15. We experiment on the
MinCutPool model. The visualization results show that our
graph reconstruction attack can effectively preserve the macro-
level graph statistics.

C.4 Defense
Additional Datasets. Figure 16 illustrates the defense per-
formance on the ADIS and OVCAR-8H datasets for property
inference and subgraph inference attack. The conclusions are
consistent with that of Section 8 for these datasets.
Defense against Graph Reconstruction. Figure 17 illus-
trates the defense performance for graph reconstruction attack.
The experimental results show that our defense mechanism is
still effective for graph reconstruction attack.

D Impact of Node Features
To evaluate the impact of node features, we conduct additional
experiments on graphs without node features. Concretely, for
each dataset in Table 1, we replace all its original node fea-
tures with one-hot encodings of node degrees. This follows
the setting of [59] which aims to investigate the expressive-
ness of graph structure. Figure 18 shows the experimental
results for the subgraph inference attack. The experimental
results show that the attack performance of graphs with and
without node features is similar for most of the settings, indi-
cating the robustness of our subgraph inference attack.

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ID

S
Property Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Subgraph Inference

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0
Graph Classification

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
V

C
A

R
-8

H

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

MeanPool DiffPool MinCutPool

Figure 16: Graph embedding perturbation defense on the AIDS and OVCAR-8H datasets. The first and second column represents
the attack performance of property inference and subgraph inference respectively, the last column represents the accuracy of
normal graph classification task. In each figure, the x-axis stands for the scaling parameter β for Laplace noise, where larger β

means higher noise level. The y-axis stands for the attack performance/normal graph classification accuracy.

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

D
is

t.

AIDS

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0 ENZYMES

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0 NCI1

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

G
ra

ph
Is

om
or

ph
is

m

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

MeanPool DiffPool MinCutPool

Figure 17: Graph embedding perturbation defense against the graph reconstruction attack. In each figure, the x-axis stands for
the scaling parameter β for Laplace noise, where larger β means higher noise level. The y-axis stands for the cosine similarity of
degree distribution and graph isomorphism, respectively.

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
U

C
(R

an
do

m
W

al
k)

DD

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 ENZYMES

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 AIDS

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 NCI1

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 OVCAR-8H

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
U

C
(S

no
w

ba
ll)

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
U

C
(F

ir
eF

or
es

t)

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

MeanPool

MeanPool (No Feat.)

DiffPool

DiffPool (No Feat.)

MinCutPool

MinCutPool (No Feat.)

Figure 18: Comparison of attack AUC between graphs with and without node features for subgraph inference attack.

	Introduction
	Preliminaries
	Notations
	Graph Neural Network
	Message Passing
	Graph Pooling

	Threat Model and Attack Taxonomy
	Motivation
	Threat Model
	Attack Taxonomy

	Property Inference Attack
	Attack Overview
	Attack Model FAP

	Subgraph Inference Attack
	Attack Overview
	Attack Model FAS

	Graph Reconstruction Attack
	Attack Overview
	Attack Model FAR

	Evaluation
	Experimental Setup
	Property Inference Attack
	Subgraph Inference Attack
	Graph Reconstruction Attack

	Defenses
	Related Work
	Conclusion
	Notations
	Experimental Details
	Graph Sampling Methods
	Macro-level Graph Statistics

	Additional Experimental Results
	Property Inference Attack
	Subgraph Inference Attack
	Graph Reconstruction Attack
	Defense

	Impact of Node Features

