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Abstract
In differential privacy (DP), a challenging problem is to gen-
erate synthetic datasets that efficiently capture the useful in-
formation in the private data. The synthetic dataset enables
any task to be done without privacy concern and modification
to existing algorithms. In this paper, we present PrivSyn, the
first automatic synthetic data generation method that can han-
dle general tabular datasets (with 100 attributes and domain
size > 2500). PrivSyn is composed of a new method to auto-
matically and privately identify correlations in the data, and a
novel method to generate sample data from a dense graphic
model. We extensively evaluate different methods on multiple
datasets to demonstrate the performance of our method.

1 Introduction

Differential privacy (DP) [21] has been accepted as the de
facto notion for protecting privacy. Companies and govern-
ment agencies use DP for privacy-preserving data analysis.
Uber implements Flex [30] that answers data SQL queries
with DP. LinkedIn builds Pinot [45], a DP platform that en-
ables analysts to gain insights about its members’ content
engagements. Within the government, the US census bureau
plans to publish the 2020 census statistics with DP [5].

Previous work on DP mostly focuses on designing tailored
algorithms for specific data analysis tasks. This paradigm is
time consuming, requires a lot of expertise knowledge, and
is error-prone. For example, many algorithms have been pro-
posed for mining frequent itemset [34, 38, 50]. Some of them
incorrectly use the Sparse Vector Technique (SVT) and results
in non-private algorithm being incorrectly proven to satisfy
DP, see, e.g., [40] for an analysis of incorrect usage of SVT.
To answer SQL queries under the constraint of DP, the SQL
engine needs to be patched [30]. For another example, to train
a differentially private deep neural network, the stochastic gra-
dient descent step is modified [3]. Moreover, this paradigm
does not scale: more tasks lead to worse privacy guarantee as
each task reveals more information about the private data.

One promising solution to address this problem is gen-
erating a synthetic dataset that is similar to the private
dataset while satisfying differential privacy. As additional
data analysis tasks performed on the published dataset are
post-processing, they can be performed without additional
privacy cost. Furthermore, existing algorithms for performing
data analysis do not need to be modified.

The most promising existing method for private genera-
tion of synthetic datasets uses probabilistic graphical models.
PrivBayes [53] uses a Bayesian network. It first privately de-
termines the network structure, then obtains noisy marginals
for the Conditional Probability Distribution of each node.
More recently, PGM, which uses Markov Random Fields,
was proposed in [41]. In 2018, NIST hosted a Differential
Privacy Synthetic Data Challenge [43], PGM achieves the
best result. Approaches that do not use probabilistic graphical
models, such as [4, 11, 13, 27–29, 46, 49, 54], either are com-
putationally inefficient or have poor empirical performance.

PrivBayes and PGM have two limitations. First, as a graph-
ical model aims to provide a compact representation of joint
probability distributions, it is sparse by design. Once a struc-
ture is fixed, it imposes conditional independence assumptions
that may not exist in the dataset. Second, since each model is
sparse, the structure is data dependent and finding the right
structure is critically important for the utility. Bayesian Net-
works are typically constructed by iterative selection using
mutual information metrics. However, mutual information
has high sensitivity, and cannot be estimated accurately under
DP. PrivBayes introduces a low-sensitivity proxy for mutual
information, but it is slow (quadratic to the number of users
in the dataset) to compute. In [41], no method for automati-
cally determining the graph structure is provided. In the NIST
challenge, manually constructed graph networks are used for
PGM.

Our Contributions. In this paper, we propose PrivSyn, for
differentially private synthetic data generation. The first novel
contribution is that, instead of using graphical models as the
summarization/representation of a dataset, we propose to use
a set of large number of low-degree marginals to repre-



sent a dataset. For example, in the experiments, given around
100 attributes, our method uses all one-way marginals and
around 500 two-way marginals. A two-way marginal (speci-
fied by two attributes) is a frequency distribution table, show-
ing the number of records with each possible combination of
values for the two attributes. At a high level, graphical models
can be viewed as a parametric approach to data summariza-
tion, and our approach can be viewed as a non-parametric one.
The advantage of our approach is that it makes weak assump-
tions about the conditional independence among attributes,
and simply tries to capture correlation relationships that are
in the dataset.

This method is especially attractive under DP for several
reasons. First, since counting the number of records has a
low sensitivity of 1, counting queries can be answered accu-
rately. Second, since a marginal issues many counting queries
(one for each cell) with the same privacy cost of one counting
query, it is arguably the most efficient way to extract informa-
tion from a dataset under DP. Third, using either advanced
composition theorem [19] or zero-Concentrated DP [14], the
variance of noises added to each marginal grows only linearly
with the number of marginals under the same privacy bud-
get. Furthermore, when one attribute is included in multiple
marginal, one can use averaging to reduce the variance. As a
result, one can afford to get a large number of marginals with
reasonable accuracy.

There are two main challenges for using a set of marginals
for private data synthesis. The first challenge is how to select
which marginals to use. Using too many marginals (such as
all 2-way marginals) results in higher noises, and slow down
data synthesis. The second challenge is how to synthesize the
dataset given noisy marginals.

The second contribution is that we propose a new method
to automatically and privately select the marginals. We
first propose a metric InDif (stands for Independent Dif-
ference) that measures the correlation between pairwise at-
tributes. InDif is easy to compute and has low global sensitiv-
ity. Given InDif scores, we then propose a greedy algorithm
that selects the pairs to form marginals.

The third contribution is that we develop a method that
iteratively update a synthetic dataset to make it match
the target set of marginals. When the number of attribute
is small enough so that the full contingency table can be
stored and manipulated directly, one can use methods such
as multiplicative update [8] to do this. However, with tens or
even over one hundred attributes, it is infeasible to represent
the full contingency table.

The key idea underlying our approach is to view the dataset
being synthesized as a proxy of the joint distribution to be
estimated, and directly manipulate this dataset. In particular,
given a set of noisy marginals, we start from a randomly gen-
erated dataset where each attribute matches one-way marginal
information in the set, and then gradually “massage” the syn-
thetic dataset so that its distribution is closer and closer to

each pairwise marginal. We model this problem as a network
flow problem and propose Graduate Update Method (short
for GUM), a method to “massage” the dataset to be consis-
tent with all the noisy marginals. We believe that GUM can
be of independent interest outside the privacy community.
Essentially, it can be utilized more broadly as a standalone
algorithm and it allows us to generate synthetic dataset from
dense graphical models.

To summarize, the main contributions of this paper are:

• A simple yet efficient method to capture correlations within
the dataset.

• A new method to automatically and privately select
marginals that capture sufficient correlations.

• A data synthesis algorithm GUM that can also be used
standalone to handle dense graphical models.

• An extensive evaluation which demonstrates the perfor-
mance improvement of the proposed method on real-world
dataset and helps us understand the intuition of different
techniques.

Roadmap. In Section 2, we present background knowledge
of DP and composition theorem, and formally define the data
synthesis problem. We then introduce a general framework of
private data synthesis in Section 3. We present our proposed
marginal selection method and data synthesis method in Sec-
tion 4 and Section 5, respectively. Experimental results are
presented in Section 6. We discuss related work in Section 7
and limitations in Section 8. Finally, we provide concluding
remarks in Section 9.

2 Preliminaries

2.1 Differential Privacy
Differential privacy [22] is designed for the setting where
there is a trusted data curator, which gathers data from
individual users, processes the data in a way that satisfies
DP, and then publishes the results. Intuitively, the DP notion
requires that any single element in a dataset has only a limited
impact on the output.

Definition 1 ((ε,δ)-Differential Privacy). An algorithm A sat-
isfies (ε,δ)-differential privacy ((ε,δ)-DP), where ε > 0,δ≥
0, if and only if for any two neighboring datasets D and D′,
we have

∀T ⊆Range(A) : Pr [A(D) ∈ T ]≤ eεPr
[
A(D′) ∈ T

]
+δ,

where Range(A) denotes the set of all possible outputs of the
algorithm A .

In this paper we consider two datasets D and D′ to be
neighbors, denoted as D'D′, if and only if either D = D′+ r
or D′ = D+ r, where D+ r denotes the dataset resulted from
adding the record r to the dataset D.



2.2 Gaussian Mechanism
There are several approaches for designing mechanisms that
satisfy (ε,δ)-differential privacy. In this paper, we use the
Gaussian mechanism. The approach computes a function f
on the dataset D in a differentially privately way, by adding
to f (D) a random noise. The magnitude of the noise depends
on ∆ f , the global sensitivity or the `2 sensitivity of f . Such a
mechanism A is given below:

A(D) = f (D)+N
(

0,∆2
f σ2I

)
where ∆ f = max

(D,D′):D'D′
|| f (D)− f (D′)||2.

In the above, N (0,∆2
f σ2I) denotes a multi-dimensional ran-

dom variable sampled from the normal distribution with mean

0 and standard deviation ∆ f σ, and σ =
√

2ln 1.25
δ
/ε.

2.3 Composition via Zero Concentrated DP
For a sequential of k mechanisms A1, . . . ,Ak satisfying (εi,δi)-
DP for i = 1, . . . ,k respectively, the basic composition re-
sult [25] shows that the privacy composes linearly, i.e., the se-
quential composition satisfies (∑k

i εi,∑
k
i δi)-DP. When εi = ε

and δi = δ, the advanced composition bound from [19] states
that the composition satisfies (ε

√
2k log(1/δ′)+ kε(eε−1),

kδ+δ′)-DP.
To enable more complex algorithms and data analysis task

via the composition of multiple differentially private build-
ing blocks, zero Concentrated Differential Privacy (zCDP for
short) offers elegant composition properties. The general idea
is to connect (ε,δ)-DP to Rényi divergence, and use the useful
property of Rényi divergence to achieve tighter composition
property. In another word, for fixed privacy budget ε and δ,
zCDP can provide smaller standard deviation for each task
compared to other composition techniques. Formally, zCDP
is defined as follows:

Definition 2 (Zero-Concentrated Differential Privacy
(zCDP) [14]). A randomized mechanism A is ρ-zero
concentrated differentially private (i.e., ρ-zCDP) if for any
two neighboring databases D and D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′)) ∆
=

1
α−1

log
(
E
[
e(α−1)L(o)

])
≤ ρα

Where Dα(A(D)||A(D′)) is called α-Rényi divergence be-
tween the distributions of A(D) and A(D′). Lo is the pri-
vacy loss random variable with probability density function
f (x) = log Pr[A(D)=x]

Pr[A(D′)=x] .

zCDP has a simple linear composition property [14]:

Theorem 1. Two randomized mechanisms A1 and A2 satisfy
ρ1-zCDP and ρ2-zCDP respectively, their sequential compo-
sition A = (A1,A2) satisfies (ρ1 +ρ2)-zCDP.

The following two theorems restate the results from [14],
which are useful for composing Gaussian mechanisms in
differential privacy.

Theorem 2. If A provides ρ-zCDP, then A is (ρ +
2
√

ρ log(1/δ),δ)-differentially private for any δ > 0.

Theorem 3. The Gaussian mechanism which answers f (D)
with noise N (0,∆2

f σ2I) satisfies ( 1
2σ2 )-zCDP.

Given ε and δ, we can calculate the amount of noise for
each task using Theorem 1 to Theorem 3. In particular, we
first use Theorem 2 to compute the total ρ allowed. Then
we use Theorem 1 to allocate ρi for each task i. Finally, we
use Theorem 3 to calculate σ for each task. Compared with
(ε,δ)-DP, zCDP provides a tighter bound on the cumulative
privacy loss under composition, making it more suitable for
algorithms consist of a large number of tasks.

2.4 Problem Definition
In this paper, we consider the following problem: Given a
dataset Do, we want to generate a synthetic dataset Ds that
is statistically similar to Do. Generating synthetic dataset Ds
allows data analyst to handle arbitrary kinds of data analysis
tasks on the same set of released data, which is more general
than prior work focusing on optimizing the output for specific
tasks (e.g., [3, 36, 44, 52]).

More formally, a dataset D is composed of n records each
having d attributes. The synthetic dataset Ds is said to be
similar to Do if f (Ds) is close to f (Do) for any function f . In
this paper, we consider three statistical measures: marginal
queries, range queries, and classification models. In particular,
a marginal query captures the joint distribution of a subset of
attributes. A range query counts the number of records whose
corresponding values are within the given ranges. Finally, we
can also use the synthetic dataset to train classification models
and measure the classification accuracy.

3 A Framework of Private Data Synthesis

In this section, we first propose a general framework for gener-
ating differentially private synthetic datasets, and then review
some existing studies in this framework. PrivSyn follows this
framework and proposes novel techniques for each of the
component in the framework.

To generate the synthetic dataset in a differentially private
way, one needs to first transform the task to estimate a func-
tion f with low sensitivity ∆ f . One straightforward approach
is to obtain the noisy full distribution, i.e., the joint distribu-
tion of all attributes. Given the detailed information about
the distribution, one can then generate a synthetic dataset
by sampling from the distribution. However, when there are
many attributes in the dataset, computing or even storing the
full distribution requires exponentially large space. To over-
come this issue, one promising approach is to estimate many



Method
Step

Marginal Selection Noise Addition Post Processing Data Synthesis

PriView [44] Covering design Equal budget + Laplace Max-entropy Estimation -
PrivBayes [53] Bayesian network + Info Gain (EM) Equal budget + Laplace - Sampling
PGM [41] - (not dense) Equal budget + Gaussian Markov Random Field Sampling
PrivSyn Optimization + Greedy Weighted budget + Gaussian Consistency GUM

Table 1: Summary of existing methods on different steps. The four steps are all new. Our marginal selection method enables
private auto selection of marginals. GUM enables usage of dense graphical model.

low-degree joint distributions, also called marginals, which
are distributions of only a subset of attributes. More specifi-
cally, to generate a synthetic dataset, there are four steps: (1)
marginal selection, (2) noise addition, (3) post-processing,
and (4) data synthesis.

The current best-performing approaches on private data
synthesis all follow this approach. Table 1 summarizes these
four steps of existing work and our proposed method. In what
follows, we review these steps in the reverse order.

3.1 Data Synthesis

To synthesize a dataset, existing work uses graphical mod-
els to model the generation of the data. In particular,
PrivBayes [53] uses a differentially private Bayesian network.
It is a generative model that can be represented by a directed
graph. In the graph, each node v represents an attribute, and
each edge from u to v corresponds to Pr [v|u], the probability
of u causing v. As each attribute can take multiple values, all
possible Pr [v = y|u = x] are needed. When a node v has more
than one nodes U = {u1, . . . ,uk} connected to it, Pr [v|U ] is
needed to sample v. Because the causality is a single-direction
relationship, the graph cannot contain cycles. To sample a
record, we start from the node with in-degree 0. We then tra-
verse the graph to obtain the remaining attributes following
the generation order specified by the Bayesian network.

More recently, [41] proposed to sample from differen-
tially private Markov Random Field (MRF). Different from
Bayesian network, MRF is represented by undirected graphs,
and each edge u,v contains the joint distribution Pr [v,u].
Moreover, cycles or even cliques are allowed in this model.
The more complex structures enable capturing higher dimen-
sional correlations, but will make the sampling more challeng-
ing. In particular, one first merge cliques into nodes and form
a tree structure, which is called junction tree. The data records
can then be sampled from it. The main shortcoming of PGM
is that, when the graph is dense, the domain of cliques in the
junction tree could be too large to handle.

3.2 Marginal Selection

To build a graphical model, joint distributions in the form of
Pr [v,u] are needed (note that conditional distributions Pr [v|u]

can be calculated from joint distributions). The goal is to cap-
ture all the joint distributions. However, by the composition
property of DP, having more marginals leads to more noise in
each of them. We do not want to select too many marginals
which leads to excessive noise on each of them.

PrivBayes chooses the marginals by constructing the
Bayesian network. In particular, it first randomly assigns an
attribute as the first node, and then selects other attributes
one by one using Exponential Mechanism (EM). The original
Bayesian network uses mutual information as the metric to
select the most correlated marginals. In the setting of DP, the
sensitivity for mutual information is high. To reduce sensi-
tivity, the authors of [53] proposed a function that is close to
mutual information.

Another method PriView [44] uses a data independent
method to select the marginals. In particular, a minimal set of
marginals are selected so that all pairs or triples of attributes
are contained in some marginal. When some attributes are
independent, capturing the relationship among them actually
increases the amount of noise. This approach cannot scale
with the number of attributes d.

Noise Addition. Given the marginals, the next step is to add
noise to satisfy DP. The classic approach is to split the privacy
budget equally into those marginals and add Laplace noise.

Post Processing. The DP noise introduces inconsistencies,
including (1) some estimated probabilities being negative, (2)
the estimated probabilities do not sum up to 1, and (3) two
marginals that contain common attributes exist inconsistency.

In PrivBayes, negative probabilities are converted to zeros.
In PGM, consistencies are implicitly handled by the estima-
tion procedure of the Markov Random Field.

4 Differentially Private Marginal Selection

In the phase of obtaining marginals, there are two sources
of errors. One is information loss when some marginals are
missed; the other is noise error incurred by DP. PrivBayes
chooses few marginals; as a result, useful correlation infor-
mation from other marginals is missed. On the other hand,
PriView is data-independent and tries to cover all the poten-
tial correlations; and when there are more than a few dozen
attributes, the DP noise becomes too high.



v Mgender(v)

〈male,∗〉 0.40
〈female,∗〉 0.60

(a) 1-way marginal for gender.

v Mage(v)

〈∗,teenager〉 0.20
〈∗,adult 〉 0.30
〈∗,elderly〉 0.50

(b) 1-way marginal for age.

v

〈male, teenager〉 0.08
〈male, adult〉 0.12
〈male, elderly〉 0.20
〈female, teenager〉 0.12
〈female, adult〉 0.18
〈female, elderly〉 0.30

(c) 2-way marginal assume indepent

v

〈male, teenager〉 0.10
〈male, adult〉 0.10
〈male, elderly〉 0.20
〈female, teenager〉 0.10
〈female, adult〉 0.20
〈female, elderly〉 0.30

(d) Actual 2-way marginal

Figure 1: Example of the calculation of InDif.

To balance between the two kinds of information loss, we
propose an effective algorithm DenseMarg that is able to
choose marginals that capture more useful correlations even
under very low privacy budget.

4.1 Dependency Measurement
To select marginals that capture most of the correlation infor-
mation, one needs a metric to measure the correlation level.
In Bayesian network, mutual information is used to capture
pair-wise correlation. As the sensitivity for mutual informa-
tion is high, the authors of [53] proposed a function that can
approximate the mutual information. However, the function
is slow (quadratic to the number of users in the dataset) to
compute.

To compute correlation in a simple and efficient way, in this
subsection, we propose a metric which we call Independent
Difference (InDif for short). For any two attributes a,b, InDif
calculates the `1 distance between the 2-way marginal Ma,b
and 2-way marginal generated assuming independence Ma×
Mb, where a marginal MA specified by a set of attributes A
is a frequency distribution table, showing the frequency with
each possible combination of values for the attributes, and ×
denote the outer product, i.e., InDifa,b = |Ma,b−Ma×Mb|1.

Figure 1 gives an example to illustrate the calculation of
InDif. The 2-way marginal in Figure 1c is directly calculated
by the 1-way marginal of gender and age, without analyzing
the dataset; and Figure 1d gives the actual 2-way marginal.
In this example, InDif = 0.08 · n, where n is the number of
records. The advantage of using InDif is that it is easy to com-
pute, and it has low sensitivity in terms of its range, [0,2n]:

Lemma 4. The sensitivity of InDif metric is 4: ∆InDif = 4.

The proof is deferred to Appendix A. Given d attributes,
we use the Gaussian mechanism to privately obtain all InDif
scores. To evaluate the impact of noise, one should consider

both sensitivity and range of the metrics. We theoretically and
empirically analyze the noise-range ratio of entropy-based
metrics and InDif in Appendix B, and show that InDif has
smaller noise-range ratio than entropy-based metrics. More
specifically, given the overall privacy parameters (ε,δ), we
first compute the parameter ρ using Theorem 2. We then
use ρ′ < ρ for publishing all the InDif scores for all m =

(d
2

)
pairs of attributes. In particular, with the composition theory
of zCDP, we can show that publishing all InDif scores with
Gaussian noise N (0,8m/ρ′I) satisfies ρ′-zCDP (its proof is
also deferred to Appendix A).

Theorem 5. Given d attributes, publishing all m = d(d−
1)/2 InDif scores with Gaussian noise N (0,8m/ρ′I) satisfies
ρ′-zCDP.

4.2 Marginal Selection
Given the dependency scores InDif, the next step is to choose
the pairs with high correlation, and use the Gaussian mecha-
nism to publish marginals on those pairs. In this process, there
are two error sources. One is the noise error introduced by the
Gaussian noise; the other is the dependency error when some
of the marginals are not selected. If we choose to publish all
2-way marginals, the noise error will be high and there is no
dependency error; when we skip some marginals, the error for
those marginals will be dominated by the dependency error.
Problem Formulation. Given m pairs of attributes, each pair
i is associated with an indicator variable xi that equals 1 if
pair i is selected, and 0 otherwise. Define ψi as the noise error
introduced by the Gaussian noise and φi as its dependency
error. The marginal selection problem is formulated as the
following optimization problem:

minimize
m

∑
i=1

[ψixi +φi(1− xi)]

subject to xi ∈ {0,1}

Notice that the dependency error φi has positive correlation
with InDifi, i.e., larger InDifi incurs larger φi. Thus, we ap-
proximate φi as InDifi +N (0,m2ρ′2I), and it is fixed in the
optimization problem.

The noise error ψi is dependent on the privacy budget ρi
allocated to the pair i. In particular, we first show that given
the true marginal Mi, we add Gaussian noise with scale 1/ρi
to achieve ρi-zCDP.

Theorem 6. (1) The marginal M has sensitivity ∆M = 1; (2)
Publishing marginal M with noise N (0,1/2ρI) satisfies ρ-
zCDP.

The proof of Theorem 6 is deferred to Appendix A. To
make ψi and φi comparable, we use the expected `1 error of
the Gaussian noise on marginal i. That is, if the marginal size
is ci, after adding Gaussian noise with scale σi, we expect



to see the `1 error of ci

√
2
π

σi. Thus, with privacy budget ρi,

ψi = ci

√
1

πρi
. The optimization problem is transformed to:

minimize
m

∑
i=1

[
ci

√
1

πρi
xi +φi(1− xi)

]
subject to xi ∈ {0,1}

∑xiρi = ρ

Optimal Privacy Budget Allocation. We first assume the
pairs are selected (i.e., variables of xi are determined), and we
want to allocate different privacy budget to different marginals
to minimize the overall noise error. In this case, the optimiza-
tion problem can be rewritten as:

minimize ∑
i:xi=1

ci

√
1
ρi

subject to ∑
i:xi=1

ρi = ρ

For this problem, we can construct the Lagrangian function
L = ∑i

ci√
ρi
+ µ · (∑i ρi−ρ). By taking partial derivative of

L for each of ρi, we have ρi =
(

2µ
ci

)−2/3
. The value of µ

can be solved by equation ∑i ρi = ρ. As a result, µ = 1
2 ·(

ρ

∑i c2/3
i

)−3/2

, and we have

ρi =
c2/3

i

∑ j c2/3
j

·ρ (1)

That is, allocating privacy budget proportional to the 2
3 power

of the number of cells achieves the minimum overall noise
error.

A Greedy Algorithm to Select Pairs. We propose a greedy
algorithm to select pairs of attributes, as shown in Algorithm 1.
Given the InDif scores of all pairs of attributes 〈φi〉, size of all
marginals 〈ci〉, and the total privacy budget ρ, the goal is to
determine xi for each i ∈ {1, . . . ,m}, or equivalently, output
a set of pairs X = {i : xi = 1} that minimize the overall error.
We handle this problem by iteratively including marginals that
give the maximal utility improvement. In particular, in each
iteration t, we select one marginal that brings the maximum
improvement to the overall error. More specifically, we con-
sider each marginal i that is not yet included in X (i.e., i ∈ X̄ ,
where X̄ = {1, . . . ,m}\X): In Line 4, we allocate the optimal
privacy budget ρi according to Equation 1. We then calculate
the error in Line 5, and select one with maximum utility im-
provement (in Line 6). After the marginal is selected, we then
include it in X . The algorithm terminates when the overall
error no longer improves. The algorithm is guaranteed to ter-
minate since the noise error would gradually increase when
more marginals are selected. When the noise error is larger
than any of the remaining dependency error, the algorithm
terminates.

Combine Marginals. Till now, we assume two-way

Algorithm 1: Marginal Selection Algorithm
Input: Number of pairs m, privacy budget ρ, dependency error 〈φi〉,

marginal size 〈ci〉;
Output: Selected marginal set X ;

1 X ←∅; t← 0; E0← ∑i∈X̄ φi;
2 while True do
3 foreach marginal i ∈ X̄ do
4 Allocate ρ to marginals j ∈ X ∪{i};
5 Et(i) = ∑ j∈X∪{i} c j

√
1

πρ j
+∑ j∈X̄\{i} φ j;

6 `← argmini∈X̄ Et(i);
7 Et ← Et(`);
8 if Et ≥ Et−1 then
9 Break

10 X ← X ∪{l};
11 t← t +1;

Algorithm 2: Marginal Combine Algorithm
Input: Selected pairwise marginals X , threshold γ

Output: Combined marginals X
1 Convert X to a set of pairs of attributes;
2 Construct graph G from the pairs;
3 S←∅; X ←∅
4 foreach clique size s from m to 3 do
5 Cs← cliques of size s in G
6 foreach clique c ∈Cs do
7 if |c∩S| ≤ 2 and domain size of c ≤ γ then
8 Append c to X
9 Append the attributes of c to S

marginals are used. When some marginals contain only a
small number of possibilities (e.g., when some attributes are
binary), extending to multi-way marginals can help capture
more information. In particular, given X , which contains in-
dices of the marginals selected from Algorithm 1, we first
convert each index to its corresponding pair of attributes; we
then build a graph G where each node represents an attribute
and each edge corresponds to a pair. We then find all the
cliques of size greater than 2 in the graph. If a clique is not
very big (smaller than a threshold γ = 5000), and does not
overlap much with existing selected attributes (with more
than 2 attributes in common), we merge the 2-way marginals
contained in the clique into a multi-way marginal.

Algorithm 2 gives the pseudocode of our proposed marginal
combining technique. We first identify all possible cliques in
graph G and sort them in decending order by their attribute
size. Then, we examine each clique c to determine whether
to combine it. If the clique has a small domain size (smaller
than a threshold γ) and does not contain more than 2 attributes
that is already in the selected attributes set S, we include this
clique and remove all 2-way marginals within it.

4.3 Post Processing
The purpose of post processing is to ensure the noisy
marginals are consistent. By handling such inconsistencies,
we avoid impossible cases and ensure there exists a solution



(i.e., a synthetic dataset) that satisfies all the noisy marginals.
For the case when multiple marginals contain the same set
of attributes, and their estimations on the shared attributes
do not agree, we use the weighted average method [16, 44].
Note that [16, 44] both assume the privacy budget is evenly
distributed. We extend it to the uneven case.

Consistency under Uneven Privacy Budget Allocation.
When different marginals have some attributes in common,
those attributes are actually estimated multiple times. Utility
will increase if these estimates are utilized together. For ex-
ample, when some marginals are estimated twice, the mean
of the estimates is actually more accurate than each of them.
More formally, assume a set of attributes A is shared by s
marginals M1,M2, . . . ,Ms, where A =M1∩ . . .∩Ms. We can
obtain s estimates of A by summing from cells in each of the
marginals.

In [44], the authors proposed an optimal method to deter-
mine the distribution of the weights when privacy budget is
evenly distributed among marginals. The main idea is to take
the weighted average of estimates from all marginals in order
to minimize the variance of marginals on A. We adopt the
weighted average technique, and extend it to hand the case
where privacy budget is unevenly allocated. In particular, we
allocate a weight wi for each marginal i. The variance of the
weighted average can be represented by ∑i w2

i ·
gi
ρi

, where ρi
is the privacy budget and gi is the number of cells that con-
tribute to one cell of the marginal on A. Here the Gaussian
variance is 1/ρi. By summing up gi cells, and multiplying the
result by wi, we have the overall variance w2

i
gi
ρi

. The weights
should add up to 1. More formally, we have the following
optimization problem:

minimize∑
i

w2
i ·

gi

ρi

subject to∑
i

wi = 1

By constructing the Lagrangian function and following the
same derivative procedure as we did for obtaining optimal ρi

(Equation (1)), we have wi =
ρi/gi

∑i ρi/gi
is the optimal strategy.

Overall Consistency. In addition to the inconsistency among
marginals, some noisy marginals may contain invalid distri-
butions (i.e., some probability estimations are negative, and
the sum does not equal to 1). Given the invalid distribution,
it is known that projecting it to a valid one with minimal `2
distance achieves the maximal likelihood estimation. This is
discovered in different settings (e.g., [10, 35, 51]); and there
exists efficient algorithm for this projection.

The challenge emerges when we need to handle the two
inconsistencies simultaneously, one operation invalidate the
consistency established in another one. We iterate the two op-
erations multiple times to ensure both consistency constraints
are satisfied.

5 Synthetic Data Generation

Given a set of noisy marginals, the data synthesis step gen-
erates a new dataset Ds so that its distribution is consistent
with the noisy marginals. Existing methods [41, 53] put these
marginals into a graphical model, and use the sampling al-
gorithm to generate the synthetic dataset. As each record is
sampled using the marginals, the synthetic dataset distribution
is naturally consistent with the distribution.

The drawback of this approach is that when the graph is
dense, existing algorithms do not work. To overcome this
issue, we use an alternative approach. Instead of sampling the
dataset using the marginals, we initialize a random dataset and
update its records to make it consistent with the marginals.

5.1 Strawman Method: Min-Cost Flow (MCF)

Given the randomly initiated dataset Ds, for each noisy
marginal, we update Ds to make it consistent with the
marginal. A marginal specified by a set of attributes is a fre-
quency distribution table for each possible combination of
values for the attributes. The update procedure can be mod-
eled as a graph flow problem. In particular, given a marginal,
a bipartite graph is constructed. Its left side represents the
current distribution on Ds; and the right side is for the target
distribution specified by the marginal. Each node corresponds
to one cell in the marginal and is associated with a number.
Figure 2 demonstrates an example of this flow graph. Now in
order to change Ds to make it consistent with the marginal,
we change records in Ds.

Current Dist Target Dist
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0.2
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0.2
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0.1
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<Teenager, *>

<Adult, *>
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Figure 2: Running example of MCF. The left nodes repre-
sent current distribution from Ds; and the right nodes give
the target distribution specified by the noisy marginal. The
min-cost flow is to move 0.1 from adult to teenager, and 0.1
from elderly to teenager. To change the distribution, we find
matching records from Ds and change their corresponding
attributes.

The MCF method enforces a min-cost flow in the graph
and updates Ds by changing the values of the records on the
flow. For example, in Figure 2, there are two changes to Ds.
First, one third of the adults needs to be changed to teenagers.



Income Gender Age

v1 high male teenager
v2 high male adult
v3 high male adult
v4 high male teenager
v5 high female elderly

(a) Dataset before updating.

v S{I,G}(v) T{I,G}(v)

〈low, male,∗〉 0.0 0.0
〈low, female,∗〉 0.0 0.0
〈high, male,∗〉 0.8 0.2
〈high, female,∗〉 0.2 0.8

(b) Marginal table for {Income, Gender}, where
red and blue stands for over-counted and under-
counted cells, respectively.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high female elderly
v4 high female teenager
v5 high female elderly

(c) Dataset after updating.

Figure 3: Example of the synthesized dataset before and after updating procedure. In (a), blue stands for the records to be added,
and brown stands for the records to be changed. In (c), v4 only changes income and gender attributes, while v3 changes the whole
record which is duplicated from v5. Notice that in this example, we have α = 2.0,β = 0.5 and the marginal distribution in (c) do
not completely match T{I,G}(v) of [0.0,0.0,0.2,0.8]; instead, it becomes [0.0,0.0,0.4,0.6].

Note that we change only the related attribute and keep the
other attributes the same. Second, one fourth of the elderly are
changed to teenager. We iterate over all the noisy marginals
and repeat the process multiple times until the amount of
changes is small. The intuition of using min-cost flow is that,
the update operations make the minimal changes to Ds, and
by changing the dataset in this minimal way, the consistency
already established in Ds (with previous marginals) can be
maintained. The min-cost flow can be solved by the off-the-
shelf linear programming solver, e.g., [7].

When all marginals are examined, we randomly shuffle the
whole dataset Ds. Since the modifying procedure would in-
validate the consistency established from previous marginals,
MCF needs to iterate multiple times to ensure that Ds is al-
most consistent with all marginals.

5.2 Gradually Update Method (GUM)
Empirically, we find that the convergence performance of
MCF is not good (we will demonstrate it via experiment
in Section 6). We believe that this is because MCF always
changes Ds to make it completely consistent with the current
marginal in each step. Doing this reduces the error of the
target marginal close to zero, but increases the errors for other
marginals to a large value.

To handle this issue, we borrow the idea of multiplicative
update [8] and propose a new approach that Gradually Update
Ds based on the Marginals; and we call it GUM. GUM also
adopts the flow graph introduced by MCF, but differs from
MCF in two ways: First, GUM does not make Ds fully consis-
tent with the given marginal in each step. Instead, it changes
Ds in a multiplicative way, so that if the original frequency
in a cell is large, then the change to it will be more. In partic-
ular, we set a parameter α, so that for cells that have values
are lower than expected (according to the target marginal),
we add at most α times of records, i.e., min{nt −ns,αns} 1,
where nt is the number in the marginal and ns is the number

1Notice that α could be greater than 1 since ns < nt . In the experiments,
we always set α to be less than 1 to achieve better convergence performance.

from Ds. On the other hand, for cells with values higher than
expected, we will reduce min{ns−nt ,βns} records that sat-
isfy it. As the total number of record is fixed, given α, β can
be calculated.

Figure 3 gives a running example. Before updating, we
have 4 out of 5 records have the combination 〈high,male〉,
and 1 record has 〈high, f emale〉. To get closer to the target
marginal of 0.2 and 0.8 for these two cells, we want to change
2 of the 〈high,male〉 records to be 〈high, f emale〉. In this
example, we have α = 2.0,β = 0.5 2 and do not completely
match the target marginal of 0.2 and 0.8. To this end, one
approach is to simply change the Gender attribute value from
male to female in these two records as in MCF. We call this a
Replace operation. Replacing will affect the joint distribution
of other marginals, such as {Gender,Age}. An alternative is
to discard an existing 〈high,male〉 record, and Duplicate an
existing 〈high, f emale〉 record (such as v5 in the example).
Duplicating an existing record help preserve joint distribu-
tions between the changed attributes and attributes not in
the marginal. However, Duplication will not introduce new
records that can better reflect the overall joint distribution. In
particular, if there is no record that currently has the combina-
tion 〈high, f emale,elderly〉, duplication cannot be used.

Therefore, we need to use a combination of Replacement
and Duplication (which is the case in Figure 3). Furthermore,
once the synthesized dataset is getting close to the distribu-
tion, we would prefer Duplication to Replacement, since at
that time there should be enough records to reflect the distribu-
tion and Replacement disrupts the joint distribution between
attributes in a marginal and those not in it. We empirically
compare different record updating strategies and validate that
introducing the Duplication operation can effectively improve
the convergence performance. Due to space limitation, we
refer the readers to Appendix I in out technical report [55] for
the experimental results.

2We have α = nt−ns

ns for under-counted cells and β = ns−nt

ns for over-
counted cells. The number of records for under-counted cell 〈high, female,∗〉
increase from 1 to 3; thus α = 3−1

1 = 2. The number of records for over-
counted cell 〈high, male,∗〉 decrease from 4 to 2; thus β = 4−2

4 = 0.5.



5.3 Improving the Convergence
Given the general data synthesize method, we have several
optimizations to improve its utility and performance. First,
to bootstrap the synthesizing procedure, we require each at-
tribute of Ds follows the 1-way noisy marginals when we
initialize a random dataset Ds.
Gradually Decreasing α. The update rate α should be
smaller with the iterations to make the result converge. From
the machine learning perspective, gradually decreasing α can
effectively improve the convergence performance. There are
some common practices [1] of setting α.

• Step decay: α = α0 · kb
t
s c, where α0 is the initial value, t is

the iteration number, k is the decay rate, and s is the step
size (decrease α every s iterations). The main idea is to
reduce α by some factor every few iterations.

• Exponential decay: α = α0 ·e−kt , where k is a hyperparam-
eter. This exponentially decrease α in each iteration.

• Linear decay: α = α0
1+kt .

• Square root decay: α = α0√
1+kt

.

We empirically evaluate the performance of different decay
algorithms (refer to Appendix J in our technical report [55])
and find that step decay is preferable in all settings. The step
decay algorithm is also widely used to update the step size in
the training of deep neural networks [33].
Attribute Appending. The selected marginals X output by
Algorithm 2 can be represented by a graph G . We notice that
some nodes have degree 1, which means the corresponding
attributes are included in exactly one marginal. For these at-
tributes, it is not necessary to involve them in the updating
procedure. Instead, we could append them to the synthetic
dataset Ds after other attributes are synthesized. In particular,
we identify nodes from G with degree 1. We then remove
marginals associated with these nodes from X . The rest of
the noisy marginals are feed into GUM to generate the syn-
thetic data but with some attributes missing. For each of these
missed attributes, we sample a smaller dataset Ds’ with only
one attribute, and we concatenate Ds’ to Ds using the marginal
associated with this attribute if there is such a marginal; oth-
erwise, we can just shuffle Ds’ and concatenate it to Ds. Note
that this is a one time operation after GUM is done. No syn-
thesizing operation is needed after this step.
Separate and Join. We observe that, when the privacy bud-
get is low, the number of selected marginals is relatively small,
and the dependency graph is in the form of several disjoint
subgraphs. In this case, we can apply GUM to each subgraph
and then join the corresponding attributes. The benefit of
Separate and Join technique is that, the convergence perfor-
mance of marginals in one subgraph would not be affected
by marginals in other subgraph, which would improve the
overall convergence performance.
Filter and Combine Low-count Values. If some attributes
have many possible values while most of them have low

counts or do not appear in the dataset. Directly using these at-
tributes to obtain pairwise marginals may introduce too much
noise. To address this issue, we propose to filter and com-
bine the low-count values. The idea is to spend a portion of
privacy budget to obtain the noisy one-way marginals. After
that, we keep the values that have count above a threshold θ.
For the values that are below θ, we add them up, if the total
is below θ, we assign 0 to all these values. If their total is
above θ, then we create a new value to represent all values
that have low counts. After synthesizing the dataset, this new
value is replaced by the values it represents using the noisy
one-way marginal. The threshold is set as θ = 3σ, where σ

is the standard deviation for Gaussian noises added to the
one-way marginals.

5.4 Putting Things Together: PrivSyn
Algorithm 3 illustrates the overall workflow of PrivSyn. We
split the total privacy budget into three parts. The first part
is used for publishing all 1-way marginals, intending to filter
and combine the values with low count or do not exist. The
second part is used to differentially privately select marginals.
The marginal selection method DenseMarg consists of two
components, i.e., 2-way marginal selection (Algorithm 1) and
marginal combine (Algorithm 2). The third part is used to
obtain the noisy combined marginals. After obtaining the
noisy combined marginals, we can use them to construct
synthetic dataset Ds without consuming privacy budget, since
this is a post processing procedure.

Algorithm 3: PrivSyn
Input: Private dataset Do, privacy budget ρ;
Output: Synthetic dataset Ds;

1 Publish 1-way marginals using GM with ρ1 = 0.1ρ;
2 Filter values with estimates smaller than 3σ;
3 Select 2-way marginals with Algorithm 1 and ρ2 = 0.1ρ;
4 Combine marginals using Algorithm 2;
5 Publish combined marginals using GM with ρ3 = 0.8ρ;
6 Make noisy marginals consistent;
7 Construct Ds using GUM;

6 Evaluation

In this section, we first conduct a high-level end-to-end ex-
periment to illustrate the effectiveness of PrivSyn. Then, we
evaluate the effectiveness of each step of PrivSyn by fixing
other steps. As a highlight, our method consistently achieves
better performance than the state-of-the-art in all steps.

6.1 Experimental Setup

Datasets. We run experiments on the following four datasets.
• UCI Adult [9]. This is a widely used dataset for classifi-

cation from the UCI machine learning repository.
• US Accident [42]. This is a countrywide traffic accident

dataset, which covers 49 states of the United States.



• Loan [31]. This dataset contains loan data in lending club
issued from 2007 to 2015.

• Colorado [43]. This is the census dataset of Colorado
State in 1940. This dataset is used in the final round of the
NIST challenge [43].

The detailed information about the datasets are listed in
Table 2, where the label column stands for the label used in
the classification task.

Dataset Records Attributes Domain Label

Adult 48,000 15 6 ·1017 salary
US Accident 600,000 30 3 ·1039 Severity

Loan 600,000 81 4 ·10136 home_ownership
Colorado 662,000 97 5 ·10162 INCNONWG

Table 2: Summary of datasets used in our experiments.

Tasks and Metrics. We evaluate the statistical performance
of the synthesized datasets on three data analysis tasks. For
each data analysis task, we adopt its commonly used metric
to measure the performance.
• Marginal Release. We compute all the 2-way marginals

and use the average `1 error to measure the performance.
• Range Query. We randomly sample 1000 range queries,

each contains 3 attributes. We use the average `1 error
to measure the performance. In particular, we calculate

1
|Q| ∑qi∈Q |ci− ĉi|, where Q is the set of randomly sampled
queries, ci and ĉi are the ratio of records that fall in the
range of query qi in the original dataset and synthesized
dataset, respectively.

• Classification. We use the synthesized dataset to train an
SVM classification model, and use misclassification rate to
measure the performance.

Competitors. We compare each component of PrivSyn with
a series of other methods, respectively.
• Marginal Selection Methods. We compare our pro-

posed DenseMarg method (Algorithm 1) with PrivBayes.
The computational complexity of dependency in original
PrivBayes method is too high. Thus, we replace the de-
pendency calculation part of PrivBayes by our proposed
InDif metric, which we call PrivBayes(InDif). For Col-
orado dataset, the PGM team open sourced a set of manu-
ally selected marginals in the NIST challenge [43], which
serves as an alternative competitor.

• Noise Addition Methods. We compare our pro-
posed Weighted Gaussian method with Equal Laplace and
Equal Gaussian methods. Both Gaussian methods use
zCDP to compose, and the Laplace mechanism use the
naive composition, i.e., evenly allocate ε for each marginal.

• Data Synthesis Methods. We compare PrivSyn with
PrivBayes and PGM, which use the selected marginals to
estimate a graphical model, and sample synthetic records
from it. Note that we have two versions of synthesis meth-
ods for PrivSyn, i.e., MCF and GUM.

We also compare with a few other algorithms that do not
follow the framework in Section 3.

• DualQuery. It generates records in a game theoretical
manner. The main idea is to maintain a distribution over a
workload of queries. One first samples a set of queries from
the workload each time, and then generates a record that
minimize the error of these queries. We refer the readers to
Section 7 for detailed discussion.

• For the classification task, we have another two competitors,
i.e., Majority and NonPriv. Majority represents the naive
method that blindly predicts the label by the majority label.
Methods that perform worse than Majority means that the
published dataset doesn’t help the classification task, since
the majority label can be outputted correctly even under
very low privacy budget. NonPriv represents the method
without enforcing differential privacy, it is the best case to
aim for. For NonPriv, we split the original dataset into two
disjoint parts, one for training and another for testing.

Experimental Setting. For PrivBayes, PGM and PrivSyn
methods, we set the number of synthesized records the same
as that of the original dataset. Notice that we adopt unbounded
differential privacy [32] in this paper, we cannot directly ac-
cess the actual number of records in the original dataset. Thus,
we instead use the total count of marginals to approximate it.
For DualQuery method, the number of synthesized records is
inherently determined by the privacy budget, the step size and
the sample size [28]. We use the same hyper-parameter set-
tings as [28], i.e., the step size is 2.0 and sample size is 1000.
We illustrate the impact of the number of synthesized records
on PrivSyn in Appendix K of our technical report [55]. By
default, we set δ = 1

n2 for all methods, where n is the number
of records in original dataset.

All algorithms are implemented in Python 3.7 and all the
experiments are conducted on a server with Intel Xeon E7-
8867 v3 @ 2.50GHz and 1.5TB memory. We repeat each
experiment 5 times and report the mean and standard devia-
tion. Due to space limitation, we put the experimental results
of US Accident and Colorado in the main context, and re-
fer the readers to the results of Adult and Loan datasets to
Appendix L in our technical report [55].

6.2 End-to-end Comparison

Setup. For fair comparison, we use the optimal compo-
nents and hyper-parameters for all methods. Concretely, we
use PrivBayes(InDif) to select marginals for PrivBayes and
PGM, since they can only handle sparse marginals. Both
PrivSyn and DualQuery can handle dense marginals; thus we
use DenseMarg to select marginals for them. For noise ad-
dition, we use Weighted Gaussian for PrivBayes, PGM and
PrivSyn. DualQuery uses a game theoretical manner to gener-
ate synthetic datasets; thus it does not need the noise addition
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Figure 4: End-to-end Comparison of different dataset generation methods. PrivSyn is our proposed method.

step. For PrivBayes, PGM and DualQuery, we use the open-
sourced code [2] by the author of PGM to run the experiments.
Results. Figure 4 illustrates the performance of different
methods. We do not show the classification performance
of DualQuery since the misclassification rate is larger than
Majority and the variance is large. The experimental results
show that PrivSyn consistently outperforms other methods
for all datasets and all data analysis tasks.

For the pair-wise marginal task, the performance of PGM
and PrivBayes is quite close to PrivSyn, meaning these two
methods can effectively capture low-dimensional correlation.
However, the performance of range query task and classifi-
cation task are much worse than PrivSyn, since range query
and classification tasks require higher dimensional correlation.
PrivSyn can effectively preserve both low-dimensional and
high-dimensional correlation.

The performance of DualQuery is significantly worse than
other methods. The reason is that generating each record con-
sumes a portion of privacy budget, which limits the number
of records generated by DualQuery. In our experiments, the
number of generated records by DualQuery is less than 300
in all settings. When the privacy budget is low, e.g., ε = 0.2,
the number of generated records is less than 50. Insufficient
number of records would lead to bad performance for all three
data analysis tasks.

6.3 Comparison of Marginal Selection
Methods

Setup. We use Weighted Gaussian method for noise addi-
tion, and use GUM for data synthesis. For each marginal se-
lection method, we compare their performance in both pri-

vate and non-private settings. In the non-private setting, the
marginal selection step do not consume privacy budget. This
can serve as a baseline to illustrate the robustness of different
marginal selection methods.
Results. Figure 5 illustrates the performance of differ-
ent marginal selection methods. For all datasets and all
data analysis tasks, our proposed DenseMarg method con-
sistently outperforms PrivBayes(InDif). In the range query
task, DenseMarg reduces the `1 error by about 50%, which
is much significant than that in pair-wise marginal release
task. This is because our range queries contain 3 attributes,
which requires higher dimensional correlation information
than pair-wise marginal (contain 2 attributes). DenseMarg
preserves more higher dimensional correlation by selecting
more marginals than PrivBayes(InDif).

In all settings, the performance of DenseMarg in private
setting and non-private setting are very close. The reason
is that DenseMarg tends to select the set of marginals with
high InDif, and adding moderate level of noise is unlikely to
significantly change this set of marginals. In our experiments,
the overlapping ratio of the selected marginals between private
setting and non-private setting is larger than 85% in most
cases. This indicates that DenseMarg is very robust to noise.

6.4 Comparison of Noise Addition Methods

Setup. We compare our proposed Weighted Gaussian
method with Equal Laplace and Equal Gaussian methods.
Both Gaussian methods use zCDP for composition. The
Laplace mechanism uses the naive composition, i.e., evenly
allocate ε for all marginals. All methods use DenseMarg for
marginal selection and GUM for data synthesis.
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Figure 5: Comparison of different marginal selection methods. DenseMarg is our proposed method. Non-private in the parenthese
indicates that the marginal selection step do not consume privacy budget.

Results. Figure 6 demonstrates the performance of different
noise addition methods. For all datasets and all data analy-
sis tasks, our proposed Weighted Gaussian method consis-
tently outperforms the other two methods. The advantage of
Weighted Gaussian increases when ε is larger.

In our experiment, both Weighted Gaussian and
Equal Gaussian methods use zCDP to calculate the
noise variance to each marginal, the main difference is that
Weighted Gaussian allocates privacy budget according to
the number of cells, while Equal Gaussian evenly allocate
privacy budget to all marginals. The experimental results
validate our analysis in Section 4.2 that Weighted Gaussian
is the optimal privacy budget allocation strategy.

6.5 Comparison of Synthesis Methods
To better understand the performance of different synthesis
methods, we select marginals in a non-private setting and
purely compare the performance of different synthesis meth-
ods. This is different from the end-to-end evaluation in Sec-
tion 6.2 that makes all steps private. Other settings are the
same as Section 6.2. We do not compare with DualQuery
in this experiment since Section 6.2 has illustrated that its
performance is much worse than other methods.

Results. Figure 7 shows the performance of different
data synthesis methods. Both MCF and GUM exploit dense
marginals selected by DenseMarg, while the performance of
MCF is even worse than the PGM method and the PrivBayes
method that using spare marginals. The reason is that, in each
iteration,MCF enforces the synthetic dataset Ds to fully match

the marginal. This would severely destroy the correlation es-
tablished by other marginals. While GUM preserves the cor-
relation of other marginals by gradually updating marginals
in each iteration and using duplication technique.

Comparing Figure 4 and Figure 7, we observe that the
experimental results in the private and non-private settings are
similar, showing the robustness of PrivSyn. This is consistent
with the results in Section 6.3.

7 Related Work

Differential privacy (DP) has been the de facto notion for
protecting privacy. Many DP algorithms have been proposed
(see [25,48] for theoretical treatments and [37] in a more prac-
tical perspective). Most of the algorithms are proposed for
specific tasks. In this paper, we study the general task of gen-
erating a synthetic dataset with DP. Compared to the ad-hoc
methods, this approach may not achieve the optimal utility
for the specific task. But this approach is general in that given
the synthetic dataset, any task can be performed, and there
is no need to modify existing non-private algorithms. There
are a number of previous studies focus on generating syn-
thetic dataset in a differentially private manner. We classify
them into three categoreis: graphical model based methods,
game based methods and deep generative model based meth-
ods. There are also some theoretical studies that discuss the
hardness of differentially private data synthesis.

Graphical Model Based Methods. The main idea is to
estimate a graphical model that approximates the distribu-
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Figure 6: Comparison of different noise addition methods. Weighted Gaussian is our proposed method.
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Figure 7: Comparison of different synthesis methods. GUM is our proposed method.

tion of the original dataset in a differentially private way.
PrivBayes [53] and BSG (the initials of the authors’ last
names) [12] approximate the data distribution using Bayesian
Network. These methods, however, need to call Exponential
Mechanism [53] or Laplace Mechanism [12] many times,
making the network structure inaccurate when the privacy
budget is limited; and the overall utility is sensitive to the
quality of the initial selected node.

PGM [41] and JTree [15] utilize Markov Random Field
to approximate the data distribution. PGM takes as input a
set of predefined low-dimensional marginals, and estimates

a Markov Random Field that best matches these marginals.
JTree first estimates a dependency graph by setting a thresh-
old to the mutual information of pairwise attributes, and then
obtains the Markov Random Field by transforming the de-
pendency graph into a junction tree. PGM do not provide
marginal selection method in the paper [41]. JTree proposes
to use SVT to select marginals; however, Lyu et al. [39]
point out that JTree utilizes SVT in a problematic way. The
main limitation of graphical model based methods is that they
cannot handle dense marginals that capture more correlation
information.



Game Based Methods. There are works that formulate the
dataset synthesis problem as a zero-sum game [28, 29, 49].
Assume there are two players, data player and query player.
MWEM [29] method solves the game by having the data
player use a no-regret learning algorithm, and the query player
repeatedly best responds. Dual Query [28] switches the role
of the two players. Concretely, the data player in MWEM
maintains a distribution over the whole data domain, and
query player repeatedly use exponential mechanism to select
a query that have the worse performance from a workload
of queries to update data player’s distribution. The main lim-
itation of MWEM is that when the dataset domain is large
(from 3 ·1039 to 5 ·10162 in our experiments), maintaining the
full distribution is infeasible. Thus, we do not compare with
MWEM in our experiments.

In contrast, the query player in Dual Query maintains a
distribution over all queries. The query player each time sam-
ples a set of queries from the workload, and the data player
generates a record that minimizes the error of these queries.
The shortcoming is that generating each record would con-
sume a portion of privacy budget; thus one cannot generate
sufficient records as discussed in Section 6. Moreover, both
methods require a workload of queries in advance, and the
generated dataset is guaranteed to be similar to the original
dataset with respect to the query class. This makes MWEM
and Dual Query incapable of handling arbitrary kinds of tasks
with satisfied accuracy. The authors of [49] improve both
MWEM and DualQuery by replacing their core components;
however, this work follows the same framework with MWEM
and QualQuery and do not address the main limitation of
them.
Deep Generative Model Based Methods. Another ap-
proach is to train a deep generative model satisfying differen-
tial privacy, and use the deep generative model to generate a
synthetic dataset. The most commonly used deep generative
model is the Generative Adversarial Network (GAN), and
there are multiple studies focus on training GAN in a differen-
tially private way [4,11,27,46,54]. The main idea is to utilize
the DP-SGD framework [3] to add noise in the optimiza-
tion procedure (i.e., stochastic gradient descent). However,
the preliminary application of GAN is to generate images.
Thus, the objective of GAN is to generate data records that
look authentic, instead of approximating the original distribu-
tion, applying the GAN model to the current problem cannot
generate a synthetic dataset with enough variations. In the
NIST challenge [43], there are two teams adapting the GAN-
based method to synthesize high-dimensional data, while their
scores are much lower than PGM and PrivBayes. Thus, we
do not compare this line of methods in our experiments.

In addition to GAN, there are also studies based on Re-
stricted Boltzmann Machine (RBM) [26] and Variational
Auto-Encoder (VAE) [6]. These methods are not as effec-
tive as GAN.
Theoretical Results. There are a series of negative the-

oretical results concerning DP in the non-interactive set-
ting [17,18,20,22–24,47]. These results have been interpreted
“to mean that one cannot answer a linear, in the database size,
number of queries with small noise while preserving privacy”
and to motivate “an interactive approach to private data anal-
ysis where the number of queries is limited to be small –
sub-linear in the size n of the dataset” [18].

We point out that, theoretical negative results notwithstand-
ing, non-interactive publishing can serve an important role in
private data publishing. The negative results essentially say
that when the set of queries is sufficiently broad, one cannot
guarantee that all of them are answered accurately. These
results are all based on query sets that are broader than the
natural set of queries in which one is interested. For example,
suppose the dataset is one-dimensional where each value is an
integer number in domain [m] = {1,2 . . . ,m}. These results
say that one cannot answer counting queries for arbitrary sub-
sets of [m] with error less than Θ(

√
n), where n is the size

of the dataset. However, range queries, which are likely to
be what one is interested in, can be answered with less error.
Moreover, these results are all asymptotic and do not rule
out useful algorithms in practice. When one plugs in actual
parameters, the numbers that come out often have no bearing
on practice.

8 Discussion and Limitations

In this section, we discuss the application scope and limita-
tions of PrivSyn.

Only Applicable to Tabular Data. PrivSyn focuses on the
tabular data and cannot handle other types of data such as
image or streaming data. Note that other existing methods
(PrivBayes, PGM and DualQuery) also have this limitation.
We defer the application of PrivSyn to image dataset and
sequential dataset to future work.

Miss Some Higher Dimensional Correlation. PrivSyn
only considers low-degree marginals that may not capture
some high-dimensional correlation information. Notice that
other marginal selection methods such as PrivBayes and
BSG also use low-degree marginals to approximate the high-
dimensional datasets and also have this limitation. To capture
higher dimensional correlation, one possibility is to consider
all triple-wise marginals or higher-dimensional marginals;
however, doing this may introduce too much noise for each
of the marginal, resulting in inaccurate selection. In practice,
low-dimensional marginals are sufficient to capture enough
correlation information, as illustrated on the four real-world
datasets used in our experiments.

9 Conclusion

In this paper, we present PrivSyn for publishing a synthetic
dataset under differential privacy. We identify the core steps



in the process and summarize previous studies for each step.
PrivSyn achieves the state-of-the-art by proposing novel meth-
ods for all steps. We extensively evaluate different methods
on multiple real-world datasets to demonstrate the superiority
of PrivSyn.
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A Missing Proofs

Proof of Theorem 5: Publishing m InDif scores with
N (0,8m/ρ′I) satisfies ρ′-zCDP.

Proof. The proof is trivial given Lemma 4, Theorem 1 and
Theorem 3: Because the sensitivity of InDif is 4, publishing it
with N (0,8m/ρ′I) satisfies ρ′/m-zCDP. For m InDif scores,
by composition, publishing all of them satisfies ρ′-zCDP.

Proof of Theorem 6: (1) The marginal M has sensitivity
∆M = 1; (2) Publishing M with noise N (0,1/2ρI) satisfies
ρ-zCDP.

Proof. We first prove the marginal function has sensitivity 1.
A marginal MA specified by a set of attributes A is a frequency
distribution table, showing the number of record with each
possible combination of values for the attributes. For two
marginals MA and M′A, where M′A is obtained by adding or
removing one user to MA. In general, for any A, it is obviously
that ∆M = |M−M′|2 = 1.

Given this fact, by Theorem 3, it is trivial that adding
N (0,1/2ρI) to a marginal satisfies ρ-zCDP.

Proof of Lemma 4: ∆InDif = 4.

Proof. Assume D contains n records and consider the two
attributes a and b. Denote the number of users for histogram
on attribute a as a1,a2, . . ., and b1,b2, . . . for b. For the two-
way marginal on a,b, denote the number of users for it as
α11,α12, . . ..

The metric InDifab is

InDifab = ∑
i j

∣∣∣∣aib j

n
−αi j

∣∣∣∣
If we add one user (wlog, whose values for a and b are x

and y),

InDif′ab = ∑
i6=x, j 6=y

∣∣∣∣ aib j

n+1
−αi j

∣∣∣∣+∑
i6=x

∣∣∣∣ai(by +1)
n+1

−αiy

∣∣∣∣
+ ∑

j 6=y

∣∣∣∣ (ax +1)b j

n+1
−αx j

∣∣∣∣+ ∣∣∣∣ (ax +1)(by +1)
n+1

− (αxy +1)
∣∣∣∣

Since |s|− |t| ≤ |s− t|, the sensitivity is given by
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∆InDif = |InDifab− InDif′ab|

≤ ∑
i6=x, j 6=y

∣∣∣∣ aib j

n(n+1)

∣∣∣∣
+∑

i6=x

∣∣∣∣ aiby

n(n+1)
− ai

n+1

∣∣∣∣
+ ∑

j 6=y

∣∣∣∣ axb j

n(n+1)
−

b j

n+1

∣∣∣∣
+

∣∣∣∣ (n+1)axby−n(ax +1)(by +1)+n(n+1)
n(n+1)

∣∣∣∣
=

∑i 6=x, j 6=y aib j−∑i6=x(aiby−nai)−∑ j 6=y(axb j−nb j)

n(n+1)

+
(n+1)axby−n(ax +1)(by +1)+n(n+1)

n(n+1)
(2)

=
(n−ax)(n−by)− (n−ax)(by−n)− (ax−n)(n−by)

n(n+1)

+
(n+1)axby−n(ax +1)(by +1)+n(n+1)

n(n+1)
(3)

=
4
(
n2− (ax +by)n+axby

)
n(n+1)

=
4(n−ax)(n−by)

n(n+1)
≤ 4

In the above derivation, Equation 2 is due to
aib j

n(n+1) ≥ 0, aiby
n(n+1) −

ai
n+1 ≤ 0, axb j

n(n+1) −
b j

n+1 ≤ 0 and
(n+1)axby−n(ax+1)(by+1)+n(n+1)

n(n+1) =
(n−ax)(n−by)

n(n+1) ≥ 0. Equa-
tion 3 is due to ∑i 6=x ai = n− ax, ∑ j 6=y b j = n− by and
∑i 6=x, j 6=y aib j = (n−ax)(n−by).

B Comparison of InDif and Entropy-based
Metrics

To evaluate the impact of noise on the dependency metrics,
one should consider both sensitivity and the range of the met-
rics. In this section, we compare InDif with two dependency
metrics in the literature with respect to sensitivity and range.
Mutual Information (MI) [53]. PrivBayes adopts mutual
information to measure the dependency between attributes.
For attribute A and B, their mutual information I(A;B) is de-
fined as 3

∑
a∈dom(A)

∑
b∈dom(B)

Pr [A = a,B = b] log
Pr [A = a,B = b]

Pr [A = a]Pr [B = b]

From [53], we know that the sensitivity of MI is 2
n log n+1

2 +
n−1

n log n+1
n−1 . Besides, the range of MI is [0, logc], where c =

max{cA,cB}, cA and cB are the number of possible values for
attribute A and B, respectively. Thus, the noise-range ratio of
MI is defined as

RMI =
1
n
·

2log n+1
2 +(n+1) log n+1

n−1

logc

3All logarithms used in this section are to the base 2.

c 2 50 100 1000 10000 100000

n ·RInDi f 2.0 2.0 2.0 2.0 2.0 2.0
n ·RMI 39.3 7.0 5.9 3.9 3.0 2.4
n ·REnt 41.8 7.4 6.3 4.2 3.1 2.5

Table 3: Noise-range ratio of different metrics when n =
600000 and c is varying.

Adult Accident Loan Colorado

InDif 0.017 0.028 0.161 0.137
MI 34 314 543 735

SUC 396 2858 4205 6933

Table 4: Relative error of different metrics when ε = 2.0.

Symmetrical Uncertainty Coefficient (SUC) [12]. BSG
adopts symmetrical uncertainty coefficient to measure the
dependency between attributes, which is defined as

corr(A,B) = 2−2
H(A,B)

H(A)+H(B)
where H(·) is the entropy function.

To achieve differential privacy, the authors in [12] propose
to add noise to three entropy values in corr(A, B), respec-
tively. The authors prove that the sensitivity of entropy is
1
n

[
2+ 1

ln2 +2logn
]
. Besides, the range of entropy is [0, logc].

Thus, the noise-range ratio of entropy is given by

REnt =
1
n
·

2+ 1
ln2 +2logn

logc
Comparison with InDif. Recall that the sensitivity and
range of InDif is 4 and [0,2n], respectively; thus, its noise-
range ratio is given by RInDi f =

1
n ·2.

We list the noise-range ratio of three methods in Table 3
when c varies. We set n = 600000 which is the case of three
datasets in our experiments. We observe that the noise-range
ratio of InDif is consistently smaller than the other two meth-
ods when c≤ 100000. In the three datasets in our experiments,
most of the attributes contains less than 100 possible values,
and the noise-range ratio of InDif is 3 times smaller than the
other two methods.

Comparison of Relative Errors. To further evaluate the
impact of noise on real-world datasets, we compare the rela-
tive errors between true values and noisy values of different
metrics in Table 4 when ε = 2.0. The relative errors are cal-
culated as 1

m ∑
m
i=1

∣∣∣ si−s̃i
si

∣∣∣, where m is the total number of pair-
wise marginals, si and s̃i are the true value and noisy value of
marginal i, respectively. We run each experiment 1000 times
and report the average relative error.

The experimental results show that the relative errors of
InDif are significantly smaller than MI and SUC. The rea-
son is that most of the MI values and SUC values are much
smaller than their maximal value logC, while most of the
InDif values are close to their maximal value 2n. For exam-
ple, in the Colorado dataset, 78% of the MI values and 87%
of the SUC values are smaller than 0.1 (much smaller than



logC). In another hand, 37% of the InDif values are larger
than 0.5n (close to 2n).

C Computational Complexity Analysis

In this section, we first theoretically analyze the computa-
tional complexity of different methods, and then empirically
evaluate the running time and memory consumption.

Time Complexity. The computational time for all methods
consist of two parts, marginal selection and dataset generation.

For PrivBayes, the marginals are selected by construct-
ing a Bayesian network. The general idea is to start with
a randomly selected node, then gradually add node to the
Bayesian network that maximally increase MI of the selected
nodes. To reduce time complexity, PrivBayes only consider
at most γ parents nodes in the selected nodes for each newly
added node. The number of pairs considered in iteration i is
(d− i)

(i
γ

)
, where d is the number of attributes; thus summing

over all iterations the computational complexity is bounded by
d ∑

d
i=1
(i

γ

)
= d
(d+1

γ+1

)
. In the dataset generation step,PrivBayes

simply sample records one-by-one using the Bayesian net-
work; thus the time complexity is O(nd), where n is the
number of synthetic records.

For PGM, except for marginal selection and dataset gener-
ation, it includes another component that learn the parame-
ters of Markov random field. The core idea is to use all the
marginals and gradient decent to update the parameters. The
gradient decent process would repeat tpg times until conver-
gence. In practice, tpg is always set to be larger than 10000.
Thus, the time complexity for learning Markov random field
is O(tpgkpg), where kpg is the number of marginals. The time
complexity for generating synthetic dataset is the same with
PrivBayes, i.e., O(nd). Notice that PGM does not provide
method to select marginals, we only report the time complex-
ity for parameter learning and dataset generation in Table 5.

For PrivSyn, there are m =
(d

2

)
= d(d−1)

2 possible pairwise
marginals in the marginal selection step. In iteration i of Algo-
rithm 1, we need to check m− i pairwise marginals; thus,
the time complexity is ∑

kps
i=1(m− i) = kpsm−

kps(kps+1)
2 =

O
(
kpsd2

)
. In the dataset generation step, we should go

through all marginals tps times to ensure consistency. Thus,
the time complexity is tpskps and we typically set tps = 100.

Space Complexity. The memory consumption of all methods
consist of two parts, marginal tables and synthetic dataset. The
memory consumption of synthetic dataset for all methods are
the same, i.e., O(nd). The memory consumption for marginal
tables differs in the number of marginals k? and the average
number of cells for each marginal C?. Specifically, PrivBayes
contains d− 1 marginals where each marginal contains at
most γ+1 attributes. The number of marginals for PGM is
unlimited; however, when the number of marginals is large,
the Markov random field can be dense, resulting in large
clique in the induced junction tree, which can be prohibitively

Time Complexity Space Complexity

PrivBayes O
(

d
(d+1

γ+1

)
+nd

)
O(Cpbd +nd)

PGM O(tpgkpg +nd) O(Cpgkpg +nd)
PrivSyn O

(
kpsd2 + tpskps

)
O(Cpskps +nd)

Table 5: Comparison of computational complexity for dif-
ferent methods. n,d,k? stand for the number of records in
synthetic dataset, the number of attributes and the number of
marginals, respectively; C? stands for the average number of
cells in each marginal; t? stands for the number of required
iterations in each method.

Datasets Adult Accident Loan Colorado

PrivBayes 1 min 2 min 7 min 10 min
PGM 4 min 18 min 40 min 1 h 10 min

PrivSyn 4 min 40 min 2 h 10 min 3 h 30 min

Table 6: Comparison of running time for different methods.

Datasets Adult Accident Loan Colorado

PrivBayes 0.06 0.13 0.36 0.43
PGM 0.06 0.13 0.36 0.43

PrivSyn 0.06 0.13 0.36 0.43

Table 7: Comparison of memory consumption of different
methods. The unit is Gigabytes.

large. PrivSyn uses the 2-way marginal; thus the average
number of cells in each marginal is relatively small. The
number of marginals is typically in the range of [100,700] in
our experiment.
Empirical Evaluation. Table 6 and Table 7 illustrate the
running time and memory consumption for all methods on
four datasets in our experiment.

The empirical running time in Table 6 shows thatPrivBayes
performs best in terms of running time, since it requires
only d− 1 marginals and the sampling process is very fast.
PGM uses the same set of marginals with PrivBayes, while
it needs additional time to learn the parameters of Markov
random field, and the gradient decent process should repeat
more than 10000 times. PrivSyn is slower than PrivBayes
and PGM since it uses much more marginals. For example,
when ε = 2.0, the Colorado dataset has about 700 marginals,
while PrivBayes and PGM only have 96 marginals. Although
PrivSyn costs more time than PrivBayes and PGM, it only
takes less than 4 hours to generate large dataset such as Col-
orado (97 attributes with total domain of 5 ·10162), which is
acceptable in practice considering its superior performance.

The empirical memory consumption in Table 7 shows that
the memory consumption for all methods are similar for the
same dataset. The reason is that the memory consumption for
all methods are dominated by the storage of synthetic datasets,
and the storage of marginal tables are less than 10 Megabytes
for all datasets.
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