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FairSR: Fairness-aware Sequential Recommendation

through Multi-Task Learning with Preference Graph

Embeddings
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Sequential recommendation (SR) learns from the temporal dynamics of user-item interactions to predict the

next ones. Fairness-aware recommendation mitigates a variety of algorithmic biases in the learning of user

preferences. This article aims at bringing a marriage between SR and algorithmic fairness. We propose a

novel fairness-aware sequential recommendation task, in which a new metric, interaction fairness, is defined

to estimate how recommended items are fairly interacted by users with different protected attribute groups.

We propose a multi-task learning-based deep end-to-end model, FairSR, which consists of two parts. One is to

learn and distill personalized sequential features from the given user and her item sequence for SR. The other

is fairness-aware preference graph embedding (FPGE). The aim of FPGE is two-fold: incorporating the knowl-

edge of users’ and items’ attributes and their correlation into entity representations, and alleviating the unfair

distributions of user attributes on items. Extensive experiments conducted on three datasets show FairSR can

outperform state-of-the-art SR models in recommendation performance. In addition, the recommended items

by FairSR also exhibit promising interaction fairness.
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1 INTRODUCTION

Sequential recommendation (SR) is a crucial research task in recommender systems (RS) [46].
SR considers the chronological order of user-item interactions, and models how users’ recent suc-
cessively accessed items affect the choices of the next ones. To be specific, given a recent sequence
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of items interacted by a user, SR aims at learning from the sequence to find which items will be
interacted by her in the near future. The SR task differs from conventional RS. While RS tends
to capture the global user preferences on items [13, 37], SR imposes the sequential dynamics of
user-item interactions. Hence, SR requires the learning of long-term and short-term interests and
intents of users [22, 30] in predicting the next items.

On the other hand, while algorithmic fairness is getting attention in the machine-learning com-
munity [24], fairness in recommender systems is investigated in various aspects. Typical issues
on recommendation fairness can be mainly divided into three groups. The first is dealing with
popularity bias concerning that few popular items are over-represented in the models [2, 9]. The
second is tacking demographic bias, in which the representations of users with imbalanced at-
tributes (e.g., gender and age) cannot be equally learned and lead to differentiated and unfair per-
formance [9, 10, 28]. The third is imposing statistical parity into recommendation, which aims
at ensuring similar probability distributions of item ratings for those users in different protected
attribute groups [42, 49].

Despite existing methods on fairness-aware recommendation receive satisfactory results, we
think there remain several opportunities and challenges. First, to the best of our knowledge, none
of the existing studies targets at considering fairness into sequential recommendation. This work
is an essential attempt to define and solve a fairness-aware SR problem. Second, previous fairness-
aware recommendations discussed above are not aware of the filter bubble effect [26], which states
that online personalization tends to effectively isolate users from a diversity of viewpoints. Since
people prefer to interact with what they liked or interacted with before, learning-based recom-
menders will reinforce user preferences to satisfy them [25]. We regard it as a kind of unfair rec-
ommendation for users who want to pursue novel or diverse items. Therefore, it is worthwhile to
design a new fairness concept so that recommenders can follow to generate items against the filter
bubble. Third, knowledge graphs (KG) that connect items based on their metadata or attributes
had been proven to be promising for recommendation systems [6, 34, 36]. Yet KG is not explored
for a sequential recommendation. Besides, while existing KG models item-item relationships, user
attributes can be incorporated into KG so that the item embeddings can encode the knowledge on
user traits.
In this article, we propose a novel fairness-aware sequential recommendation (FairSR)

task. Given user-attribute groups to be protected, i.e., a set of attribute groups that are concerned
for fairness (e.g., “Female & Age 20–29” and “Male & Age 50–59”), and the recent item subsequence
of a user, we aim at not only accurately predicting the next items, but also require that the recom-
mended items lead to Interaction Fairness (IF). Better IF means that recommended items tend to
be equally interacted by users of different protected attribute groups. Taking Figure 1 as an exam-
ple, we assume two protected attribute groups 1 and 2 are specified. Given sequences of five items
for users M and F, the recommended items of F are fairer in terms of IF, while those of M are unfair.
The reason is each recommended item of F tends to be equally interacted by groups 1 and 2, but it
is not for M. Note that although the given item sequences of users are not fair, we still require their
recommended next ones to be fair in terms of IF.When fighting against the filter bubbles, online so-
cial media platforms are in need of interaction fairness for their recommender systems. If an SR sys-
tem is aware of interaction fairness, a user will have a high possibility to receive items being inter-
acted by other users with diverse attribute groups, and the effect of filter bubbles can be mitigated.
As aforementioned, existing studies have investigated three common types of unfairness issues

in the recommendation, including popularity bias, demographic bias, and statistical parity. The
proposed IF in SR is to mitigate the filter bubble effect in recommender systems, rather than solv-
ing the three types of unfair recommendation. The difference between IF and the three types of
unfairness is two-fold. First, IF considers how other users interact with the recommended items,
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Fig. 1. Elaboration of fairness-aware SR. Note that for each user, every colored bar is an item, and their
associated notations vi

M
and vi

M
indicate the i th item that user M and F interact with. The Blue and red

parts inside each bar exhibit the proportions of historical interactionswith an item created by users belonging
to attribute groups 1 and 2, respectively.

which are expected to be fairly treated by user groups with different protected attributes. Both pop-
ularity bias and demographic bias concern about users/items with less attention (i.e., less popular
items, the minority attribute of users), and the proposed methods want them to be fairly treated in
the construction of recommender systems. Second, the recommended items with higher IF values
provide higher diversity for users, but those with maintaining statistical parity is to keep the dis-
tribution of item ratings the same before and after recommendation, instead of dealing with the
issue of diversity.
We propose a multi-task learning (MTL)-based end-to-end deep model, FairSR, to solve the

fairness-aware sequential recommendation task. The main task aims at performing SR by learning
sequential features from the given item sequence. A personalized feature gating, as well as two
convolution mechanisms, are performed to produce effective sequence representations that en-
code user preferences and sequential patterns. Another task of FairSR is to learn fairness-aware

preference graph embeddings (FPGE). Borrowing from the idea of knowledge graph embed-
dings [35], we encode both attributes of users and items and their relations into entity embeddings.
While user-item interactions are biased to some attribute groups, we propose a fairness-aware
triplet sampling to generate positive triplets of the head, relation, and tail so that the bias can be
mitigated in FPGE. Two tasks are connected with each other through a cross item-preference

learning (CIPL), which encodes shared features between items in SR and their corresponding
entities in FPGE.
We summarize the contribution of this article as follows:

—We propose a novel fairness-aware sequential recommendation problem that brings a mar-
riage between SR and recommendation fairness.We define a new fairness metric, interaction
fairness, which quantifies the degree of the filter bubble effect by estimating how recom-
mended items are interacted by protected attribute groups.

—We develop a newmulti-task learning-based deep model, FairSR,1 to solve the problem. The
main task is SR that predicts the next items based on the learned personalized sequential
features. The other task is FPGE that encodes both knowledge and fairness of attributes into
entity embeddings.

1The FairSR code and datasets can be accessed via this link: https://github.com/fairsr/fairsr.
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— Extensive experiments conducted on three real datasets exhibit not only promising recom-
mendation performance of FairSR, compared to several state-of-the-art models, but also a
fair recommendation in terms of interaction fairness.

We organize this article as follows. Section 2 reviews relevant studies, followed by Section 3
that describes the problem statement. In Section 4, we present the technical details of the proposed
FairSR model. We give the experimental results in Section 5, and conclude this work in Section 6.

2 RELATEDWORK

The relevant studies can be categorized into three groups, SR models, fairness-aware RS, and KG
enhanced recommender systems.
SRModels. In deep SR models, recurrent neural networks [14, 15, 41] and convolutional neural

networks [30] are used to extract long-term and short-term sequential features. SASRec [18] is a
self-attentive model that can identify the most significant items for prediction. HGN [22] is a hier-
archical gating neural network that adopts feature gating and instance gating to determine what
item features should be used for recommendation. MARank [44] is a multi-order attentive ranking
model that unifies both individual- and union-level item-item interaction into the preference infer-
ence model from multiple views. NextItNet [45] is a dilated convolution-based generative method
to learn long-range dependencies in the item sequence. JODIE [20] is a coupled recurrent neural
networkmodel that jointly learns the embedding trajectories of users and items from a sequence of
temporal interactions. Recent studies on SR deal with various limitations in real-world scenarios.
RetaGNN [16] delivers a graph neural network-based holistic sequential recommendation model
that accommodates SR under conventional, inductive, and transferable settings. Mecos [48] con-
centrates on mitigating the item cold-start problem in SR without utilizing side information. A
category-aware collaborative SR model [5] further proposes to improve the performance by utiliz-
ing multi-grained category information of items.
Fairness-aware RS. Various kinds of fairness are investigated and developed for RS. The most

well-known three are popularity bias [2, 9], demographic bias [9, 10, 28], and statistical parity:
[42, 49]. Popularity bias means a few popular items are over-represented in the models. A per-
sonalized diversification re-ranking approach is developed to increase the representations of un-
popular items [1]. Demographic bias indicates that the representations of users with imbalanced
attributes (e.g., gender and age) cannot be equally learned and lead to differentiated and unfair
performance. Incorporating multiple-source data [10] and performing data augmentation [28] can
alleviate demographic bias. Statistical parity aims at ensuring similar probability distributions of
item ratings for users in different protected attribute groups. Extracting and isolating sensitive
information from the factorized matrices [49] and re-ranking recommended items based on re-
quired attribute distributions [12] can improve statistical parity. In addition to such three fairness
issues, Jiang et al. [17] deal with account-level recommendation bias by identifying users. Although
fairness-aware embedding learning methods [4, 27] fairly encode attributes for node representa-
tion learning in graphs, they do not target at sequential recommendation. Beutel et al. [3] devise a
pairwise regularizer to improve pairwise fairness metrics in RS. Rather than considering fairness
in RS, our work aims at imposing fairness into SR.
KG-enhanced RS. KG embedding [35] provides additional features depicting the association

between items throughmetadata and attributes. KGs are leveraged in variousways, including prop-
agating user preferences over knowledge entities by RippleNet [33], multi-task learning with KG
Embedding by MKR [34], applying graph attention on a user-item-attribute graph by KGAT [36],
adopting LSTM to model sequential dependencies of entities and relations [39], and integrating
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induction of explainable rules from KG by RuleRec [23]. MARINE [11] combines homogeneous
and heterogeneous graph embedding learning mechanisms to recommend links between entities.
Furthermore, KGPL [31] assigns pseudo-positive labels to unobserved samples through knowl-
edge graph neural network-based predictions so that the recommendation model can better deal
with the cold-start issues. KGPolicy [40] leverages rich relations between items in the knowledge
graphs to sample high-quality negatives and boost the performance of recommenders. JNSKR [7]
presents a non-sampling and efficient learning mechanism based on an attentive neural network
for better knowledge graph-enhanced recommenders. KGIN [38] learns user intents by modeling
attentive combinations of relations in the knowledge graph to enhance the recommendation per-
formance and bring model interpretability. Although these studies successfully apply knowledge
graphs with various mechanisms for better recommender systems, exploiting KG to assist sequen-
tial recommendation is not well explored yet.
The main difference between our work and existing studies consists of three parts. First, in the

task of sequential recommendation, none of the existing methods (e.g., [18, 22, 30, 33, 34]) can
simultaneously model the personalized sequential features for users and the latent correlation be-
hind items via the concept of knowledge graphs. We believe that item representation learning
by utilizing the relations between items and attributes can better model user preferences. Second,
while some of the conventional recommendation models are devised to mitigate various unfair-
ness issues (e.g., FATR [49] for statistical parity, Fair-PSL [9] for demographic bias, and miscal-
ibration [2] for popularity bias), existing SR methods cannot deal with any fairness issues. The
proposed Fairness-aware Triplet Sampling mechanism in FairSR brings the item embeddings to be
aware of interaction fairness. Third, in FariSR, we devise the Personalized Feature Gating compo-
nent, which originates from gated recurrent unit [8] in the task of languagemodeling, to adaptively
select items specialized to the targeted user.

3 PROBLEM STATEMENT

In typical recommendation, we have a set of M users U = {u1, . . . ,uM } and a set of N items
V = {v1, . . . ,vN }. The matrix of user-item interactions is denoted by Y ∈ RM×N based on the
implicit feedback from users, in which yuv = 1 indicates user u had ever interacted with item v ;
otherwise, yuv = 0. While a user u sequentially interact with different items in a chronological
manner, we denote the corresponding item sequence as Su = (su1 , s

u
2 , . . . , s

u
L
), where L = |Su | and

sui ∈ V is an item index that user u has interacted with.
LetA be the universal set of demographic attribute groups. A demographic attribute group a ∈ A

can be the gender (g), age (o), country (c), or their combinations. We denote the set of all possible
values of a asZa , and denote a specific value as za ∈ Za . Let the functionAa : U → Za map a user
to her attribute groups. An attribute group value Aa (u) of user u can be, for example, “male” or
“female” for attribute group {Gender}, and “10–19&US”, “20–29&UK” or “30–39& JP” for attribute
group {Age, Country}. To enhance the readability, we use attribute and attribute value to represent
demographic attribute group and demographic attribute group value, respectively, throughout the
article.
We consider that fair recommendation expects an unbiased distribution on recommended items

with respect to a certain attribute. Hence, a criterion is required to measure the equality of user
interactions with items. Given an attribute value za of attribute a ∈ A, we first define adoption

proportion with respect to a certain item. The adoption proportion measures the percentage of
users with a specific attribute value adopting an item among all users who had ever interacted
with the item. Higher values of adoption proportion (e.g., ≈ 1.0) indicate that the item is highly
biased to a specific attribute value, and thus tends to be unfair with respect to the attribute. The
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definition of adoption proportion is given by

pv (z
a ) =

|{u |Aa (u) = za ,u ∈ U (v )}|
|U (v ) | , (1)

whereU (v ) is the set of users who had ever interacted with item v .
Since an item can be adopted by users with different values of a particular attribute, we further

define the adoption equality to collectively quantify the degree that an item is equally interacted
based on adoption proportion using all values of an attribute. The adoption equality considers all
possible values of an attribute to measure the fairness of an item being interacted. If each value of
an attribute contributes nearly the same to an item in terms of adoption proportion, the adoption
equality gets a higher score, and we can say that this item tends to be fairly interacted by users
with different values of that attribute. That said, the adoption of the item is not biased to users
with specific attribute values. Then we define adoption equality of item v , denoted by ea (v ), based
on information entropy, given by

ea (v ) = −
∑

za ∈Z a

pv (z
a ) logpv (z

a ). (2)

A higher value of ea (v ) indicates higher adoption equality of item v .
Given an attribute a ∈ A, for a list of items Su

t :L (t < L) that are recommended to user u, we
define its corresponding IF score F a (u) with respect to attribute a based on adoption equality,
given by

F a (u) =
∑

v ∈Su
t :L

ea (v ). (3)

A higher value of F a (u) indicates that a recommendation algorithm tends to recommend items to
user u with a higher fairness degree for attribute a. That said, the recommended items tend to be
unbiased to a specific attribute value za ∈ Za .
The FairSR problem can be defined as below. Given the earlier subsequenceSu1:t (t < L) of every

user u ∈ U , we aim at recommending a list of items from item set V to each user, i.e., predict
whether user u will interact with item v ∈ V after time t (whether the items in ground truth Su

t :L
will appear in the recommended list), and maximize the corresponding interaction fairness F a (u).

4 THE PROPOSED FAIRSR MODEL

The overview of our FairSR framework is presented in Figure 2, which consists of two tasks. One
is the main task SR, and the other is FPGE shown in Figure 3.When an item subsequence is entered,
the CIPL is used to learn shared features between items and their corresponding entities. Then
for the SR part, we design a personalized feature gating to distill effective sequential features,
followed by horizontal and vertical convolution mechanisms to extract sequential patterns. By
combining sequential features with item-item correlation and global user-item latent factors, SR
makes the prediction. For the FPGE part, we first construct a preference graph that depicts the
relations between items and attributes. We devise a relational attention-based information passing
mechanism to learn entity embeddings. The aim of FPGE is to predict tails based on embeddings
of heads and relations. Our framework is trained by alternately optimizing the two tasks.
Here, we summarize the novelty of this work into four points. First, we propose a novel task,

fairness-aware sequential recommendation, which aims at accurately recommending the next
items and simultaneously mitigating the effect of filter bubble in online services. Second, we
present a new fairness measure, IF, to quantify the degree of the filter bubble effect. Our fairness-
aware task is to recommend items that can increase IF values. Third, we present a novel multi-task
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Fig. 2. The main framework of FairSR.

Fig. 3. Fairness-aware Preference Graph Embedding.
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learning-based model, FairSR, to tackle the proposed task. FairSR brings a marriage between per-
sonalized sequential feature learning and preference graph embedding in the context of sequential
recommendation. Fourth, in the component of preference graph embedding, a new fairness-aware
triplet sampling strategy is proposed to ensure that the item embedding learning can encode the
fairness across the protected attribute groups.

4.1 Sequential Feature Learning

The basic idea of sequential recommendation is that the recent subsequent items can to some extent
influence the adoption of the next items. Hence, existing studies have presented a variety of mod-
els to learn the representations of item (sub)sequences, such as convolution neural network [30],
recurrent neural network [14], self-attention mechanism [18], and feature gating method [22]. To
robustly model the correlation between the current subsequence of items and the next items to
be recommended, we propose a joint gating and convolutional subnetwork, which combines per-
sonalized feature gating and two convolutional mechanisms. The personalized feature gating is to
select significant sequential features that are positively related to the next item prediction. Convo-
lutional mechanisms aim at modeling sequential patterns from the perspectives of both union-level
and point-level. This section consists of four phases: (a) Item Embedding Layer, (b) Personalized
Feature Gating, (c) Convolutional Layers, and (d) Aggregation Layer.
User & Item Embedding Layers. The input of our model is the one-hot vectors for each user

and each item. By feeding one-hot vectors into the user and item embedding layers, where each
of which is a hidden layer with dimension d , each user and each item can be represented by a
low-dimensional real-value dense vector. Let the user embeddings be U ∈ Rd×M , and also let the
item embeddings be V ∈ Rd×N , where d is the embedding dimension and set as d = 32 by default
throughout the article. Note we denote a user embedding vector and an item embedding vector
as u ∈ Rd and v ∈ Rd , respectively. Given the l th item subsequence Su1:t of a certain user u, its
corresponding embeddings can be represented by

Su,l =

⎡⎢⎢⎢⎢⎢⎣
| | |
v1 · · · vj · · · vt

| | |

⎤⎥⎥⎥⎥⎥⎦
,

where Su,l ∈ Rd×t , and vt ∈ Rd can be retrieved from the item embedding matrix V.
Personalized Feature Gating. For different users, it is various that which of items in the cur-

rent sequence are more effective in predicting next ones. The selection of representative items
needs to be user-specific. In other words, the feature gating should be personalized to every user.
To fulfill feature gating, we take advantage of the gated linear unit (GLU) [8], which is originally
devised to detect and propagate effective word embeddings for predicting next word in natural lan-
guage modeling. We exploit GLU to find what a useru cares about along the sequence of items Su,l .
We refer to inner product-based feature gating [22] to distill item features to users’ preferences.
The distilled features can be derived through

S
F
u,l = Su,l ⊗ σ

(
Su,l ·Wд1 + u ·w�д2

)
, (4)

where SF
u,l
∈ Rd×t , u ∈ Rd is the embedding of user u, Wд1 ∈ Rt×t , and wд2 ∈ Rt are learnable

weights. Each user embedding u is generated through feeding the one-hot vector of a user into a
d-dimensional hidden layer, where d is set as 32 by default. ⊗ is the element-wise product between
matrices, and σ is the sigmoid function. The distilled sequential feature matrix S

F
u,l

captures user

preferences from past items to the next one, and will be used in follow-up layers.
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Convolutional Layers. Equipped with the distilled sequential features, we aim at learning
sequential patterns by treating S

F
u,l

as an image. We exploit convolution filters to search for se-

quential patterns. Two convolutional filters are adopted. One is horizontal convolution, and the
other is vertical convolution. Horizontal convolution filters (h × d matrices, h = 2 by default) are
created to find union-level sequential patterns, which mean how features of a few consecutive
items lead to a particular next item. Vertical convolution filters (t ×1 matrices) are devised to learn
point-level sequential patterns, which refer to how each feature (dimension) distributes over the
item subsequence affect the prediction.
Horizontal Convolution Filters. This layer contains nh horizontal filters Ψj ∈ Rd×h , 1 ≤ j ≤ nh ,

where h ∈ {1, . . . , t } is the width of a filter. For instance, in Figure 2, we can choose nh = 4 filters if
t = 2, in which two for eachh in {1, 2}. Every filterΨj moves from left to right on SF

u,l
, and produces

convolved values with horizontal dimensions from item 1 to t − h + 1 in item subsequence Su1:t .
The resulting vector cj of horizontal convolution with filter Ψj can be obtained by

c
j =

[
· · · ,ϕc (Si :i+h−1 � Ψj ), · · ·

]
, (5)

where j = 1, 2, . . . , t−h+1, S is SF
u,l

for simplicity, � is the element-wise multiplication, andϕc (·) is
the activation function for convolutional layers (tanh is used by default). Since we have nh filters,
we can derive the resulting matrix D ∈ R(t−h+1)×nh = [c1, c2, . . . , cnh ].

Vertical Convolution Filters. This layer has nv vertical filters Λj ∈ R1×t , 1 ≤ j ≤ nv . Every filter
Λj operates on each embedding dimension of SF

u,l
, and thus generatesd convolved values. Since the

derivation of convolved values can be considered as the weighted sum of Λj on each embedding
dimension of SF

u,l
, we can depict the vertical convolution operation using the inner product, and

have the resulting vector c̄j by

c̄
j =

⎡⎢⎢⎢⎢⎣· · · ,
t∑

i=1

Λj
i · S�i , · · ·

⎤⎥⎥⎥⎥⎦ , (6)

where Si is the ith row of matrix S
F
u,l

. In other words, the vertical convolutional layer aggregates

the embeddings of past t items through a variety of filters. Since we have nv filters, we can obtain
the resulting matrix D̄ ∈ Rd×nv = [c̄1, c̄2, . . . , c̄nv ].
Aggregation Layer. Since the aim is to generate the effective representation for user u’s item

subsequence SF
u,l

, we aggregate the convolution results into sequence-level embeddings. We apply

max pooling to every horizontal convolved vector cj and every vertical convolved vector c̄j . By
doing so, we can extract the significant features from all values produced by a particular filter. As
a result, for nh horizontal and nv vertical filters, we can obtain the corresponding aggregated vec-
tors shc

u,l
∈ Rnh and s

vc
u,l
∈ Rnv . Then such two vectors are concatenated to be the final extracted

sequential feature vector, denoted by su,l = [shc
u,l
, svc
u,l

]. In short, the learned subsequence embed-

ding su,l encodes not only user preferences on past items from personalized feature gating, but
also captures the sequential patterns in both horizontal and vertical aspects.

4.2 Cross Item-Preference Learning

Since items can be characterized by how they are interacted by users, wemodel feature interactions
between items and entities in the preference graph. A cross item-preference learning module is
developed.We adopt the cross&compress unit [34] to implement the cross item-preference learning.
To be specific, the CIPL module is to model high-order interactions between items and their corre-
sponding entity features, which captures the ways that users with various attributes express their
preferences on items. CIPL can automatically control the cross knowledge transfer between tasks

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 1, Article 16. Publication date: February 2022.
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of sequential recommendation and entity embedding learning. Through the learnable weights that
bring embeddings of items and entities together in CIPL, the two tasks can affect and complement
one another. The CIPL module consists of two main steps, one is cross, and the other is compress.
The cross step is devised to produce an interaction matrix between items and entities based on
their representations. That said, the interaction matrix models how both sides correlate with each
other. The compress step utilizes the learned interaction matrix to map the embeddings of items
and entities into the same space, i.e., generating the updated embeddings of items and entities at
the next layer.
Each itemv ∈ V is associated with an entity e in the preference graph. We build a d×d pairwise

interaction embedding matrix Cl for the item embedding vl ∈ Rd and the entity embedding el ∈
R
d at the lth neural network layer. The matrix Cl depicts the cross feature interactions between

every itemv and every entity e , and can be derived byCl = vle
�
l
∈ Rd×d , where d is the dimension

of hidden layers. Then we generate the next-layer l + 1 feature vectors of items and entities by
projecting the cross feature matrix into their embedding space, given by

vl+1 = Clw
VV
l
+ C�l w

EV
l
+ bV

l
,

el+1 = Clw
VE
l
+ C�l w

EE
l + bEl ,

(7)

where w· ·
l
∈ Rd and b

·
l
∈ Rd are learnable parameters and bias vectors, respectively. Such a cross-

learning process can be denoted by

[vl+1, el+1] = C (vl , el ). (8)

We also denote the final updated item embeddingmatrix as V̄ . Equippedwith cross item-preference
learning, the recommendation module can adaptively encode the item/entity knowledge trans-
ferred from the preference graph so that the correlation between two tasks can be learned. Note
that we consider only lower-level layers in learning cross features. The reason is that lower-layer
features can be generally shared by different tasks, and thus are better to be transferred [21, 43].
Higher-layer features tend to be specific to the targeted tasks. The final embeddings of items and
entities after L layers can be represented by

ṽ = CLv (v, e),

ẽ = CLe (v, e),
(9)

respectively, where L is the number of layers in cross-learning and set as L = 2 by default.

4.3 Fairness-aware Preference Graph Embedding Learning

Preference graph embedding (PGE) aims at encoding both the properties of items and the pref-
erences of users into entity embeddings so that the recommender can be aware of items’ and users’
knowledge through the abovementioned cross item-preference learning. We also implement the
idea of fairness into PGE by considering how items are interacted by users with different attributes
when sampling the triplets of the head, relation, and tail in PGE. Below we first present how to
construct the preference graph, followed by the learning of entity embeddings with fairness-aware
triplet sampling. We will utilize Figure 3 to describe the proposed FPGE learning in a step-by-step
manner.

4.3.1 Preference Graph Construction. Users possessing some attributes may have a higher po-
tential to interact with items with certain properties. We construct a preference graph to represent
the relationships that user traits interact with item properties. The preference graph is utilized to
encode the knowledge on the correlation between user attributes and item properties in the entity
embeddings so as to benefit recommendation and provide fairness.
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Fig. 4. Illustration of preference graphs. (a) The graph schema contains p item properties (P) and q user
attributes (Q). In addition, “1+” indicates that one item entity can connect to one or multiple entities of an
item property, and “1” means that one item entity can connect to only one entity of a user attribute. (b) In the
toy example on the movie realm, “C”, “D”, “G”, and “A” are categories, director, gender, and age, respectively.
The first two are item properties, and the last two are user attributes.

At the first step of FPGE, as shown in Figure 3, we create the preference graph as a tri-partite
graph structure, denoted by G = (E,R ), where E and R are the sets of entities and relations,
respectively. There are three types of entities in E, including items, user attributes, and item prop-
erties. User attributes are those we described in Section 3. Item properties are metadata labels
associated with items, such as categories, producers, and origin. There are two kinds of relations
in R. One is connecting items to user attributes, and the other is connecting items to item proper-
ties. In other words, there are no edges between items, between user attributes, and between item
properties. An illustration of the preference graph is shown in Figure 4. The graph schema depicts
p item properties (P) and q user attributes (Q). Every item entity can be connected with only one

entity of a particular user attribute, and one or multiple entities of a particular item property.
In the toy example of Figure 4(b) on the movie realm, which contains 2 user attributes and 2

item properties. Each item entity connects to only one gender (G) value and only one age (A)
value. Besides, each item entity can connect to one or multiple movie categories and directors. For
instance, the movie “Inception” is connected to categories “Sci-Fi” and “Action.”
The aim of connecting an item to a user attribute is to not only learn how their correlation,

but also enables the incorporation of fairness in PGE learning, which will be described in the
following part. However, items are not directly related to user attributes. For each item v ∈ V
and each attribute a ∈ A, we connect v to only one of a’s values za� ∈ Za if za� takes the major

proportion among users who had ever interacted withv . The selection of major attribute value za�
for item v can be depicted by:

za� = arg max
za ∈Z a

pv (z
a ), (10)

where pv (z
a ) is the adoption proportion introduced in Section 3.

4.3.2 PGE Learning. We consider PGE learning as a kind of knowledge graph embedding [35].
In PGE learning, entities in the preference graph can be divided into three types, head (h), relation
(r ), and tail (t ), which can be treated as a triplet (h, r , t ). While each item has a corresponding item
entity in the preference graph, multiple layers of cross item-preference learning (Section 4.2) will
first convert the original item embeddings to their latent representations of head entities h, i.e., h =
ẽ = CLe (v, e). In the meanwhile, the each relation r is also processed through L fully-connected

neural network layers, given by r =ML (r0), where r0 is the initialized one-hot encoding vector of

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 1, Article 16. Publication date: February 2022.



16:12 C.-T. Li et al.

relation IDs or types, andML (x) = σ (Wx+b) is an L-layer fully-connected neural network with
trainable weights W, bias b, and the non-linear activation function σ (·). The process of learning
PGE consists of three parts, information passing, relational attention, and tail prediction.
Information Passing. An entity can participate in one or multiple triplets, and thus can be

regarded as an intermediate to pass information from one triplet to another in the preference
graph. For example, in Figure 4(b), entity “Frozen” is involved in two triplets on item properties
“C: Animation” and “D: C. Buck” and two triplets on user attributes “G: Female” and “A: 20–29.”
The last two can be indirectly depicted by the first two through information propagation from
the first two to “Frozen”, which is further passed to the last two. In other words, we encode user
attributes and item properties (i.e., neighbors) into item entities in direct and indirect manners.
Let Nh = {(h, r , t ) |(h, r , t ) ∈ G} be the set of triplets whose head is h, which is the item entity.

As shown in Figure 3, at the third step of FPGE, we use the neighbors of entity h to represent h
itself via linear combination

h =
∑

(h,r,t )∈Nh
α (h, r , t )t, (11)

where α (h, r , t ) is the relational attention weight that determines how the edge (h, r , t ) contributes
to the representation of head h from tail t conditioned on relation r . We can also consider α (h, r , t )
as a gate that decides how much information is being passed from t to h through r .
Relational Attention. We learn the relational attention weights by graph attention mecha-

nisms [32, 36] at the second step of FPGE, as shown in Figure 3. The idea is to estimate the distance
between entityh and tail t by projecting them into the space of relation r , and allow those head-tail
pairs with shorter distance to have higher attention weights. Higher Similarity between vectors h
and t conditioned on relation r leads to much information propagated from t to h. The derivation
of relational attention is given by

α (h, r , t ) = (Wr t)
�ρ (Wrh + r), (12)

where ρ is the non-linear activation function tanh, andWr is a matrix of learnable weights. Then
we further normalize the attention weights over all triplets that entity h participates in based on
the softmax function, given by

α (h, r , t ) =
exp(α (h, r , t ))∑

(h,r ′,t ′)∈Nh exp(α (h, r ′, t ′))
. (13)

The resultant attention scores are used in Equation (11) to highlight which item properties and
user attributes provide stronger correlation signals to item entities.
Tail Prediction.At the last step of FPGE, as shown in Figure 3, we concatenate the derived head

and relation embedding vectors h and r together. By feeding it into a K -layer fully-connected
neural network (K = 1 by default), our target is to predict the tail embedding t, given by t̂ =

MK (h, r), where t̂ is the predicted tail embedding. Since we will eventually put the PGE learning
into the final loss function, for each triplet (h, r , t ), the normalized inner product is used to generate
a score b that measures the goodness of the PGE task, given by

b (h, r , t ) = σ (t�t̂), (14)

where t is the real-value embedding vector of tail t .

4.3.3 Fairness-aware Triplet Sampling. We argue the original random triplet sampling brings
unfair attribute information in entity embeddings. Past studies pointed out that the bias or un-
fairness of a recommender comes from how users with particular demographic attributes prefer
to interact with some items [2, 9, 10], leading to imbalanced distributions of user attributes on
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items. Hence, random triplet sampling is biased to produce triplets containing entities of popular
attributes, which further prohibit recommenders from being fair.
To remedy the bias and impose the fairness, we aim at making the item head embeddings be

aware of fairness on user attributes through a proposed fairness-based triplet sampling (at the
fourth step of FPGE, as shown in Figure 3), which consists of two phases. First, we adjust the
probability of each triplet being sampled. Second, we devise an item head-based sampling strategy.

Specifically, given the targeted set of attributes Ã considered for the fairness, for every head hv of

item v , we first identify its set of neighboring entities N Ã
hv
, which belong to user attribute a ∈ Ã.

For each tail entity tza ∈ N Ã
hv
, the probability that triplet (hv , r , tza ) being sampled is proportional

to the reciprocal of the number of users with attribute value za who had interacted with itemv via

π (hv , r , tza ) =
1/|{u |Aa (u) = za ,u ∈ U (v )}|∑

za
′ ∈Z a 1/|{u |Aa (u) = za′,u ∈ U (v )}| . (15)

Take the head entity of item “Interstellar” in Figure 4(b) as an example, assume 20 “Male” users
30 “10–19” users had interacted with “Interstellar”, then we have π (“Interstellar”, r , “Male”) =

1/20
1/20+1/30 and π (“Interstellar”, r , “10–19”) =

1/30
1/20+1/30 .

Based on Equation (15), if item v is frequently interacted by users with attribute value za , we
lower down the probability of the corresponding triplet (hv , r , tza ) being sampled. By doing so,
we can have equal sampling possibility values for entities of all possible values of every attribute.
After deriving the probabilities of all triplet (hv , r , tza ), we normalize them to be in [0, 1] for positive
triplet sampling. The negative triplets are also sampled based on item heads. We randomly select
an equal number of non-connected user-attribute tails to be the negative triplets.

4.4 Modeling Item-Item Correlation

The next items being recommended is influenced by the correlation between single items in the
current item subsequence [46], in addition to their sequential effect. An existing study also ex-
tracted rules exhibiting a strong correlation between next and current items [23]. To exploit such
item-item correlation, we model the correlation between the updated embeddings (i.e., after cross
item-preference learning) of all items V̄ and the original item embeddings in the subsequence Su,l .
The inner product is applied to obtain a correlation score, given by

∑

vj ∈Su,l
v
�
j · V̄, (16)

where V̄ ∈ Rd×N is the updated item embedding matrix (after cross-learning in Section 4.2). This
score reflects the correlation between each item in Su1:t and each candidate item v ∈ V .

4.5 Prediction Layer

The prediction of the next items consists of three parts. First, we adopt the conventional matrix
factorization [13] to capture the long-term interests of users. Second, we consider the interaction
between users and the sequential features learned in Section 4.1 to model short-term interests
of users. Third, the item-item correlation is incorporated in the prediction. For a given l th item
subsequence, the predicted score of user u on item v can be represented by:

ŷu,v = ū
� · v̄ + s�u,l · v̄ +

∑

vj ∈Su,l
v
�
j · v̄, (17)
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Table 1. Statistics of Datasets

# Users # Items # Interactions # PG triplets # Seqs

Instagram 1,007 4,687 219,690 23,784 71,216
MovieLens-1M 619 2,347 125,112 14,368 83,408
Book-Crossing 384 14,910 70,696 17,232 20,232

Seqs denotes “sequences”.

where ū =ML (u) ∈ Rd is the updated user embedding after fully-connected layers, u is the input
user embedding, v̄ ∈ Rd is a column vector of the updated item embedding matrix V̄. We expect
the true item v adopted by user u can lead to a higher prediction score ŷu,v .

4.6 Model Training

The overall loss function consists of two parts. One is the loss for user-item prediction in SR, and
the other is the loss for FPGE.We optimize the SR part byBayesian PersonalizedRanking (BPR)
objective [29], i.e., the pairwise ranking between positive and non-interacted items. In addition,
we optimize the FPGE part by increasing the score for all positive triplets while decreasing the
score for all negative triplets. The loss function is as follows:

J =JSR + JF PGE + λ



Θ


22

=
∑

(u,v,Su
l
,v ′)∈D

− logσ (ŷu,v − ŷu,v ′ )

− λ1 ��
∑

(h,r,t )∈G
b (h, r , t ) −

∑

(h,r ′,t ′)�G
b (h, r ′, t ′)���

+ λ2



Θ


22,

(18)

where Su1:t denotes one t-length item subsequence of user u, v ′ is one non-interacted item, D is
the entire dataset, (h, r ′, t ′) indicates negative triple sampling for efficient training, Θ contains all
learnable parameters in the neural network, and λ1 and λ2 are the balancing hyperparameters. We
utilize Adam [19] to adaptively adjust the learning rate during learning. In each training iteration,
since our ultimate goal is for SR, we first repeat train the SR part for ϵ times (ϵ = 3 by default), and
train the FPGE part once.

5 EXPERIMENTS

We conduct a series of extensive experiments to answer the following four evaluation questions.

— EQ1: Can the proposed FairSR outperform state-of-the-art models in the sequential recom-
mendation?

— EQ2: Is FairSR able to improve the fairness of recommended items, comparing to other
fairness-aware models?

— EQ3: How does each component of FairSR contribute to the recommendation performance?
— EQ4: Is FairSR robust to the sensitivity of various hyperparameters?

5.1 Evaluation Setup

Datasets. Three datasets are employed in the evaluation. (a) Instagram: a user check-in records
on locations [47] at three major urban areas, New York, Los Angeles, and London crawled via
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InstagramAPI in 2015. Check-in locations are treated as items. (b)MovieLens-1M:2 a widely-used
benchmark dataset for movie recommendation. (c) Book-Crossing:3 it contains explicit ratings
(from 0 to 10) of books in the Book-Crossing community. Since MovieLens-1M and Book-Crossing
are explicit feedback data, we follow MKR [34] to convert them into implicit feedback (i.e., 1 in-
dicates that the user has rated the item and otherwise 0. The threshold of positive ratings is 4
for MovieLens-1M 9 for Book-Crossing. Since the main task is SR and we need user attributes
for fairness, we preprocess the datasets by removing users without any attributes and users con-
taining fewer than 4 interactions with items. The data statistics are summarized in Table 1. We
have demographic attributes gender and age in both Instagram and Book-Crossing, and gender
in MovieLens-1M. We take 10 years as the range of an attribute value for age. The protected at-
tribute groups are composed of all combinations of attribute values in respective datasets.

Competing Methods. We compare several FiarSR with state-of-the-art methods and baselines.
Their settings of hyperparameters are tuned by grid search on the validation set.

—Caser4 [30] is a sequence embedding model that learns sequential features of items through
convolution mechanisms.

—RippleNet5 [33] is a memory-network-like approach that propagates user preferences on
items via a knowledge graph.

— SASRec6 [18] is a self-attention-based sequential model that utilizes the attention mecha-
nism to identify relevant items and their correlation in entire item sequences.

—MKR7 [34] (state-of-the-art) is a multi-task learning-based model that devises a task inter-
action learning to combine tasks of user-item matching and knowledge graph embedding.

—HGN8 [22] (state-of-the-art) is a hierarchical gating network that learns the item subse-
quence embeddings through feature gating in long and short aspects, and models the item-
item relations.

—HGN+MKR (state-of-the-art+state-of-the-art): we replace the recommendation module of
MKR [34] with HGN [22] so that the knowledge graph embedding can be incorporated for a
sequential recommendation. HGN+MKR is a very strong competitor as being capable of the
power of both HGN and MKR.

— FATR9 [49] is a fairness-aware tensor-based model that imposes statistical parity into item
recommendation, i.e., ensuring similar probability distributions of item adoptions for users
in different protected attribute groups.

— FairSR-R replaces fairness-aware triplet samplingwith random sampling in FairSR. It serves
as a control method to validate whether FairSR leads to fairness.

— FairSR is the full version of our proposed model.

Evaluation Metrics. For SR performance, we adopt in terms of Precision@k (P@k), Recall@k
(R@k), and NDCG@k (N@k). To examine whether the recommended items exhibit the proposed
interaction fairness defined in Section 3, we design the difference of interaction fairness (DIF@k)
between the recommended items and the ground truth to be the metric, i.e., DIF = ˆIF − IF , where
ˆIF is the IF score generated from recommended items, and IF is the IF score of the corresponding

2https://grouplens.org/datasets/movielens/1m/.
3http://www2.informatik.uni-freiburg.de/~cziegler/BX/.
4https://github.com/graytowne/caser_pytorch.
5https://github.com/hwwang55/RippleNet.
6https://github.com/kang205/SASRec.
7https://github.com/hwwang55/MKR.
8https://github.com/allenjack/HGN.
9https://github.com/Zziwei/Fairness-Aware_Tensor-Based_Recommendation.
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Table 2. Main Experimental Results of Precision, Recall, and NDCG for Sequential Recommendation
in Three Datasets

Instagram MovieLens-1M Book-Crossing

P@10 R@10 N@10 P@10 R@10 N@10 P@10 R@10 N@10

Caser 0.0166 0.0367 0.0199 0.0932 0.0832 0.0953 0.0102 0.0235 0.0125
SASRec 0.0264 0.0414 0.0291 0.0942 0.0862 0.0991 0.0193 0.0491 0.0211
RippleNet 0.0325 0.0401 0.0389 0.1305 0.1134 0.1387 0.0191 0.0843 0.0274

MKR 0.0287 0.0404 0.0281 0.1010 0.1194 0.1165 0.0287 0.1072 0.0294
HGN 0.0314 0.0457 0.0321 0.1146 0.1172 0.1317 0.0215 0.0235 0.0319

HGN+MKR 0.0387 0.0402 0.0450 0.1347 0.1292 0.1419 0.0311 0.1131 0.0345
FATR 0.0298 0.0326 0.0363 0.0915 0.1045 0.0653 0.0205 0.0954 0.0326

FairSR-R 0.0473 0.0414 0.0492 0.1462 0.1395 0.1414 0.0462 0.1383 0.0435

FairSR 0.0464 0.0465 0.0485 0.1389 0.1271 0.1449 0.0408 0.1452 0.0416

Bold and underline indicate the best and the second-best in each metric (column), respectively.

ground truth. Higher positive values of Difference of Interaction Fairness (DIF) indicate better
fairness performance. The negative DIF value of a model means the fairness cannot get improved
by that model.

Experimental Settings. The ratio of training, validation, and test sets is 6 : 2 : 2. We repeat every
experiment 10 times, and report the average results. We follow existing studies [22, 30] to fix the
subsequence length t = 5 and L = 8, i.e., future length д = L− t = 3, by default, and will report the
results of varying t and д. In FairSR, we apply a grid search for selecting proper hyperparameters
using the validation set. Eventually we set λ1 = 1, λ2 = 10−6, and ϵ = 3 by default for all datasets.
We examine how different hyperparameters affect the performance in the following. All experi-
ments are conducted with PyTorch running on GPU machines (Nvidia GeForce GTX 1080 Ti).

5.2 Experimental Results

SRPerformanceComparison. To answerEQ1, we present the results on SR performance shown
in Table 2. We have the following findings. First, FairSR and FairSR-R consistently outperform the
state-of-the-art methods and baselines in terms of precision, recall, and NDCG. The superiority in-
dicates that although FairSR is originally devised to bring fairness into SR, it can still maintain and
even improve the SR performance. Second, FairSR-R is slightly better than FairSR. Such a result is
expectable because FairSR sacrifices popular (i.e., biased) attributes and items to bring fairness in
recommended items. Third, among state-of-the-art methods, HGN+MKR is the most competitive,
but is still worse than FairSR. This result implies that although HGN+MKR can incorporate knowl-
edge graphs among items into SR, the modeling of convolution mechanisms, relational attention,
personalized feature gating, and fairness-aware sampling in FairSR can further improve the perfor-
mance. Fourth, among the metrics, FairSR-R generates more significant improvement on Precision,
22.2%, 8.5%, and 48.6% improvement over the most competitive state-of-the-art HGN+MKR. Such
results prove the top-k items recommended by FairSR-R can accurately capture user preferences.

Fairness Comparison. To answer EQ2, we report the results on interaction fairness based on
different models, as shown in Table 3. We can find that FairSR consistently produces the highest
DIF scores over FairSR-R, the fairness baseline FATR, and other SR competing methods, and the
superiority is obviously significant. In terms of DIF scores, the most competitive method is FATR.
Although FATR leads to the second-best in Instagram and Book-Crossing datasets, our FairSR
can still generate the highest DIF scores in all datasets, and FATR apparently has unsatisfying
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Table 3. Main Experimental Results of the DIF in Three Datasets

DIF@10

Instagram MovieLens-1M Book-Crossing

Caser 0.2293 0.0103 0.1031
SASRec 0.1835 0.0158 0.1246
RippleNet 0.1331 −0.0039 0.0526

MKR 0.1390 −0.0759 0.0684
HGN 0.3074 0.0098 0.1138

HGN+MKR 0.4583 −0.0823 0.0710
FATR 0.6632 0.0042 0.1943

FairSR-R 0.6015 −0.0964 0.1572

FairSR 0.6979 0.0395 0.2217

Bold and underline indicate the best and the second-best in each metric

(column), respectively.

Fig. 5. Results on distributions of cumulative probability for IF, i.e., accumulated over users IF values, in
Instagram data.

SR performance. While DIF is an aggregated statistic over users, we further plot the cumulative
probability (y-axis) distributions on IF values (x-axis), i.e., accumulated by users’ IF values from
low to high. We compare IF cumulative probability distributions of FairSR, FairSR-R, the ground
truth (GT), and HGN+MKR, and the results are shown in Figure 5. All of these results indicate that
FairSR is able to not only improve SR performance, but also largely mitigate the unfairness coming
from biased interactions between items and user attributes. In addition, the results also imply the
proposed fairness-aware preference graph embedding truly takes effect. Moreover, it also provides
strong evidence and positive feasibility on having satisfying and fair SR. On the other hand, the
DIF values of competing methods are relatively low. We think the reason is existing SR tends to
learn user preferences on popular items, which leads to biased user-item interactions. Although
the fairness-aware RS method FATR can to some extent improve the DIF values, it still falls behind
our proposed FairSR.

Ablation Analysis. To answer EQ3, we examine the contribution of each component in FairSR.
In this experiment, we compare the FairSR full model with those replacing fairness-aware sam-

pling (-FS) with random sampling (i.e., FairSR-R), removing rational attention (-RA), re-
moving convolution mechanisms (-Conv), removing personalized feature gating (-PFG),
and removing FPGE (-FPGE). We also remove both personalized feature gating and FPGE
(-PFG&FPGE) from the full model since they are two main designs in this work. The results
in Table 4 show that each component truly contributes to the full model. FPGE contributes most,
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Table 4. Results on Recall and NDCG for Ablation Analysis

Instagram MovieLens-1M Book-Crossing

R@10 N@10 R@10 N@10 R@10 N@10

FairSR 0.0465 0.0485 0.1271 0.1449 0.1249 0.0416
-FS 0.0414 0.0492 0.1156 0.1414 0.1114 0.0435

-RA 0.0394 0.0469 0.1295 0.1379 0.1172 0.0381
-Conv 0.0439 0.0479 0.1093 0.1389 0.0962 0.0401
-PFG 0.0414 0.0516 0.1194 0.1487 0.0917 0.0372
-FPGE 0.0375 0.0294 0.1039 0.1075 0.0472 0.0199
-PFG&FPGE 0.0332 0.0340 0.0914 0.1064 0.0351 0.0128

Table 5. The Effect of the Sequence Length t and д for FairSR

Instagram MovieLens-1M Book-Crossing

R@10 N@10 R@10 N@10 R@10 N@10

t = 3 & д = 1 0.0375 0.0342 0.1194 0.1328 0.1134 0.0383
t = 3 & д = 2 0.0386 0.0353 0.1202 0.1377 0.1159 0.0394
t = 3 & д = 3 0.0409 0.0373 0.1214 0.1401 0.1217 0.0417
t = 5 & д = 1 0.0403 0.0385 0.1235 0.1392 0.1207 0.0395
t = 5 & д = 2 0.0451 0.0436 0.1229 0.1413 0.1221 0.0403
t = 5 & д = 3 0.0489 0.0473 0.1247 0.1459 0.1253 0.0424

t = 8 & д = 1 0.0433 0.0423 0.1301 0.1411 0.1229 0.0403
t = 8 & д = 2 0.0468 0.0439 0.1319 0.1427 0.1217 0.0413
t = 8 & д = 3 0.0479 0.0467 0.1337 0.1449 0.1244 0.0417

i.e., leading to the largest performance loss, indicating that FairSR highly relies on FPGE to encode
how users with different attributes interact with items. In addition, the model is significantly dam-
aged if both PFG and FPGE are removed (-PFG&FPGE). Such a result again verifies the usefulness
of our main technical designs. By looking into the details on the removal of each component in
Table 4, we can have the following two deeper insights. First, removing the -FS from the full FairSR
model can improve the performance of sequential recommendation in the cases of NDCG@10 on
Instagram and NDCG@10 on Book-Crossing. We think such a performance drop off “-FS” is rea-
sonable and acceptable. FairSR aims at striking a balance between SR performance and interaction
fairness. The model with fairness-aware sampling makes the training totally focus on generating
good SR performance, which is reflected on the results of “-FS”. Second, we can find that in the
case of Recall@10 on MovieLens, the SR performance gets slightly improved the FairSR model
without -RA. The potential reason can be that there is only one attribute “gender” considered in
the construction of the preference graph. Hence, the relational attention mechanism cannot work
well to differentiate items associated with various properties in the preference graph.

Hyperparameter Sensitivity. To answer EQ4, we present the effect of three hyperparameters:
the contribution of FPGE loss λ1 in Equation (18), the frequency of SR training ϵ in each iteration,
and the lengths of training and testing sequences t and д. The results are reported in Figure 6 and
Table 5.We can first find that higher λ1 values lead to better SR performance and higher interaction
fairness. Such a result implies the proposed fairness-aware preference graph embedding is able
to bring a positive effect on both SR and fairness. As for ϵ , paying too much attention to the
SR task (i.e., larger ϵ) weakens the contribution from the FPGE task that simultaneously models
interactions between items and attributes and alleviates unfairness via triplet sampling. A proper ϵ
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Fig. 6. The studies of hyperparameter sensitivity of FairSR for (a) the weight of FPGE loss λ1 and (b) the SR
training frequency ϵ .

is suggested to be 3 that strikes a balance between SR and FPGE in SR performance and fairness. On
the other hand, we can have the following observations. The length with t = 5 & д = 3 produces
better performance. Both increasing t with fixedд and increasingдwith fixed t lead to performance
improvement. This indicates that we need more training items (higher t ) to learn short-term user
interest, and the given item sequence can determine multiple preferred items (higher д).

6 CONCLUSION

While the filter bubble effect widely happens to online services, it is crucial to have it considered
in recommender systems. To alleviate the filter bubble effect, this article proposes and solves a
novel fairness-aware sequential recommendation task. We define a new metric, interaction fair-
ness, which reflects the degree that items are equally interacted by users with different protected
attribute groups. A multi-task learning approach, FairSR, is developed to not only learn personal-
ized sequential features, but also model fairness through embedding items and attributes into the
same space via a fair triplet sampling. Experimental results on three datasets prove the effective-
ness of FairSR over state-of-the-art SR models and other fairness-aware RS, and exhibit promising
interaction fairness.
There are several future extensions based on FairSR. First, the current preference graph pre-

sumes that there is no correlation between item properties and between user attributes. We are
seeking to automatically learn their underlying relationships. Second, scalability is an essential
issue for recommender systems. The next step is to have FairSR scalable to millions of interactions
between users and items. Third, in a realistic setting of recommender systems, new users and new
items are continuously coming. Hence, we plan to have FairSR to be capable of inductive learning.
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