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ABSTRACT
Nowadays in popular online social networks users can black-
list some of their friends in order to disallow them to access
resources that other non-blacklisted friends may access. We
identify three independent binary decisions to utilize users’
blacklists in access control policies, resulting into eight ac-
cess restrictions. We formally define these restrictions in a
hybrid logic for relationship-based access control, and pro-
vide syntactical transformations to rewrite a hybrid logic ac-
cess control formula when fixing an access restriction. This
enables a flexible and user-friendly approach for restricting
access in social networks. We develop efficient algorithms for
enforcing a subset of access control policies with restrictions.
The effectiveness of the access restrictions and the efficiency
of our algorithms are evaluated on a Facebook dataset.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Online social networks; hybrid logic; access control; black-
list

1. INTRODUCTION
Online social networks (OSNs) have been the dominating

applications in the Internet during the past few years. Lead-
ing actors, including Facebook, Twitter and Instagram, have
a large number of users. Facebook has more than one bil-
lion monthly active users, 500 million tweets are published
on Twitter everyday, and Instagram users share more than
70 million photos and videos on a daily base. Nowadays,
OSNs have become an indispensable part of people’s life.

A user can perform a lot of activities in OSNs, such as
building his profile, articulating social relationships and pub-
lishing photos and statuses. In addition, OSNs have pro-
vided access control schemes for users to decide who can
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Figure 1: Access control with blacklist in Facebook

view their resources. The access control schemes in OSNs
are relationship-based. In simple terms, a user can define
access control policies to allow others who are in a certain
relationship with him to access his resources.

With more personal information published in OSNs, some-
times a user can be bothered by others, e.g., due to harass-
ment or different political views. To deal with this, major
OSN companies have provided functionalities to allow a user
to put someone on his blacklist.1 Those who are on a user’s
blacklist are still his friends but they are forbidden automat-
ically to access his resources. For example, in Facebook, if a
user only allows his friends to view his profile, then friends
on his blacklist are disallowed to access his profile directly.2

In this way, blacklists can be treated as orthogonal to access
control policies. Figure 1 shows that a Facebook user can
define a policy to share his post with his friends of friends
but not with those on his blacklist.

However, to the best of our knowledge, the use of blacklists
for restricting access in OSNs has not been well-understood
and formally studied. For instance, suppose Alice and Bob
are friends and Charlie is on Bob’s blacklist. If Alice wants
to share her photo with her friends of friends, should she
also consider Bob’s blacklist to deny Charlie’s access? To
address such research problems, we propose a logical ap-
proach to formalizing blacklist and its utilization in access
control policies.

1It is called Restricted list in Facebook and list of muted
accounts in Twitter.
2Note that adding someone into a blacklist is different from
blocking him. This later is referred as unfriending in Face-
book and unfollowing in Twitter, while blacklists do not
change any relationship.



Our contributions. We summarize our main contributions
in this paper as follows.

• We adopt a hybrid logic [12, 4] to specify access con-
trol policies in OSNs (Section 2). In order to better
describe blacklist in policies, we propose a new path
semantics for the logic and prove that it is equivalent
to the original semantics of the logic (Section 3).

• Depending on different requirements, we classify three
dimensions on how blacklists can be considered, namely
globality, generality and strength. Each dimension is a
binary decision, giving rise to eight flexible restrictions
for users to use blacklists in their policies (Section 4).

• Since each policy can be affiliated with eight different
blacklist-restrictions, in order to free users from the
burden of defining access control policies precisely and
correctly, we propose a syntactical transformation to
rewrite an access control formula into its corresponding
formula under a blacklist-restriction. In this way, a
user only needs to define a policy and a restriction, our
transformation will then generate the corresponding
formula for enforcement automatically (Section 5).

• Most access control policies in OSNs mainly concen-
trate on the length of the path between the owner and
the requester. Therefore, to improve the evaluation
efficiency of this type of policies, we develop new al-
gorithms for finding paths between the owner and the
requester under different blacklist-restrictions. Experi-
ments on a real-life social network dataset demonstrate
their efficiency (Section 6 and Section 7).

• We perform experiments to study the effect of blacklist-
restrictions on access control policies. We find that the
restriction from the strength dimension is more pow-
erful than from the other two dimensions. In order for
a requester to access the owner’s information, we also
find that he should have different social closeness to the
owner for different blacklist-restrictions (Section 7).

2. A HYBRID LOGIC
In this section we present the hybrid logic introduced

in [12, 4] for relationship-based access control in OSNs.
An online social network (OSN) is modeled as a directed

graph, called social graph, and is denoted by G = (U , E),
where the set U of nodes consists of the users in the OSN,
and the set E of labeled edges represents the relationships
between the users. We use R = {α1, . . . , αm} to denote a
(finite) set of relationship types supported in the OSN. The
semantics of each relationship type can be defined as αi ⊆
U×U . For two users u, u′ ∈ U , if they are in a relationship of
αi ∈ R, we say (u, u′) ∈ αi. Moreover, each user is affiliated
with some basic information which are treated as attributes
of the user. Figure 2 depicts a sample social graph.

For every resource, the owner of the resource can specify
an access control policy for determining which users have
access to the resource. In the logic [12, 4], we have two
distinguished variables own and req for referring to the owner
of the resource in question and the user requesting access.

Syntax. The syntax of the hybrid logic is given below.

t ::= n | x
φ ::= t | p | ¬φ | (φ1 ∧ φ2) | (φ1 ∨ φ2) | 〈αi〉φ |@tφ | ↓xφ

In order to explain the meaning of the symbols and oper-
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Figure 2: A social graph example

ators informally, we first need to point out that a formula
is always evaluated at some user in the graph. The logic
supports two kinds of atoms, namely nominals (n) that rep-
resent a user’s name in the social graph, and variables(x).
Terms can function as formulas; they express that the user
at which the formula is being evaluated is identical to the
user referred to by the term. Propositional symbols (p) are
used for representing attributes of the user at which they
are evaluated. Negation (¬), conjunction (∧) and disjunc-
tion (∨) have their usual meanings. The intended meaning
of the modal operator 〈αi〉φ is that 〈αi〉φ is true at a user
u iff φ is true at some user u′ such that u and u′ stand in
relationship αi. The hybrid logic operator @t specifies that
the formula following it should be evaluated at the user that
the term t refers to. ↓x assigns the user at which the formula
is evaluated to the variable x.

The set of formulas of the hybrid logic is denoted by L.
We write (φ→ ψ) as an abbreviation for (¬φ∨ψ), and follow
the usual conventions for dropping brackets in formulas.

Semantics. A model Γ is a triple (G,W, V ), where G is a
social graph, for every nominal n, W (n) is a user in G, and
for every propositional variable p, V (p) is a set of users that
have the attribute as specified by p. A valuation is a map
from variables to U . The formulas of the logic are evaluated
on triples Γ, u, τ , where u ∈ U and τ is a valuation:

Γ, u, τ � x iff u = τ(x)
Γ, u, τ � n iff u = W (n)
Γ, u, τ � p iff u ∈ V (p)
Γ, u, τ � ¬φ iff Γ, u, τ 2 φ
Γ, u, τ � φ1 ∧ φ2 iff Γ, u, τ � φ1 ∧ Γ, u, τ � φ2

Γ, u, τ � φ1 ∨ φ2 iff Γ, u, τ � φ1 ∨ Γ, u, τ � φ2

Γ, u, τ � 〈αi〉φ iff ∃ u′ ∈ U s.t. (u, u′) ∈ αi ∧ Γ, u′, τ � φ
Γ, u, τ � @nφ iff Γ, u′, τ � φ, where W (n) = u′

Γ, u, τ � @xφ iff Γ, τ(x), τ � φ
Γ, u, τ �↓xφ iff Γ, u, τ [x 7→ u] � φ

Access control policies. The formulas in the hybrid logic
are used to express an access control policy that specifies
the conditions under which the access requester gets access
to a resource depending on his relation to the owner of the
resource. We define a subset of formulas of the hybrid logic
which can be meaningfully applied for this purpose:

Definition 1. Let L(own, req) be the set of formulas of the
hybrid logic that

• contain at most own and req as free variables, and

• are Boolean combinations of formulas of the two forms
@ownφ and @reqφ.

An element of L(own, req) is called an access control policy.

A user u can specify a policy φ for every resource he owns.
For determining whether a user u′ gets access to the re-



source, it needs to be checked whether Γ, u, τ |= φ. We use
uown to denote the owner and ureq to denote the requester.
In the following discussions, we often refer to the policies
@own〈f 〉〈f 〉req and @own〈f 〉〈f 〉〈f 〉req. The first one expresses
that ureq is a friend of a friend of uown, we call this policy the
2-depth policy. The second one expresses that ureq is three
friend steps away from uown, and is called the 3-depth policy.

3. PATH SEMANTICS
In this section, we introduce a new definition of the se-

mantics of the hybrid logic, which we call path semantics.
It is equivalent to the standard semantics (see Theorem 1
below), but it allows us to refer to the set of paths in the
social graph that makes a formula true. Being able to refer
to this set of paths is important for defining the different
ways in which blacklists can be used for restricting access.

When a formula is satisfied, there is a set of paths in the
social graph that witnesses the truth of the formula. In Fig-
ure 2, taking A as the owner and M as the requester, the
formula @own(〈f 〉〈f 〉req ∧ 〈f 〉〈f 〉〈f 〉req) is satisfied, and this
satisfaction is witnessed by the set {(A, I,M), (A,D, I,M)}
(path (A, I,M) witnesses @own〈f 〉〈f 〉req, path (A,D, I,M)
witnesses @own〈f 〉〈f 〉〈f 〉req). This notion of a set of paths
witnessing a formula can be formalized by defining the se-
mantics of hybrid logic with reference to sets of paths.

For formalizing this new path semantics, we first define
a path π to be a sequence of edges 〈e0, e1, . . . , en〉, where
ei ∈ E for 0 ≤ i ≤ n.3 For such a path π, π[k] denotes ek,
π[1 :] denotes 〈e1, . . . , en〉 and e◦π denotes 〈e, e0, e1, . . . , en〉.
For a set Π of paths, Π[1 :] denotes {π[1 :] | π ∈ Π}.

The path semantics for the hybrid logic is given as follows:

Γ, u,Π, τ � x iff Π = {〈〉} ∧ u = τ(x)
Γ, u,Π, τ � n iff Π = {〈〉} ∧ u = W (n)
Γ, u,Π, τ � p iff Π = {〈〉} ∧ u ∈ V (p)
Γ, u,Π, τ � ¬φ iff Π = {〈〉} ∧ @ Π′ s.t. Γ, u,Π′, τ � φ
Γ, u,Π, τ � φ1 ∧ φ2 iff ∃Π1,Π2 with Π1 ∪Π2 = Π s.t.

Γ, u,Π1, τ � φ1 ∧ Γ, u,Π2, τ � φ2

Γ, u,Π, τ � φ1 ∨ φ2 iff Γ, u,Π, τ � φ1 ∨ Γ, u,Π, τ � φ2

Γ, u,Π, τ � 〈αi〉φ iff ∃u′ ∈ U s.t. Γ, u′,Π[1 :], τ � φ∧
(u, u′) ∈ αi∧∀π ∈ Π, π[0] = (u, u′)

Γ, u,Π, τ � @nφ iff Γ, u′,Π, τ � φ, where W (n) = u′

Γ, u,Π, τ � @xφ iff Γ, τ(x),Π, τ � φ
Γ, u,Π, τ �↓xφ iff Γ, u,Π, τ [x 7→ u] � φ

The following theorem, which we prove in the appendix,
establishes that the path semantics is equivalent to the stan-
dard semantics for the hybrid logic presented in Section 2.

Theorem 1. For every u ∈ U , Γ, u, τ � φ iff there is a
set of paths Π such that Γ, u,Π, τ � φ.

4. RESTRICTING ACCESS IN OSNS
As stated in Section 1, adding a friend into a user’s black-

list is a very useful way in OSNs for restricting the friend to
access some resources of the user. Blacklists can be treated

3Normally the paths have the property that the end node
of an edge ei is the start node of the next edge ei+1 in the
path. But the hybrid logic is very expressive, and for some
special formulas, which in practice would hardly be used as
access control policies, the satisfaction of the formula can be
witnessed by a disconnected path, i.e., a path where some
edge does not start where the previous edge ended.

orthogonal to access control policies. In this section, we give
a straightforward model of blacklists in OSNs and formally
study their usage in relationship-based access control.

4.1 Blacklist in OSNs
We use a relationship type, called b, to model blacklists.

If (u, u′) ∈ b, then u′ is on u’s blacklist. For example, in
Figure 2, users C and A are friends, but C is on A’s blacklist.

Suppose that uown has an access control policy without
considering blacklist, we call this policy non-restricted. If
he wants to restrict the policy by systematically adding the
blacklist relationship to it, we say that uown blacklist-restricts
the access control policy, and the policy is a restricted policy.

In the examples used to motivate and illustrate our ap-
proach, we assume that the only relationships in place are
friend (f) and blacklist (b). However, all our formal defi-
nitions are phrased in such a way that they apply equally
when the OSN supports more relationships than these two.

4.2 Three Dimensions
Having defined the blacklist relationship in our social net-

work model, next we focus on how to blacklist-restrict access
control policies. The basic requirement is that ureq should
never be on uown’s blacklist. Beyond this requirement, there
exist other decisions to make when blacklist-restricting ac-
cess control policies. For instance, suppose that Alice and
David share two friends Bob and Charlie, and David is on
Bob’s blacklist. If Alice wants to share her photo with her
friends of friends and meantime forbids the access of users
on her friends’ blacklists, then David on one hand cannot
view the photo due to his relationship with Bob, while on
the other hand David can still access the photo via Charlie
as he is not on Charlie’s blacklist. This example shows that
it is necessary to identify and precisely define how blacklists
are used to restrict access in OSNs. Thanks to the path
semantics of the hybrid logic in Section 3, we can classify
blacklist-restrictions into three dimensions by considering
the following questions: (1) whose blacklist should be used,
(2) where blacklists should be applied, and (3) how many
paths need to be considered. Each dimension leads to a bi-
nary decision and is defined with the reference to the paths
witnessing the truth of the access control logic formula.

Whose blacklists should be used? It is clear that the blacklist
of uown should always be considered for blacklist-restricting
policies, i.e., the user following uown on a path from uown

to ureq cannot be on uown’s blacklist. Besides, other users’
blacklists can be considered as well. In the social graph
depicted in Figure 2, suppose that user A wants to share
his photo with his friends of friends. If A only considers
his blacklist, then N cannot access the photo as J is on A’s
blacklist. If A considers the blacklists of everyone on the
path, then K’s access is also denied as he is on F ’s blacklist.

If uown wants the blacklists of everyone on the path to be
considered for blacklist-restricting an access control policy,
uown should globally blacklist-restrict the policy (Gl). If on
the other hand uown only wants his own blacklist to be con-
sidered, he should locally blacklist-restrict the access control
policy (Lo). We name this restriction dimension globality.

Where blacklists should be applied? It is natural to require
that ureq should never be on uown’s blacklist. Besides, uown

may want no one on a path from him to ureq to be on his
blacklist, i.e., he may want to consider his blacklist on the
whole path. In Figure 2, suppose that A defines a 3-depth



policy. If A does not consider his blacklist on the whole
path, N can access the resource due to the path (A,E, J,N).
However, if A considers his blacklist on the whole path, then
N ’s access is denied as J is on A’s blacklist.

If uown wants no one on a path in the set of paths witness-
ing the access control policy to be on his blacklist, he should
perform a general blacklist-restriction to the policy (Ge). If
on the other hand uown only wants ureq not to be on his black-
list, he should perform a limited blacklist-restriction to the
policy (Li). We name this restriction dimension generality.

How many paths need to be considered? Having fixed the de-
cisions for the previous two dimensions, uown has determined
which set of paths are free of blacklist problems. There can
still be several paths from uown to ureq, some of which are
free of blacklist problems while others are not. In Figure 2,
there are two 3-depth paths from A to L ((A,C,H,L) and
(A,B,G,L)). Under the 3-depth policy, if A requires only
one path that is free of blacklist problems, L can access the
resource because of (A,B,G,L); if A requires all the paths
from him to ureq to be free of blacklist problems, L’s access is
denied as (A,C,H,L) does not satisfy the local restriction.

If uown just wants there to be some set of paths free of
blacklist problems witnessing the access control policy, he
should weakly blacklist-restrict the access control policy (W).
If on the other hand he wants that every set of paths witness-
ing the policy should be free of blacklist problems, he should
strongly blacklist-restrict the access control policy (S). We
name this restriction dimension strength.

We now formally define the three dimensions in terms of
the path semantics (Section 3). For every triple (X,Y, Z)
with X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and Z ∈ {W,S} and
every access control policy φ, we define the intended seman-
tics of the blacklist-restricted access control policy φ(X,Y,Z)

by defining the conditions under which access is granted to
ureq according to this blacklist-restricted access control pol-
icy. For defining these conditions, we first need to define the
predicate Valid(X,Y )(Π), whose intended semantics is that
the set Π of paths is free of blacklist problems according to
the choice (X,Y ) of values for the first two dimensions.

Definition 2. Let Γ = (G,W, V ) be a model and τ be a
valuation. For X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and a set Π of
paths, we define Valid(X,Y )(Γ,Π, τ) to hold iff the following
four properties are satisfied:

• If X = Lo, then for every u ∈ U such that (τ(own), u)
is an element of some π ∈ Π, (τ(own), u) /∈ b.

• If X = Gl, then for all u, u′ ∈ U such that (u, u′) is
an element of some π ∈ Π, (u, u′) /∈ b.

• If Y = Li, then (τ(own), τ(req)) /∈ b.

• If Y = Ge, then (τ(own), τ(req)) /∈ b, and for all
u, u′ ∈ U such that (u, u′) is an element of some π ∈ Π,
(τ(own), u) /∈ b and (τ(own), u′) /∈ b.

The set of formulas not involving 〈b〉 is denoted by L′.

Definition 3. L′(own, req) is defined to be L′∩L(own, req),
i.e., the set of access control policies not containing the
modality 〈b〉.

The following definition formally defines the intended se-
mantics of the restricted access control policy φ(X,Y,Z):

Definition 4. Let Γ = (G,W, V ) be a model, u ∈ U and
τ a valuation. Suppose X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and
Z ∈ {W,S}, and suppose φ ∈ L′(own, req).

LoLiW

LoLiS LoGeW GlLiW

LoGeS GlLiS GlGeW

GlGeS

Figure 3: Black-restriction lattice

• If Z = W, then Γ, u, τ � φ(X,Y,Z) iff there is a set Π of
paths such that Γ, u,Π, τ � φ and Valid(X,Y )(Π).

• If Z = S, then Γ, u, τ � φ(X,Y,Z) iff there is a set Π of
paths such that Γ, u,Π, τ � φ, and for every set Π of
paths such that Γ, u,Π, τ � φ, Valid(X,Y )(Π).

The eight ways of forming blacklist-restricted policies es-
tablish a lattice as shown in Figure 3. In the figure, we use,
for instance, GlGeS to present a restriction when the deci-
sions in each of the three dimensions are fixed as X = Gl,
Y = Ge, and Z = S. If a user’s access is denied by one
of the blacklist-restricted policies, then the same user’s ac-
cess is denied by any restricted policy above this policy in
the lattice. The following theorem, which we prove in the
appendix, expresses this statement formally:

Theorem 2. Let Γ = (G,W, V ) be a model, u ∈ U ,
τ a valuation and φ ∈ L′(own, req). Let (X1, Y1, Z1) and
(X2, Y2, Z2) be two triples with X1, X2 ∈ {Lo,Gl}, Y1, Y2 ∈
{Li,Ge} and Z1, Z2 ∈ {W,S}. If (X1, Y1, Z1) ≤ (X2, Y2, Z2)
in the blacklist-restriction lattice, then we have that Γ, u, τ �
φ(X2,Y2,Z2) implies Γ, u, τ � φ(X1,Y1,Z1).

To illustrate the eight different blacklist-restrictions, we
use the social graph in Figure 2 to present an example. We
assume that the owner is A and the policy is a 3-depth pol-
icy. Under the non-restricted policy, five users including L,
H, M , N and O can access the resource. Under different
restrictions, different users’ access are denied (see Table 1).
In the following, for each restriction we explain why some
users are granted and others are denied access. The com-
plete information in Table 1 follows from these explanations
by Theorem 2.

Restriction Denied users Restriction Denied users
LoLiW H LoLiS H,L,M
LoGeW H,M,N LoGeS H,L,M,N
GlLiW H,O GlLiS H,L,M,O
GlGeW H,M,N,O GlGeS H,L,M,N,O

Table 1: Denied users under different blacklist-restrictions

1. LoLiW. Under this blacklist-restriction, H’s access is
denied. The only path of length 3 from A to H is
(A, I,M,H), but I is on A’s blacklist, so this path
violates the restriction for Lo.



2. LoGeW. M ’s access is denied. There are two paths
from A to M . On the path (A,C,H,M), C is on
A’s blacklist which violates the restriction for Lo; on
(A,D, I,M), I is on A’s blacklist which violates the
restriction for Ge. N ’s access is also denied. The only
path from A to N is (A,E, J,N). On this path, J is
on A’s blacklist which violates the restriction for Ge.

3. GlLiW. O’s access is denied. On the only path from
A to O, namely (A,F,K,O), there exists a blacklist re-
lation, namely (F,K) ∈ b, thus this path does not sat-
isfy the restriction for Gl. M can access the resource.
There is one path from A to M , namely (A,D, I,M),
that does not violate the restrictions for Gl and Li.

4. GlGeW. L can access the resource. There is one path
from A to L, namely (A,B,G,L), that does not violate
the restrictions for Gl and Ge.

5. LoLiS. M ’s access is denied. There are two paths
from A to M . On the path (A,C,H,M), C is on A’s
blacklist which violates the restriction for Lo. Since
the restriction is S, M cannot access the resource. L’s
access is also denied. There are two paths from A to
L; the path (A,C,H,L) violates the restriction for Lo,
as C is on A’s blacklist. Since the restriction is S, L
cannot access the resource.

6. LoGeS. O can access the resource. The only path
from A to O, namely (A,F,K,O), does not violate the
restrictions for Lo and Ge.

7. GlLiS. N can access the resource. The only path from
A to N , namely (A,E, J,N), does not violate the re-
strictions for Gl and Li.

8. GlGeS. No one can access the resource.

5. SYNTACTICAL TRANSFORMATION
In Section 4, we give a semantic characterization of the

three dimensions for blacklist-restricting an access control
policy φ by defining the conditions under which φ(X,Y,Z) is
satisfied in a given context. In this section we define an algo-
rithm which – given an access control policy φ ∈ L′(own, req)
and a choice X,Y, Z of values for the three dimensions – syn-
tactically transforms φ to a policy φ[X,Y, Z] ∈ L(own, req)
such that φ[X,Y, Z] is satisfied in precisely the same con-
texts as φ(X,Y,Z). The model-checking algorithm from [4]
can then be applied for evaluating the blacklist-restricted
access control policy φ[X,Y, Z].

5.1 The Transformation Algorithm
Before presenting the algorithm that syntactically trans-

forms φ to produce φ[X,Y, Z], we need to define the notion
of a strictly positive subformula:

Definition 5. A subformula ψ of φ is strictly positive iff it
is not in the scope of a negation symbol in φ.

Next we give Algorithm 1 for transforming a formula into
disjunctive form, which means pulling out all strictly pos-
itive occurrences of ∨ in φ. The algorithm takes a hybrid
logic formula as input and returns a list of disjuncts.

In both Algorithm 1 and Algorithm 2 for syntactically
transforming φ, we have for-loops referring to subformulas
of φ. The only requirement on the order of the iterations of
these for-loops is that the iteration for a subformula χ of φ
must come after the iterations of all strict subformulas of χ.
Namely, we proceed from deeper to higher subformulas.

Algorithm 1 Disjunctive Form

Input: φ ∈ L
Output: a list DF (φ) of formulas in L
1: for χ a strictly positive subformula of φ do
2: if χ is of the form ψ1 ∧ (ψ2 ∨ ψ3) then
3: replace χ in φ by (ψ1 ∧ ψ2) ∨ (ψ1 ∨ ψ3)
4: else if χ is of the form (ψ1 ∨ ψ2) ∧ ψ3 then
5: replace χ in φ by (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)
6: else if χ is of the form @n(ψ ∨ χ) then
7: replace χ in φ by @nψ ∨@nχ
8: else if χ is of the form @x(ψ ∨ χ) then
9: replace χ in φ by @xψ ∨@xχ

10: else if χ is of the form 〈αi〉(ψ ∨ χ) then
11: replace χ in φ by 〈αi〉ψ ∨ 〈αi〉χ
12: else if χ is of the form ↓x (ψ ∨ χ) then
13: replace χ in φ by ↓xψ∨ ↓xχ
14: DF (φ)← {ψ | ψ is a disjunct of φ}

Algorithm 2 takes a formula φ as input and syntactically
transforms it to φ[X,Y, Z] ∈ L(own, req). The transfor-
mation is defined separately for weak blacklist-restrictions
(lines 2-12) and strong blacklist-restrictions (lines 13-27). In
both cases, we insert ↓xk’s and ↓yk’s into the formula (lines 3
and 15) in order to be able to refer to the nodes of the paths
satisfying the formula. We then use the bound variables xk,
yk to formulate the conditions of Definition 2 to ensure that
the specified blacklist-restriction in [X,Y, Z] is satisfied.

The following theorem, whose proof is sketched in the ap-
pendix, establishes the equivalence between the syntactical
transformation φ[X,Y, Z] and the semantically defined sat-
isfaction conditions for φ(X,Y,Z):

Theorem 3. Let Γ = (G,W, V ) be a model, u ∈ U , τ a
valuation and φ ∈ L′(own, req). Let X ∈ {Lo,Gl}, Y ∈
{Li,Ge} and Z ∈ {W,S}. Then Γ, u, τ � φ[X,Y, Z] iff
Γ, u, τ � φ(X,Y,Z).

We illustrate the syntactical transformation by showing its
results for some typical policies and blacklist-restrictions:

@own〈f 〉〈f 〉req[Gl,Li,W] =
@own ↓x1 〈f 〉 ↓y1↓x2 〈f 〉 ↓y2 (req ∧ ¬@x1〈b〉y1 ∧
¬@x2〈b〉y2) ∧ ¬@own〈b〉req

@own〈f 〉〈f 〉req[Lo,Ge,S] =
@own〈f 〉〈f 〉req ∧ ¬@own ↓x1 〈f 〉 ↓y1↓x2 〈f 〉 ↓y2 (req ∧
((@ownx1 ∧@x1〈b〉y1) ∨ (@ownx2 ∧@x2〈b〉y2) ∨@own〈b〉x1 ∨
@own〈b〉y1 ∨@own〈b〉x2 ∨@own〈b〉y2)) ∧ ¬@own〈b〉req

5.2 Blacklist-restriction in Practice
Allowing the users to write access control policies in a

hybrid logic gives them a lot of flexibility in the specifica-
tion of the policies. But in practice, if one has in mind
an OSN whose users are not all computer scientists, logi-
cians or mathematicians, one cannot expect users to be or
become competent in writing formulas in hybrid logic. In-
stead, we envisage an OSN to provide a tool to the users
that allows them to specify an access control policy in an
easy-to-understand and hence user-friendly way. This tool
would produce a hybrid logic formula to be used internally.
Such a tool would give the user various options for consider-
ing various information in the access control policy and for



Algorithm 2 Syntactical Transformation

Input: φ ∈ L′(own, req), X ∈ {Lo,Gl}, Y ∈ {Li,Ge},
Z ∈ {W,S}

1: let x1, y1, x2, y2, . . . be variables not occurring in φ
2: if Z = W then
3: replace every strictly positive subformula of φ of the

form 〈αi〉ψ by ↓xk 〈αi〉 ↓yk ψ.
4: for χ a strictly positive subformula of φ of the form

x, n, p or ¬ψ do
5: Kχ ← {k | some subformula ↓xk ψ of φ contains χ}
6: if X = Lo then
7: replace every strictly positive subformula χ of φ of

the form x, n, p or ¬ψ by χ ∧
∧
k∈Kχ(@ownxk →

¬@xk 〈b〉yk)
8: if X = Gl then
9: replace every strictly positive subformula χ of φ of

the form x, n, p or ¬ψ by χ ∧
∧
k∈Kχ ¬@xk 〈b〉yk

10: if Y = Ge then
11: replace every strictly positive subformula χ of φ of

the form x, n, p or ¬ψ by χ ∧
∧
k∈Kχ(¬@own〈b〉xk ∧

¬@own〈b〉yk)
12: ψ ← φ ∧ ¬@own〈b〉req
13: if Z = S then
14: for φi ∈ (DF (φ)) do
15: replace every strictly positive subformula of φi of

the form 〈αi〉ψ by ↓xk 〈αi〉 ↓yk ψ.
16: for χi,j a strictly positive subformula of φi of the

form x, n, p or ¬ψ do
17: Kχi,j ← {k|some subformula ↓xk ψ of φ con-

tains χ}
18: if X = Lo then
19: ψi,j ←

∨
k∈Kχi,j

(@ownxk ∧@xk 〈b〉yk)

20: if X = Gl then
21: ψi,j ←

∨
k∈Kχi,j

@xk 〈b〉yk
22: if Y = Ge then
23: ψi,j ← ψi,j ∨

∨
k∈Kχi,j

(@own〈b〉xk ∨@own〈b〉yk)

24: φi,j ← result of replacing χi,j in φi by χi,j ∧ψi,j
25: φi ←

∧
j ¬φi,j

26: φ← φ ∧
∧
i φi

27: ψ ← φ ∧ ¬@own〈b〉req
28: φ[X,Y, Z]← ψ

making the policy more stringent or more lax. One of the de-
cisions that a user has to make is whether and how to use the
information from his and other users’ blacklists. The three
dimensions discussed in the previous section constitute three
binary choices of how to use blacklist information in the pol-
icy. We believe that these three binary choices are simple
enough to make them comprehensible to non-expert users.

As we have seen in first part of this section, for every ac-
cess control policy φ not involving the modality 〈b〉 and any
choice of X,Y, Z for the three dimensions, there is an access
control policy φ[X,Y, Z] ∈ L(own, req) such that φ[X,Y, Z]
is satisfied in precisely the same contexts as φ(X,Y,Z). In
other words, the three dimensions for blacklist-restriction do
not allow us to express any policy that is not already express-
ible in the hybrid logic with the help of the modality 〈b〉.
But even if we assume the users to have some competence in
writing hybrid logic formulas, it would be cumbersome for
the users to write φ[X,Y, Z] themselves, for often φ[X,Y, Z]

Algorithm 3 Path Policy Evaluation

Input: uown, ureq, G, φ ∈ L′(own, req), X ∈ {Lo,Gl}, Y ∈
{Li,Ge}, Z ∈ {W,S}

Output: access permission
1: if (uown, ureq) ∈ b then
2: access denied
3: else
4: if Z = W then
5: for each path policy φ′ of φ do
6: extract rp and n from φ′

7: satisfiedφ′ ←Weak(uown, ureq,G, rp, n,X, Y )
8: if satisfiedφ′ = 1 then
9: access granted, return

10: if access permission is not set then
11: access denied
12: else if Z = S then
13: for each path policy φ′ of φ do
14: extract rp and n from φ′

15: (nopathφ′ , satisfiedφ′)←
Strong(uown, ureq,G, rp, n,X, Y )

16: if satisfiedφ′ = 0 then
17: access denied, return
18: if

∧
(φ′ of φ) nopathφ′ = 1 then

19: access denied
20: else
21: access granted

is much more complex than φ. Possibly in combination with
some tool for producing the basic formula φ, our approach
can be used for allowing users to flexibly use the informa-
tion from the blacklists for restricting their access control
policies without the need to write complex hybrid logic for-
mulas. This makes our approach a user-friendly framework
for restricting access in social networks.

6. PATH EVALUATION ALGORITHMS
In practice, especially in the most popular OSNs such as

Facebook, a user normally focuses on the length of the path
between him and the potential requesters when defining his
access control policies. In Facebook one could define a pol-
icy to allow his friends or friends of friends to view his pro-
file. In the hybrid logic, the policy can be represented as
@own〈f 〉req ∨@own〈f 〉〈f 〉req.

To evaluate this formula under a blacklist-restriction, we
can follow the procedure as described in Section 5 to trans-
form the policy into a blacklist-restricted policy. Then we
apply the local model-checking algorithm of Bruns et al. [4]
to evaluate the resulting policy on a social network model.
However, as we have seen with the two examples in Sec-
tion 5, after the transformation the size of the new formula
is usually getting larger, which in turn will make the evalu-
ation using model-checking inefficient: The model checking
algorithm needs to go through the structure of the formula
(see details in [4]).

In fact, to evaluate a policy that only focuses on the path
length from uown to ureq, we can first decompose it into sev-
eral sub-policies, e.g., @own〈f 〉req and @own〈f 〉〈f 〉req for the
above policy, and evaluate each sub-policy by finding the
qualified path(s) from uown to ureq. During the path-finding
process, we can perform optimizations such as filtering out
the users who are on uown’s blacklist on-the-fly. In the end,



Algorithm 4 Weak

Input: uown, ureq, G, rp, n, X ∈ {Lo,Gl}, Y ∈ {Li,Ge}
Output: satisfied
1: ulist ← {u | (uown, u) ∈ rp(1) ∧ (uown, u) /∈ b}
2: if [X,Y ] = LoLi then
3: for i = 2 : n−1 do
4: for u ∈ ulist do
5: add {u′|(u, u′)∈rp(i)} into ulist
6: delete u from ulist
7: for u ∈ ulist do
8: if (u, ureq) ∈ rp(n) then
9: satisfied ← 1, break

10: else if [X,Y ] = LoGe then
11: for i = 2 : n−1 do
12: for u ∈ ulist do
13: add {u′|(u, u′)∈rp(i) ∧ (uown, u

′) /∈b} into ulist
14: delete u from ulist
15: for u ∈ ulist do
16: if (u, ureq) ∈ rp(n) ∧ (uown, ureq) /∈ b then
17: satisfied ← 1, break
18: else if [X,Y ] = GlLi then
19: for i = 2 : n−1 do
20: for u ∈ ulist do
21: add {u′|(u, u′)∈rp(i) ∧ (u, u′) /∈b} into ulist
22: delete u from ulist
23: for u ∈ ulist do
24: if (u, ureq) ∈ rp(n) ∧ (u, ureq) /∈ b then
25: satisfied ← 1, break
26: else if [X,Y ] = GlGe then
27: for i = 2 : n−1 do
28: for u ∈ ulist do
29: add {u′|(u, u′)∈rp(i)∧ (u, u′) /∈b ∧ (uown, u

′) /∈b}
into ulist

30: delete u from ulist
31: for u ∈ ulist do
32: if (u, ureq) ∈ rp(n) ∧ (u, ureq) /∈ b ∧ (uown, ureq) /∈ b

then
33: satisfied ← 1, break
34: if satisfied is not set then
35: satisfied ← 0

access permission is made by the result of the boolean func-
tion connecting the results of each sub-policy. In this way,
for policies of such simple form, we can avoid syntactical
transformation as well as model-checking, and design more
efficient algorithms for policy evaluation.

The policies we consider here can be written as the dis-
junctions of several path policies, and each path policy has
the form of @own〈α1〉 . . . 〈αn〉req, representing a certain depth
path from uown to ureq. Among the three dimensions, both
globality and generality concentrate on how blacklists are
used on a single path while strength takes into account all
the paths from uown to ureq. When the policy’s blacklist-
restriction is weak, ureq can access uown’s resource as long
as there exists a path that satisfies the restrictions from
the other two dimensions. Therefore, during the process of
finding paths from uown to ureq, we can directly skip the un-
qualified edges. On the other hand, when the restriction is
strong, we need to make sure that all the possible paths from
uown to ureq are free of blacklist problems. Since the processes

Algorithm 5 Strong

Input: uown, ureq, G, rp, n, X∈{Lo,Gl}, Y ∈ {Li,Ge}
Output: nopath, satisfied
1: path← BFS(uown, ureq,G, rp, n)
2: if path is empty then
3: nopath ← 1, satisfied ← 1
4: else
5: nopath ← 0
6: if [X,Y ] = LoLi then
7: for p ∈ path do
8: if (uown, the first user on p) ∈ b then
9: satisfied ← 0, break

10: else if [X,Y ] = LoGe then
11: for p ∈ path do
12: if ∃ a user u on p s.t. (uown, u) ∈ b then
13: satisfied ← 0, break
14: else if [X,Y ] = GlLi then
15: for p ∈ path do
16: if ∃(u, u′) is part of p s.t. (u, u′) ∈ b then
17: satisfied ← 0, break
18: else if [X,Y ] = GlGe then
19: for p ∈ path do
20: if ∃u on p s.t. (uown, u) ∈ b ∨ ∃(u, u′) is part of p

s.t. (u, u′) ∈ b then
21: satisfied ← 0, break
22: if satisfied is not set then
23: satisfied ← 1

for evaluating weak and strong restrictions are different, we
treat them separately.

Our evaluation algorithm is listed in Algorithm 3. Its in-
put consists of uown, ureq, a policy φ and a blacklist-restriction
X,Y, Z. Due to the restriction of the generality dimension,
we first check whether ureq is on uown’s blacklist. If he is,
then we directly deny his access (lines 1-2). Otherwise, we
check path policies one by one. Depending on the strength
restriction of each path policy, we use the corresponding al-
gorithm (lines 4-17). Each path policy represents a relation
path denoted by rp. Here, rp = (α1, . . . αn) is tuple with
each item as the corresponding relationship type specified
in the path policy and it is indexed by rp(i). Moreover, n
is the length of the path (lines 6 and 12). Under the weak
restriction, once a path policy’s evaluation result is positive
(satisfiedφ′ = 1), ureq’s access is granted (lines 8-9). Under
the strong restriction, if there exists no path (specified in all
the path policies) from uown to ureq, ureq’s access is denied
(lines 18-19). Otherwise, all the existing paths from uown to
ureq have to satisfy the restrictions from the other two di-
mensions. If one path policy is not satisfied, then the access
is denied and the algorithm is finished (lines 16-17).

Algorithm 4 is used for evaluating path policies under
weak restrictions. Here, we perform breadth first search
(BFS) to find paths from uown to ureq in the social graph
G. We first add uown’s rp(1) relations who are not on his
blacklist into a list ulist , thus the local restriction is imple-
mented. Then, depending on the chosen restriction, different
processes are conducted. For example, when the restriction
is LoGeW, for each user, to traverse his friends, we only
consider the ones that are not on uown’s blacklist (line 13).
Note that in the last step, once there is a qualified path



from a user in ulist to ureq, the access is directly granted
(satisfied←1) (e.g., lines 15-17).

Algorithm 5 presents the process for evaluating the poli-
cies under strong restrictions. In the beginning, we exploit
BFS to find all the paths from uown to ureq. If there is no path
from uown to ureq, then nopath is set to 1 (line 3). Otherwise,
we begin to evaluate the paths. Under strong restrictions,
once we find an unqualified path from uown to ureq, we can
directly deny ureq’s access without considering other paths
anymore (satisfied ← 0). For example, under restriction
LoLiS, as long as there exists one path whose first user is
on uown’s blacklist, the access is denied (lines 8-9).

7. EVALUATION
As introduced in Section 6, our path evaluation algorithms

only consider access control policies that are composed by
one or several path policies and each path policy represents
a relation path from uown to ureq. For empirical evaluation,
we focus on the 2-depth policy and the 3-depth policy.

7.1 Algorithm Efficiency
Experiment setup. To evaluate the performance of our
proposed algorithms in Section 6, we check the time differ-
ence between evaluating restricted and non-restricted poli-
cies. The metric we adopt is defined as time ratio[X,Y, Z] =
t[X,Y, Z]/t, where t is the time for checking a non-restricted
policy and t[X,Y, Z] is the time for checking the correspond-
ing restricted policy. Here, to enforce a non-restricted pol-
icy, we perform BFS to find whether there exists a path from
uown to ureq satisfying the policy. Since major OSN compa-
nies such as Facebook do not disclose their algorithms for
enforcing access control policies, we simply choose BFS for
the purpose to evaluate the performance of our algorithms.
Other algorithms for path-finding can be used as well.

The dataset we use to conduct our experiments is collected
by McAuley and Leskovec [17], it is a Facebook dataset that
contains 4,039 users and 88,234 edges. For each user, we
randomly sample five different ratios, i.e., 1%, 5%, 10%,
20% and 30% of his friends to be on his blacklist. The ratio
is called the blacklist ratio. The algorithms are implemented
on a machine with Intel core i7 processor and 8GB RAM.

Experimental results. For each blacklist-restriction, we
plot the metric time ratio as a function of blacklist ratio in
Figure 4. The performance of algorithms is quite different
for weak and strong restrictions.

Weak restrictions. As shown in Figures 4a, 4b, 4c and 4d,
with the increase of blacklist ratio, checking path policies
under weak restrictions is getting faster. This is because
during the path-finding process, Algorithm 4 filters out all
the unqualified edges which saves a lot of operations. On the
other hand, for non-restricted policies, the algorithm cannot
skip any edges until it finds a path. Due to the same rea-
son, evaluating weak restrictions is faster than evaluating
strong ones. We also notice that, in Figures 4b, 4c, 4d, the
curves for 3-depth policies (blue) are far below the curves for
2-depth ones (red). The reason is that longer paths our al-
gorithm traverses, more edges it filters out, thus more opera-
tions are saved compared to running non-restricted policies.
On the other hand, the difference between the two curves in
Figure 4a is small since running LoLiW only filters out the
users that are on uown’s blacklist in the first step.

Strong restrictions. As depicted in Figures 4e, 4f, 4g and
4h, time for running 3-depth policies with strong restrictions
is almost twice as much as running non-restricted policies.
This indicates that the most time-consuming operations are
for finding paths. On the other hand, checking 2-depth
strong policies only requires around 30% overhead.

7.2 Power of Blacklist-restrictions
It is interesting to learn what is the impact of different

restrictions on access control. We focus on two questions.

Which restrictions are relatively powerful? The “power” of
a blacklist-restriction is quantified by the number of users
denied by it. We first define a metric, access ratio, repre-
senting the fraction of the number of qualified requesters
under an owner’s restricted policy and the number of quali-
fied requesters under the same non-restricted policy. When
a user’s access ratio under a blacklist-restriction is high, it
means that he cannot forbid many users with the restriction.

As we can see from Figure 5, the power of all the eight
blacklist-restrictions is consistent with the lattice presented
in Figure 3. GlGeS which is the supremum in the lattice is
the most powerful blacklist-restriction. When the blacklist
ratio is 20%, the average access ratio is only 20% (40%) for
the 3-depth (2-depth) case (see Figure 5h). On the other
hand, LoLiW is the least powerful one. When the blacklist
ratio is 20%, the average access ratio is around 85% for the
3-depth case (see Figure 5a). For each edge of the lattice in
Figure 3, the restriction of the source node always denies less
users than the one of the target node, e.g., LoGeW denies
less users than LoGeS (Figure 5b vs. Figure 5f).

We notice that among all the three dimensions, shifting
the strength dimension from weak to strong denies many
more users’ access than shifting the other two dimensions.
For example, the difference between the curves in Figure 5f
(LoGeW) and Figure 5b (LoGeS) is much bigger than
the difference between Figure 5b (LoGeW) and Figure 5d
(GlGeW). This is because the strong restriction requires all
the paths from uown to ureq to be free of blacklist problems,
while the weak restriction only needs one qualified path. On
the other hand, shifting the globality dimension from local
to global denies more users than shifting the generality from
limited to general. For example, by shifting the blacklist-
restriction from GlLiW to GlGeW, the access ratio barely
changes (see Figure 5c and Figure 5d), while the difference
between LoLiS and GlLiS is more notable (see Figure 5e
and Figure 5g). The reason is that the global restriction con-
siders the blacklist of everyone on the path from uown to ureq

while the general restriction only focuses on uown’s blacklist.

Which users are relatively easily to be forbidden? To pre-
cisely answer this question, we study the social strength be-
tween the owner and the qualified requesters under different
blacklist-restrictions. The social strength between two users
is quantified by three metrics including embeddedness, Jac-
card index and Adamic-Adar score [1]. If two users’ embed-
dedness (as well as Jaccard index and Adamic-Adar score) is
high, then they are considered to have a strong relationship.
We compute the average value of the three metrics between
the qualified requesters and the corresponding owners under
different blacklist-restrictions. As shown in Figure 6, the
three metrics give us similar results. Qualified requesters
under weak restrictions are more socially close to the corre-
sponding owners than the qualified requesters under strong
ones. This is because higher social strength implies more
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Figure 4: Average time ratio under eight blacklist-restrictions
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Figure 5: Average access ratio under eight blacklist-restrictions

paths. Therefore, there is a better chance for the requester
to be qualified under weak restrictions. However, to ac-
cess the resource under a strong blacklist-restriction, the re-
quester is better not to be socially close with the owner,
which seems counter-intuitive. This is because the strong
restriction considers all the paths from uown to ureq.

8. RELATED WORK
Blacklists have been used in a wide range of applications,

such as spam detection [7, 19] and sybil defense [22, 11]. In
this work, we focus on the use of blacklists in relationship-
based access control.

Relationship-based access control is first proposed in [14],
it states that the data owner can control the access to his
data based on the relationship between him and the re-
quester. Following this work, several papers have focused on
modeling relationship-based access control systems. In [6],
Carminati et al. interpret the access decision in terms of
three conditions including relationship, depth and trust level
between the owner and the requester. In [13], the authors

model the relationship-based access control into a two-stage
process where the requester needs to first be able to reach
the owner and then applies for access. Besides proposing dif-
ferent models, defining and specifying access control policies
have also been studied in the literature. In [5], the authors
exploit the use of semantic web to define policies. Moreover,
they propose three system-level policies including authoriza-
tion, admin and filtering policies. Fong et al. [13] propose
several topology-based policies such as k-common friends
and clique. Later, the authors of [12, 4] exploit hybrid log-
ics to specify these fine-grained policies. Their logic is quite
expressive and has been used in several other systems [20,
21, 18], and we adopt the same logic to specify restricted ac-
cess. In [8], Cheng et al. consider not only user-to-user, but
also user-to-resource and resource-to-resource relationships
in OSNs, which enables them to express new types of poli-
cies such as users who are tagged in the same photo with
the owner can view his profile can be expressed. Cramp-
ton and Sellwood [10] apply the ideas of relationship-based
access control on general computing systems. They propose
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Figure 6: Embeddedness, Jaccard index and Adamic-Adar score between users and the owner (blacklist ratio = 10%)

path conditions to specify policies and principal matching for
evaluation. However, to the best of our knowledge, explor-
ing blacklists for restricting access has not been discussed
in relationship-based access control. Moreover, it is the
first time to model and formally define different blacklist-
restrictions in a hybrid logic.

Delegation means that one active entity in a system dele-
gates its authority to another entity in the systems to carry
out some functions; it has been extensively studied in access
control (e.g., see [23, 16, 2, 9]). Fong [12] explicitly points
out that relationship-based access control supports delega-
tion – the use of other users’ social relations (and blacklists)
to regulate access control in OSNs can be naturally consid-
ered as a delegation process. Revocation is an important
issue that has been studied with delegation [23], which has
been formally categorized and defined in [3, 15]. When a
user blacklist-restricts a policy, it can be treated as revok-
ing other users’ privileges that they are delegated under the
corresponding non-restricted policy. For example, under the
restriction GlLiW, a user can only delegate privileges to his
friends that are not on his blacklist. Different from revoca-
tion which takes away all the delegated users’ privileges,
blacklist-restrictions can be considered a “partial” revoca-
tion since a user can still delegate the privilege to others
if the blacklist-restrictions are not violated. The formal re-
lation between blacklist-restriction and revocation deserves
further investigations, and we leave it for our future work.

9. CONCLUSION
In this paper, we have focused on blacklists, which already

exist in popular OSNs such as Facebook, for the purpose
of restricting access. We treated blacklists as a special re-
lationship among OSN users. This allows us to build our
work naturally on an exiting social network model and a
hybrid logic for specifying relationship-based access control
policies. We have identified three different dimensions of ap-
plying blacklists. Each dimension provides a binary choice,
resulting into eight types of blacklist-restrictions. The mean-
ing of the choices are intuitive for the users to understand.
We formally defined the blacklist-restrictions, using a new
path semantics for the hybrid logic. To release users from
the task of precisely writing their policies with blacklist-
restrictions and in order to make our approach user-friendly,
we also provided a procedure to syntactically rewrite a non-
restricted policy into a policy under a user specified blacklist-
restriction. To enforce policies which require the witness of a
relation path from the owner to the requester, we designed
efficient algorithms for blacklist-restrictions and evaluated

their performance on a Facebook dataset. In addition, we
have made a few interesting observations on the impact of
the blacklist-restrictions for access control in OSNs.
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APPENDIX
A. PROOF OF THEOREM 1

We proof the theorem by induction over the length of φ.

• φ = x:
Left-to-right: Suppose Γ, u, τ � x, i.e. u = τ(x). Set
Π := {〈〉}. Then Γ, u,Π, τ � x.
Right-to-left: Trivial.

• φ = n: Similar to the case φ = x

• φ = p: Similar to the case φ = x

• φ = ¬ψ:
Left-to-right: Suppose Γ, u, τ � ¬ψ, i.e. Γ, u, τ 2 ψ. By
the inductive hypothesis, there is no set of paths Π′

s.t. Γ, u,Π′, τ � φ. Set Π := {〈〉}. It now follows that
Γ, u,Π, τ � ¬ψ.
Right-to-left: Suppose Γ, u,Π, τ � ¬ψ, i.e. Π = {〈〉}
and there is no set of paths Π′ s.t. Γ, u,Π′, τ � φ. By
the inductive hypothesis, Γ, u, τ � ¬ψ.

• φ = ψ1 ∧ ψ2:
Left-to-right: Suppose Γ, u, τ � ψ1 ∧ ψ2, i.e. Γ, u, τ �
ψ1 and Γ, u, τ � ψ2. By the inductive hypothesis,
Γ, u, τ � ψ1 implies that there is a set Π1 of paths s.t.
Γ, u,Π1, τ � ψ1, and Γ, u, τ � ψ2 implies that there is a
set Π2 of paths s.t. Γ, u,Π2, τ � ψ2. Set Π := Π1 ∪Π2.
Then Γ, u,Π, τ � ψ1 ∧ ψ2.
Right-to-left: Suppose Γ, u,Π, τ � ψ1∧ψ2, i.e. there are
sets Π1,Π2 of paths with Π1 ∪Π2 = Π s.t. Γ, u,Π1, τ �
ψ1 and Γ, u,Π2, τ � ψ2. By the inductive hypothesis
Γ, u, τ � ψ1 and Γ, u, τ � ψ2.

• φ = ψ1 ∨ ψ2: Similar to the case φ = ψ1 ∧ ψ2

• φ = 〈αi〉ψ:
Left-to-right: Suppose Γ, u, τ � 〈αi〉ψ, i.e. there is a
u′ ∈ U s.t. (u, u′) ∈ αi and Γ, u′, τ � ψ. By the
inductive hypothesis, there is a set Π′ of paths s.t.
Γ, u′,Π′, τ � ψ. Set Π := {(u, u′) ◦ π | π ∈ Π′}.
Then Π′ = Π[1 :] and ∀π ∈ Π π[0] = (u, u′). So
Γ, u,Π, τ � 〈αi〉ψ.
Right-to-left: Suppose Γ, u,Π, τ � 〈αi〉ψ, i.e. there is
a u′ ∈ U s.t. Γ, u′,Π[1 :], τ � ψ, (u, u′) ∈ αi. By the
inductive hypothesis Γ, u, τ � 〈αi〉ψ.

• φ = @nψ:
Left-to-right: Suppose Γ, u, τ � @nψ, i.e. Γ, u′, τ � ψ,
where W (n) = u′. By the inductive hypothesis, there
is a set Π of paths s.t. Γ, u′,Π, τ � ψ. Then Γ, u,Π, τ �
@nψ.
Right-to-left: Suppose Γ, u,Π, τ � @nψ, i.e. Γ, u′,
Π, τ � ψ, where W (n) = u′. By the inductive hy-
pothesis Γ, u′, τ � ψ, and therefore Γ, u, τ � @nψ.

• φ = @xψ: Similar to the case @nψ

• φ =↓xψ:
Left-to-right: Suppose Γ, u, τ �↓x ψ, i.e. Γ, u,
τ [x 7→ u] � ψ. By the inductive hypothesis, Γ, u,Π,
τ [x 7→ u] � ψ, i.e. Γ, u,Π, τ �↓xψ.
Right-to-left: Suppose Γ, u,Π, τ �↓x ψ, i.e. Γ, u,Π,
τ [x 7→ u] � ψ. By the inductive hypothesis, Γ, u,
τ [x 7→ u] � ψ, i.e. Γ, u, τ �↓xψ.

B. PROOF OF THEOREM 2
First, we need to prove the following lemma:

Lemma 1. Let Γ = (G,W, V ) be a model, τ a valuation
and Π a set of paths in U . Let X1, X2 ∈ {Lo,Gl} and
Y1, Y2 ∈ {Li,Ge} be s.t. (X1, Y1,W) ≤ (X2, Y2,W) in the
blacklist-restriction lattice. Then Valid(X2,Y2)(Γ,Π, τ) im-
plies Valid(X1,Y1)(Γ,Π, τ).

Proof. Suppose Valid(X2,Y2)(Γ,Π, τ). We want to show
that Valid(X1,Y1)(Γ,Π, τ). For this we have to show that the
four conditions from Definition 2 are satisfied for X1, Y1. We
call the first two conditions the globality conditions and the
other two the generality conditions.

Since (X1, Y1,W) ≤ (X2, Y2,W), we know that it is not
the case that X1 = Gl and X2 = Lo. If X1 = X2, the
globality conditions are satisfied for X1 since they are sat-
isfied for X2. So all we have to show is that the globality
conditions are satisfied for X1 if X1 = Lo and X2 = Gl. Of
course, since X1 6= Gl, the second globality condition is triv-
ially satisfied. Since X2 = Gl, we have that for all u, u′ ∈ U
s.t. (u, u′) is an element of some π ∈ Π, (u, u′) /∈ b. So in
particular, for every u ∈ U s.t. (τ(own), u) is an element of



some π ∈ Π, (τ(own), u) /∈ b. Therefore, the first globality
condition is satisfied for X1.

Similarly, it is enough to show that the first generality
condition is satisfied for Y1 = Li and Y2 = Ge. But since
Y2 = Ge, we know by the second generality condition for
Y2 that (τ(own), τ(req)) /∈ b, so that the first generality
condition for Y1 is satisfied.

We now proceed to proving Theorem 2. Let X1, X2 ∈
{Lo,Gl}, Y1, Y2 ∈ {Li,Ge} and Z1, Z2 ∈ {W,S} be s.t.
(X1, Y1, Z1) ≤ (X2, Y2, Z2) in the blacklist-restriction lat-
tice. Suppose Γ, u, τ � φ(X2,Y2,Z2). We need to show that
Γ, u, τ � φ(X1,Y1,Z1). Since (X1, Y1, Z1) ≤ (X2, Y2, Z2), we
know that it is not the case that Z1 = S and Z2 = W. We
consider the other three possible values for Z1, Z2 separately:

• Z1 = Z2 = W:
Since we have Z2 = W, Γ, u, τ � φ(X2,Y2,Z2) implies
that there is a set Π of paths s.t. Γ, u,Π, τ � φ and
Valid(X2,Y2)(Π). Since (X1, Y1,W) ≤ (X2, Y2,W), Lemma 1
implies that Valid(X1,Y1)(Π). Hence, Γ, u, τ � φ(X1,Y1,Z1).

• Z1 = Z2 = S:
In this case, Γ, u, τ � φ(X2,Y2,Z2) implies that (i) there
is a set Π of paths s.t. Γ, u,Π, τ � φ, and (ii) for ev-
ery set Π of paths s.t. Γ, u,Π, τ � φ, Valid(X2,Y2)(Π).
For showing that Γ, u, τ � φ(X1,Y1,Z1), it is enough to
show that for every set Π of paths s.t. Γ, u,Π, τ �
φ, Valid(X1,Y1)(Π). So let Π be a set of paths s.t.
Γ, u,Π, τ � φ. It is now enough to show that Γ, u,Π, τ �
φ, Valid(X1,Y1)(Π). By (ii), Valid(X2,Y2)(Π). (X1, Y1,S) ≤
(X2, Y2,S) implies that (X1, Y1,W) ≤ (X2, Y2,W). This
together with Lemma 1 implies that Valid(X1,Y1)(Π), as
required.

• Z1 = W and Z2 = S:
Since Z2 = S, Γ, u, τ � φ(X2,Y2,Z2) implies that (i) there
is a set Π of paths s.t. Γ, u,Π, τ � φ, and (ii) for every
set Π of paths s.t. Γ, u,Π, τ � φ, Valid(X2,Y2)(Π). (i)
and (ii) together imply that there is a set Π of paths
s.t. Γ, u,Π, τ � φ and Valid(X2,Y2)(Π). (X1, Y1,W) ≤
(X2, Y2,S) implies that (X1, Y1,W) ≤ (X2, Y2,W). This
together with Lemma 1 implies that Valid(X1,Y1)(Π).
Hence, Γ, u, τ � φ(X1,Y1,Z1).

C. SKETCH OF PROOF OF THEOREM 3
First note by inspection of the definition of the path se-

mantics that a path in a set of paths satisfying a formula φ
corresponds to a branch in the syntax tree of φ starting at
the root (which is labeled by φ) and ending in a node labeled
by a strictly positive subformula of φ of the form x,m, p or
¬ψ. The edges in this branch that connect a node labeled
〈αi〉ψ to ψ correspond to the edges of the path.

Note that in Definition 2, where we defined which sets
of paths are free of blacklist problems, the first, second and
fourth condition actually refer to the set Π of paths, whereas
the third condition does not refer to this set and hence is
independent of the choice of Π. For this reason, Algorithm 2
handles the restrictions imposed by this condition somewhat
differently from the restrictions imposed by the other three
conditions. To refer to the restrictions imposed by the other
three conditions, we define v(X,Y )(Γ,Π, τ) as follows:

Definition 6. Let Γ = (G,W, V ) be a model and τ be a
valuation. For X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and a set Π of

paths, we define v(X,Y )(Γ,Π, τ) to hold iff the following four
properties are satisfied:

• If X = Lo, then for every u ∈ U s.t. (τ(own), u) is an
element of some π ∈ Π, (τ(own), u) /∈ b.

• If X = Gl, then for all u, u′ ∈ U s.t. (u, u′) is an
element of some π ∈ Π, (u, u′) /∈ b.

• If Y = Ge, then (τ(own), τ(req)) /∈ b, and for all u, u′ ∈
U s.t. (u, u′) is an element of some π ∈ Π, (τ(own), u) /∈
b and (τ(own), u′) /∈ b.

We first sketch how to prove the theorem for Z = W: The
insertion of ↓xk’s and ↓yk’s into φ in line 3 of algorithm does
not affect which sets of paths satisfy φ, but makes it possible
to refer to the nodes of these paths. The new subformulas,
which in lines 6-11 of Algorithm 2 get conjuncted to strictly
positive subformulas χ of φ of the form x,m, p or ¬ψ, make
use of this possibility to refer to the nodes of the paths in
order to express the conditions for v(X,Y )(Γ,Π, τ) within φ.
In line 12 we ensure that if Y = Li, then (τ(own), τ(req)) /∈
b. Hence the modifications performed on φ in case Z = W
ensure that φ[X,Y, Z] is satisfied precisely by those sets of
paths Π that satisfy φ and Valid(X,Y )(Γ,Π, τ), i.e. precisely
by those sets of paths that satisfy φ(X,Y,Z).

Now we sketch how to prove the theorem for Z = S: Note
that for a set Π of paths to satisfy a formula φ of the form
ψ1 ∨ ψ2, it is enough that it satisfies ψ1 or ψ2. Hence, con-
cerning the correspondence mentioned in the first paragraph
of this proof sketch, only the branches of the syntax tree
of one of ψ1 and ψ2 correspond to paths in Π, while the
branches in the syntax tree of the other are not reflected in
the structure of Π at all. In general, we can say that the
correspondence is only a one-to-one correspondence, if φ is
a formula that does not have a strictly positive subformula
of the form ψ1 ∨ ψ2. This is why for the case Z = S, Al-
gorithm 2 makes use of the Disjunctive Form DF (φ) of φ:
The modifications made to the disjuncts φi depend on the
correspondence between paths and branches of the syntax
tree being one-to-one.

Furthermore, note that one can easily prove by an induc-
tion over the length of φ that every hybrid logic formula φ
is equivalent to its Disjunctive Form.

In lines 18-23 of Algorithm 2, we define – for each strictly
positive subformula χi,j of φi of the form x,m, p of ¬ψ – a
formula ψi,j that expresses that the conditions for
v(X,Y )(Γ, {π}, τ) are not satisfied, where π is the path cor-
responding to the syntax tree branch ending at χi,j . Hence,
φi,j as defined in line 24 has the following property: Γ, u, τ �
φi,j iff there is a set Π of paths s.t. Γ, u,Π, τ � φi and it is not
the case that v(X,Y )(Γ, {π}, τ) (where π ∈ Π is the path cor-
responding to the syntax tree branch ending at χi,j). This
implies that Γ, u, τ � ¬φi,j iff for every set Π of paths s.t.
Γ, u,Π, τ � φi, we have v(X,Y )(Γ, {π}, τ). Hence, φi as de-

fined in line 25 has the following property: Γ, u, τ � φi iff for
every set Π of paths with Γ, u,Π, τ � φi, v(X,Y )(Γ, {π}, τ)
holds for every path in π ∈ Π, i.e. v(X,Y )(Γ,Π, τ).

Now the equivalence between φ and DF (φ) together with
the property of φi that we just established implies the fol-
lowing property for the φ defined in line 26: Γ, u, τ � φ iff
Γ, u, τ � φ and for every set Π of paths with Γ, u,Π, τ � φ,
we have v(X,Y )(Γ,Π, τ). Concerning the ψ defined in line 27,
this implies that Γ, u, τ � ψ iff Γ, u, τ � φ and for every set
Π of paths with Γ, u,Π, τ � φ, we have Valid(X,Y )(Γ,Π, τ),
i.e. Γ, u, τ � ψ iff Γ, u, τ � φ(X,Z,Y ), as required.
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