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Abstract—Machine learning has revolutionized numerous do-
mains, playing a crucial role in driving advancements and en-
abling data-centric processes. The significance of data in training
models and shaping their performance cannot be overstated.
Recent research has highlighted the heterogeneous impact of
individual data samples, particularly the presence of valuable
data that significantly contributes to the utility and effectiveness
of machine learning models. However, a critical question remains
unanswered: are these valuable data samples more vulnerable
to machine learning attacks? In this work, we investigate the
relationship between data importance and machine learning
attacks by analyzing five distinct attack types. Our findings reveal
notable insights. For example, we observe that high importance
data samples exhibit increased vulnerability in certain attacks,
such as membership inference and model stealing. By analyzing
the linkage between membership inference vulnerability and
data importance, we demonstrate that sample characteristics can
be integrated into membership metrics by introducing sample-
specific criteria, therefore enhancing the membership inference
performance. These findings emphasize the urgent need for
innovative defense mechanisms that strike a balance between
maximizing utility and safeguarding valuable data against po-
tential exploitation.

I. INTRODUCTION

Machine learning has emerged as an indispensable tool
across numerous domains, revolutionizing industries and em-
powering data-driven decision-making processes. Central to
the essence of machine learning is the pivotal role played by
data, serving as the bedrock for training models and exerting
a profound influence on their performance and predictive ac-
curacy. Concurrently, the crucial role of data in model training
also exposes it as a noteworthy source of vulnerabilities.

Recent research has shed light on the heterogeneous impact
of individual data samples, highlighting the presence of certain
data that exhibit a heightened influence on the utility and
overall effectiveness of machine learning models [24], [16],
[28], [27], [25]. Understanding this variability is important for
two main reasons. First, knowing how individual data samples
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affect model performance is key to improving machine learn-
ing explainability, offering new insights into model behavior,
and enhancing interpretability [27], [47], [37], [46]. Second,
this knowledge can guide data trading practices, where the
importance of data is a significant factor [4], [16].

However, the influence of such diverse data on model
leakage and security remains largely unexplored. Existing re-
search predominantly concentrates on the models themselves;
for example, studies [50], [35] suggest that overfitted models
are more prone to membership inference attacks. Nevertheless,
even within the same model, distinct data samples exhibit
varying vulnerabilities to attacks. This prompts a crucial ques-
tion: do these valuable data samples also exhibit an increased
vulnerability to a spectrum of machine learning attacks?
Understanding the differential vulnerability of data samples
has significant practical implications. In medical diagnostics,
for example, patient records with rare but highly indicative
symptoms are considered high importance samples. Assessing
whether these records are more prone to attacks is crucial,
as breaches could lead to discrimination, higher insurance
premiums, or other serious consequences for individuals.

In this paper, our focus lies in investigating the relationship
between data importance and machine learning attacks. Our
primary objective is to thoroughly investigate whether valuable
data samples, which contribute significantly to the utility of
machine learning models, are exposed to an elevated risk of
exploitation by malicious actors.

To achieve our objectives, we focus on five distinct types
of attacks, encompassing both training-time and testing-time
attacks. The training-time attack we consider is the backdoor
attack [17], [32], [49], while the testing-time attacks consist of
membership inference attack [34], [55], [50], [12], [31], model
stealing attack [63], [62], [52], attribute inference attack [39],
[57], and data reconstruction attack [75], [72], [14]. For each of
these attacks, we thoroughly analyze the behavior and impact
on both high importance and low importance data samples,
aiming to uncover any discernible differences.

Main Findings: Our research has yielded significant findings
that shed light on the heightened vulnerability of valuable data
samples to privacy attacks. Specifically, our key findings are
as follows:

• Membership Inference Attack: High importance data
samples exhibit a higher vulnerability compared to
low importance samples, particularly in the low false-
positive rate region. For instance, in the CIFAR10
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dataset, at a false positive rate (FPR) of 1%, the true
positive rate (TPR) of high importance data is 10.2×
greater than that of low importance samples.

• Privacy Onion Effect: The concept of the privacy
onion effect [9] can be extended to the distribution
of data importance. Specifically, previously consid-
ered unimportant samples gain significance when the
dataset removes the important samples.

• Model Stealing Attack: High importance samples
demonstrate greater efficiency in stealing models when
the target model is trained on the same distribution
as the query distribution. However, we empirically
demonstrate that the importance does not transfer
between different tasks.

• Backdoor Attack: Poisoning high importance data
enhances the efficiency of the poisoning process, par-
ticularly when the size of the poison is small. On the
other hand, the influence on clean accuracy does not
yield a definitive conclusion, poisoning either type of
data has a limited impact on clean accuracy.

• Attribute Inference and Data Reconstruction Attacks:
We observe no significant distinction between high
and low importance data in these attacks.

Our research provides empirical evidence establishing a
correlation between data importance and vulnerabilities across
diverse attack scenarios. This introduces a novel perspective
for analyzing sample-specific vulnerabilities, enriching our
understanding of the security implications within the realm
of machine learning.

Beyond theoretical insights, our study showcases practical
applications of these findings, illustrating how they can be
utilized to devise more potent attacks. On one hand, these
findings can be utilized in a passive manner. For example,
we empirically demonstrate that membership inference attacks
can be improved by introducing sample-specific criteria based
on sample importance. Additionally, adjusting the poisoning
strategy according to sample importance proves to enhance
the efficacy of backdoor attacks, particularly with a reduced
poisoning rate.

More interestingly, we can actively modify samples to alter
their importance, which subsequently impacts both attack and
defense performance. For example, recognizing that high im-
portance samples are more vulnerable to membership inference
attacks, attackers could increase the importance of targeted
samples to heighten their vulnerability. This approach follows
exactly the same idea as the attack accepted at CCS’22 [61],
effectively demonstrating how we can “reinvent” state-of-the-
art attacks guided by findings in our work.

In summary, our work represents a pioneering step in
systematically understanding the vulnerabilities of the machine
learning ecosystem through the lens of data. These findings
serve as a resounding call to action, urging researchers and
practitioners to develop innovative defenses that strike a del-
icate balance between maximizing utility and safeguarding
valuable data against malicious exploitation.

II. BACKGROUND

A. Machine Learning Models

Machine learning algorithms aim to construct models that
effectively predict outputs based on given inputs. These models
are typically represented by a parameterized function denoted
as fθ : X → Y , where X represents the input space
and Y represents the output space encompassing all possible
predictions. The process of determining optimal parameter
values θ involves minimizing an objective function using
gradient descent. Specifically, the objective is to minimize the
classification loss

E
(x,y)

[L(fθ(x), y)]

where (x, y) ∈ X × Y denotes samples from the training
dataset used to train the target model. This optimization pro-
cess guides the model towards achieving optimal performance
by iteratively adjusting the parameters.

B. Data Importance

The investigation of individual training sample importance
in machine learning (ML) is a fundamental and intricate
problem with broad implications, especially in data valuation.
Understanding the importance of a single training sample
within a learning task profoundly impacts data assessment,
allocation of resources, and the quality of ML models.

Leave-one-out (LOO) method has long been regarded as
an intuitive approach for assessing the importance of data
samples. Formally, let D and Dval represent the training set and
the validation set, and A denote the learning algorithm. UA,Dval

denotes the validation accuracy of the model trained on D
using A. The importance of a target sample z can be quantified
as the difference in utility before and after incorporating the
target sample into the training set, expressed as:

vloo(z) ∝ UA,Dval(D)− UA,Dval(D\{z})

Nevertheless, evaluating the importance of all N samples in
the training set necessitates retraining the model N times, re-
sulting in computational heaviness. To address this limitation,
Koh and Liang [27] proposed influence functions as an ap-
proximation method, significantly reducing the computational
cost from O(Np2 + p3) to O(Np), where p represents the
number of model parameters.

Despite the effectiveness of LOO, Ghorbani and Zou [16]
have raised concerns about its ability to capture complex
interactions between subsets of data. They argue that the
Shapley value provides a more comprehensive framework
for measuring data importance. The Shapley value, originally
proposed by Shapley [54], assigns an importance value to each
sample z in the training set using the following formulation:

νshap(z) ∝
1

N

∑
S⊆D\{z}

1(
N−1
|S|

)[UA,Dval(S ∪ {z})− UA,Dval(S)
]

To simplify the interpretation of the Shapley value assigned
to each sample, one can conceptualize it as the contribution to
accuracy in typical scenarios.
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For instance, in a hypothetical scenario with 100 samples
and a model achieving 90% accuracy, a valuable sample may
contribute 2% accuracy, while a less valuable sample may only
contribute 0.1%. Consequently, the importance value assigned
to a valuable sample is 0.02, whereas for a less valuable
sample, it is 0.001. Samples with an importance of 0 signify
no contribution to the model’s accuracy, while values below 0
suggest a detrimental impact, possibly due to incorrect labels
or samples lying outside the distribution.

The Shapley value takes into account the contributions
of all possible subsets of the training set, offering a more
holistic assessment of data importance. However, the accurate
computation of the Shapley value based on the defined for-
mula necessitates training O(2N ) machine learning models,
rendering it impractical for complex datasets. As a result,
existing methods employ approximate algorithms to estimate
the Shapley value. For instance, Ghorbani and Zou [16]
introduced two Monte Carlo-based approaches for Shapley
value approximation. To expedite evaluation time and enable
analysis of large datasets, Jia et al. [24] utilized the K-nearest
neighbors (KNN) algorithm to approximate the target learning
algorithm, reducing the time complexity to O(N logN).

III. EVALUATION SETUP

In this work, we deploy KNN-Shapley [24] to assess the
importance of samples in the training set, which takes a dataset
as input and assigns an importance value to each sample in the
dataset. This decision is justified by two main considerations.

Firstly, from the perspective of utility, traditional data
attribution methods struggle to account for the complex inter-
actions within data subsets. Previous research, as discussed by
Gupta and Zou [16], highlights this limitation. Consequently,
we adopt Shapley value-based approaches for a more accurate
assessment of data importance. We further examine the efficacy
of two non-Shapley-based measurement techniques: Leave-
one-out (LOO) and the advanced data attribution method,
Trak1 [46]. As evidenced in Figure 20, when comparing the
performance of models trained with 5000 samples of varying
significance, the accuracy discrepancy is less than 7% for these
methods. In contrast, the KNN-Shapley method identifies
samples that yield an accuracy difference exceeding 20%,
thereby demonstrating its superior capability in accurately
quantifying importance, we defer the details to the extended
version [65].

Secondly, regarding scalability, most measurement methods
are highly computationally inefficient. For instance, employing
Leave-one-out to calculate importance values for CIFAR10
necessitates over 80 hours on 8×A100 GPUs. Shapley value-
based methods are generally more demanding. In Jia et al.’s
work [25], the authors provide a runtime demonstration show-
ing that existing measurement methods, except for KNN-
Shapley, do not scale efficiently to large datasets, even as
CIFAR10.

Furthermore, the comprehensive evaluations conducted by
prior studies [25] consistently underscore the effectiveness and

1Trak quantifies the influence of each sample on specific test samples within
a dataset. To adhere to the established definition of data importance, we
calculate the average influence exerted by each sample across the entire test
dataset as the importance of each sample.

accuracy of KNN-Shapley. Therefore, considering both utility
and scalability, KNN-Shapley emerges as the sole feasible
method for conducting experiments.

Datasets: Our evaluation encompasses three widely-used
benchmark datasets, namely CIFAR10 [1], CelebA [36], and
TinyImageNet [2]. CIFAR10 comprises a collection of 60,000
colored images evenly distributed across ten classes, represent-
ing common objects encountered in everyday life, including
airplanes, birds, and dogs. CelebA is a large-scale face dataset
that encompasses over 40 annotated binary attributes. To
ensure balance in our analysis, we follow previous works [43],
[49], [76], [35] that select the three most balanced attributes
(Heavy Makeup, Mouth Slightly Open, and Smiling) to create
an 8-class (23) classification task. Note that our findings are
not dependent on this specific attribute selection, as vali-
dated in Appendix A. Additionally, our evaluation incorporates
TinyImageNet, which constitutes a subset of the ImageNet
dataset. It encompasses 200 distinct object classes, each with
500 training images. We further validate the generalizability
of our conclusions across different modalities, with detailed
information deferred to Section IX.

A. Learning Characteristic

In order to gain a deep understanding of the disparities
between high and low importance data, we delve into the
learning characteristics, such as loss, associated with these
samples. To the best of our knowledge, our study represents
the first endeavor to investigate the learning characteristics of
samples with varying degrees of importance, diverging from
the conventional focus solely on their contribution to the final
performance.

To quantify these learning characteristics, we initially train
a model using the complete dataset, comprising both high and
low importance data. Subsequently, we compute the loss for
each individual data point and explore the correlation between
the loss and its corresponding importance value.

In Figure 1a, we present a visual representation of the
relationship between loss and importance value. The x-axis
represents the importance order of a sample in the dataset,
with 1 denoting the lowest importance and 50000 representing
the most valuable data. Initially, it may seem that there is no
discernible pattern between loss and importance value, as both
low and high importance samples can exhibit either low or high
loss. However, upon further analysis, we statistically observe
that higher importance samples tend to demonstrate lower loss,
as depicted in Figure 1b, Figure 1c, and Figure 1d.

To arrive at this conclusion, we divide the samples into 200
bins based on their importance value. For instance, the lowest
1 to 250 samples are categorized into bin one, 251 to 500 are
allocated to bin two, and so forth. For each bin, we calculate
the sum of the losses and plot these 200 data points to generate
the final curve. Despite some fluctuations observed in the
curve, it is evident that valuable samples tend to exhibit lower
loss. This finding aligns with our expectations, as lower loss
signifies greater representativeness, thereby facilitating easier
learning and enhancing their contribution to the overall utility
of the model.

Having established the effectiveness of importance as-
signment and gained preliminary insights into the learning
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Fig. 1: Relationship between loss and importance value. Low importance samples statistically have higher losses.

characteristics, we proceed to conduct representative machine
learning attacks to investigate the impact of data importance
in such attacks. Our experimental investigations are carried
out using the ResNet18 architecture, and in Section IX, we
demonstrate the generalizability of our conclusions to different
architectures.

IV. MEMBERSHIP INFERENCE ATTACK

Membership Inference Attack (MIA) [34], [55], [50], [12],
[31], [70] is a prominent privacy attack utilized to determine
whether a specific data sample belongs to a training dataset.
This attack is widely employed to assess the privacy of training
data due to its simplicity and broad applicability.

In the attack scenario, the adversary A is granted access to
a target model and is tasked with determining the membership
status of a given data sample (x, y). Formally, the membership
inference attack can be defined as a security game, referred to
as Membership Inference Security Game, which is described
as follows:

Definition IV.1 (Membership Inference Security Game [7]).
The game proceeds between a challenger C and an adversary
A:

1) The challenger samples a training dataset D ← D
and trains a model fθ ← T (D) on the dataset D.

2) The challenger flips a bit b, and if b = 0, samples a
fresh challenge point from the distribution (x, y) ←
D (such that (x, y) /∈ D). Otherwise, the challenger
selects a point from the training set (x, y) $← D.

3) The challenger sends (x, y) to the adversary.
4) The adversary gets query access to the distribution

D, and to the model fθ, and outputs a bit b̂ ←
AD,f (x, y).

5) Output 1 if b̂ = b, and 0 otherwise.

The adversary A is provided with auxiliary information
about the data distribution D. This allows the adversary to
sample a shadow dataset from the same or a similar distribu-
tion, which is a common assumption in the existing literature.

The attack accuracy for the adversary is defined as follows:

Acc = Pr
x,y,f,b

[AD,f (x, y) = b].

To assess the privacy leakage caused by membership inference
attacks (MIAs), we employ two metrics commonly used in

prior research, focusing on both worst-case and average-case
performance:

1) (Log-scale) ROC Analysis [7], which focuses on the
true-positive rate at low false-positive rates, effec-
tively capturing the worst-case privacy vulnerabilities
of machine learning models.

2) Membership Advantage [71], [59], defined as

Adv = 2× (Acc− 0.5).

This metric represents the advantage over random
guessing, multiplied by 2, providing an average-case
measure to gain an overview of the attack’s efficacy.

In this work, we investigate four specific membership infer-
ence attacks. For the CIFAR10 and CelebA tasks, a training set
of 50,000 samples is employed, while for the TinyImageNet
task, we utilize a training set of 100,000 samples to construct
the target model.

To assess the membership status of samples, we first adopt
a methodology based on previous research [12], [31] that
considers the distance to the decision boundary as a reflection
of membership status. Specifically, they claim that samples
located near the decision boundary are more likely to be non-
members, whereas samples positioned in the central region of
the decision area are more likely to be members.

We calculate the distance to the decision boundary for all
samples in the training dataset. Specifically, for each sample,
we iteratively perturb it using Projected Gradient Descent
(PGD) with a small step size until it is classified into a different
class. Subsequently, we compute the distance between the
perturbed sample and its original counterpart. In this analysis,
the distance is measured using the ℓ∞ norm, and we find
consistent results across different norms such as ℓ1 and ℓ2,
as evidenced by the corresponding findings presented in the
extended version [65].

Our initial visualization focuses on examining the distances
of samples with different importance values. Similar to the
observation made regarding the distribution of loss values
in Section III-A, no direct relationship is discernible between
the importance value and the distance to the decision boundary.
Notably, samples with similar importance values may exhibit
substantial differences in their distances to the decision bound-
ary. In contrast, we further analyze the statistical characteristics
of these samples, as performed in Section III-A and present
the “group distance” in Figure 2b, Figure 2c, and Figure 2d.
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Fig. 2: Relationship between distance to the decision boundary and importance value. Low importance samples are statistically
closer to the decision boundary. The distance measured with different norms can be found in the extended version [65].
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Fig. 3: Log-scale ROC curve: membership inference attack based on the distance to the decision boundary. High importance
samples exhibited substantially higher true-positive rates, particularly in the low false-positive rate region. Results with different
norms can be found in the extended version [65].

The results reveal that low importance samples are statistically
closer to the decision boundary, which aligns with the previous
conclusion that low importance samples tend to have higher
loss compared to high importance samples.

We follow the same procedure to derive the distance for
samples in the testing dataset and launch the membership infer-
ence attack based on the distance. We identify 10,000 samples
with the highest importance value as the high group, and an
equivalent number of samples with the lowest value as the low
group. The resulting ROC curves, depicted in Figure 3, are
presented on a logarithmic scale to compare the performance
between these two groups.

From the figures, we observe significant differences in
the behavior of high importance samples and low impor-
tance samples, particularly in the low false-positive rate area.
Specifically, for the CIFAR10 dataset, high importance samples
demonstrate a true-positive rate (TPR) 10.2× higher than low
importance samples at a low false-positive rate of 1%. For the
TinyImageNet dataset, the difference is even more pronounced,
with high importance samples exhibiting a TPR that is 27.9×
higher than that of low importance samples at the same false-
positive rate.

These observations provide compelling and empirical evi-
dence supporting the notion that high importance samples are
considerably more vulnerable to membership inference attacks,
which satisfies our expectation as the importance of data
samples can be regarded as the proxy of memorization [13].

These findings thus pose a significant and tangible threat to
the safeguarding of high importance data privacy. On the other
hand, these findings may also prompt researchers to consider
adopting strategic sampling methods for more effective privacy
auditing [41], [22].

We further validate the generalizability of this finding
across various attack methodologies by conducting experi-
ments with three additional metric-based attacks: prediction
confidence-based attack [71], [59], entropy-based attack [55],
[50], and modified prediction entropy-based attack [58]. The
first two attacks were enhanced by introducing class-dependent
thresholds, as demonstrated by Song and Mittal [58].

By grouping the samples based on their importance values
in intervals of 10,000 samples (equivalent to the size of the
testing dataset), we conducted the aforementioned attacks on
these subsets. The membership advantage achieved for each
subset is illustrated in Figure 4. Notably, a clear monotonic
increase in attack advantage is observed as the importance
value increases, establishing a positive correlation between
the importance value and the susceptibility of membership
inference.

This empirical trend aligns with our expectations. As
evidenced by the metrics in Figure 1 and Figure 2, samples
with lower importance inherently present greater learning chal-
lenges compared to their higher-importance counterparts. Even
post-learning, these samples exhibit worse membership metrics
compared to those of higher importance. This circumstance
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Fig. 4: Membership advantage: membership inference attack based on three metrics. Attack advantage steadily escalates as the
importance value of the samples increases.
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Fig. 5: Incorporation of importance values in calibrating mem-
bership inference metrics improves the attack performance,
demonstrating the strength of employing sample-specific mem-
bership criteria.

renders them challenging to distinguish from non-member
samples, especially when certain non-member samples mani-
fest a lower learning difficulty and consequently exhibit better
metrics compared to the more challenging member samples.

Drawing from this insight, one potential strategy to enhance
the efficiency of membership inference attacks is to compare
each sample with others of comparable difficulty. A pragmatic
approach to actualize this entails introducing sample-specific
criteria. Rather than employing a uniform threshold across the
entire testing dataset, such criteria should intricately correlate
with the sample’s characteristics, with their designated impor-
tance level serving as a robust quantitative index to reflect this
alignment.

In this study, we initiate an exploration into the feasibility
of such an approach. To seamlessly integrate our method into
the existing metric-based framework, we introduce a sample-
specific threshold in a consistent manner: while maintaining a
uniform threshold for the dataset, we modify the membership
metrics by incorporating an importance-related term:

CaliMem(x) = OriMem(x) + k × Shapley(x)

Here, OriMem(x) denotes the conventional membership metric,
including elements such as confidence, entropy, and modified
entropy. The term Shapley(x) signifies the importance value

attributed to the specific sample x, and CaliMem(x) represents
the recalibrated membership metric.

As a proof of concept, we empirically determine the
hyperparameter k in an exploratory manner, adjusting its
magnitude until optimal performance is attained. The exper-
imental outcomes, depicted in Figure 5, illustrate that the
incorporation of importance calibration notably enhances the
efficacy of metric-based attacks. Nevertheless, it is pertinent
to acknowledge that identifying the optimal hyperparameter
and devising more refined methods for integrating importance
values warrant further investigation.

We also emphasize that this improvement does not neces-
sitate additional requirements compared to standard attacks;
specifically, the adversary does not need full access to the train-
ing dataset to obtain importance values. Although importance
values cannot be calculated for single samples, most mem-
bership inference attacks assume access to a shadow dataset.
We validate the feasibility of our approach using a shadow
dataset. Specifically, we randomly select 1,000 samples from
the CIFAR10 dataset to calculate their importance value, we
first calculate the importance value for all samples using the
whole CIFAR10 dataset as the ground truth. Then we assume
the adversary can only access a shadow dataset containing
10,000 samples, and calculate the importance value for each
sample using only the shadow dataset. We found a correlation
coefficient of 0.957 between these values, indicating that using
the shadow dataset could provide a good approximation.

A. Privacy Onion Effect

Carlini et al. [9] have identified the onion effect of mem-
orization, which refers to the phenomenon wherein “removing
the layer of outlier points that are most vulnerable to a privacy
attack exposes a new layer of previously-safe points to the same
attack.” Their research demonstrates this effect by removing
samples that are at the highest risk of being compromised
through membership inference, resulting in formerly safe sam-
ples becoming vulnerable to the attack.

Building upon the insights from the preceding section,
our empirical findings confirm a positive correlation between
membership inference vulnerability and data importance. This
prompts an intriguing question: Does this effect reflect in the
importance values assigned to the data? Put differently, when
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Fig. 6: The privacy onion effect can be extended to the importance distribution. For Figure 6a, we remove all examples with
importance values larger than the red line. Samples that remain after removal have their importance value increase past the red
line. Subsequent figures confirm that removing highly important samples elevates the significance of the remaining set, while
the removal of less significant samples has no such effect, ruling out dataset size influence.

high importance samples are removed from a dataset, do pre-
viously designated low importance samples gain significance?

To avoid ambiguity, it is imperative to understand that
the term “importance” in this context is not subjective or
relative. The removal of high importance data points does not
inherently increase the importance of those initially deemed
low importance. Furthermore, it is conceivable for a dataset
to exclusively consist of low importance samples. This clari-
fication is indispensable; otherwise, the studied question may
seem trivial.

Our results indicate that removing important samples in-
deed makes samples previously considered unimportant gain
importance. Specifically, upon removing 10,000 data points
with the highest importance scores, we recalculated the im-
portance for the remaining samples. As depicted in Figure 6a,
this removal led to a noticeable redistribution in data point
importance, with previously low important data points now
being assigned greater significance.

However, a note of caution is warranted in interpreting this
result. The removal of a substantial number of samples (10,000
in this context) might introduce a baseline drift. Therefore,
attributing the observed importance augmentation solely to
the exclusion of important samples might be premature. To
further validate our findings, we executed controlled experi-
ments wherein we systematically excluded either the most or
least significant data points. This approach mitigates potential
biases stemming from dataset size discrepancies. To emphasize
the impact of these exclusions, we quantified the importance
value discrepancies for data points ranked between 10,000
and 20,000 in descending order of importance in the original
dataset, as they remained for both removal procedures.

Our results, as visualized in Figure 6b, Figure 6c, and Fig-
ure 6d, underscore the pronounced disparities in how the
exclusion of high importance versus low importance data sam-
ples influences the remaining dataset’s importance distribution.
Using CIFAR10 as an illustrative case, removing the most sig-
nificant data points caused 99.14% of the remaining data points
to be reevaluated as more important. In contrast, removing
the least significant data points led to a 45.88% decrease in
importance for the affected data points. These findings robustly
support our hypothesis that data points previously deemed
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Fig. 7: Impact of sample duplication on importance values.
Following the duplication process (16 duplications per sam-
ple), 45 out of 50 target samples showed a marked increase in
importance, averaging a 53.02% rise, while the importance of
control samples (unduplicated) remained relatively stable.

of lesser importance assume greater significance when high
importance data points are excluded, and such a conclusion
cannot be attributed to dataset size variation.

B. Actively Modify Sample Importance

As discussed in the previous section, altering the dataset
can influence the importance of samples. Given the observed
linkage between membership vulnerability and importance
value, an interesting question arises: can we actively use our
findings to design more advanced attacks by modifying the
importance of target samples?

However, directly altering sample importance is challeng-
ing due to the absence of a standardized method or frame-
work. In this section, we explore an ad-hoc approach aimed
at increasing the importance of target samples. Specifically,
we select a set of target samples and duplicate each one
multiple times with consistently incorrect labels. This strategy
intuitively heightens the influence of these samples by causing
the model to consider them as “outliers” due to the prevalence
of incorrect duplicates. We tested this idea by duplicating
50 target samples 16 times and reassessing their importance

7



−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.0

0.5

1.0

1.5

2.0
C

ou
nt

×105

Target Diff

Remained Diff

(a) ColorJitter

−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
ou

nt

×105

(b) GrayScale

−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.0

0.5

1.0

1.5

2.0

C
ou

nt

×105

(c) HorizontalFlip

−2.0−1.5−1.0−0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
ou

nt

×105

(d) VerticalFlip

Fig. 8: Comparison of importance values before and after replacing 1,000 samples with their augmented versions using
ColorJitter, Grayscale, HorizontalFlip, and VerticalFlip techniques. The plot illustrates that augmentation caused variable changes
in importance, with some samples gaining and others losing importance.

−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

C
ou

nt

×105

Target Diff

Remained Diff

(a) ColorJitter

−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
ou

nt

×105

(b) GrayScale

−1.5 −1.0 −0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.0

0.5

1.0

1.5

2.0

C
ou

nt

×105

(c) HorizontalFlip

−2.0−1.5−1.0−0.5 0.0 0.5 1.0
Shapley Value Difference ×10−4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
ou

nt

×105

(d) VerticalFlip

Fig. 9: Analysis of the impact on importance values when 1,000 augmented samples are added to the original dataset, compared
to a baseline scenario where the same 1,000 samples were duplicated. The figure demonstrates that the presence of both original
and augmented samples had minimal effect on the importance of the original samples, showing no significant differences from
simple duplication.

values. As shown in Figure 7, the duplicated samples generally
exhibited an increase in importance. Specifically, 45 of the 50
target samples experienced an increase in importance, with
an average increase of 53.02%, while the importance of the
unaltered samples remained nearly constant.

This approach is exactly the membership poisoning attack
proposed by Tramèr et al. [61], where they comprehensively
demonstrated the method’s efficiency. This indicates that in-
creasing the importance of samples can be a practical approach
to enhance their vulnerability. By revisiting their technique
from a data importance perspective, we highlight that actively
modifying sample importance could be a promising strategy
for developing sophisticated attack techniques or formulating
robust defenses.

C. Data Augmentation

In previous discussions, it has been demonstrated that
manipulating data samples can alter their importance values
and, consequently, their susceptibility to attacks. Given that
data augmentation is the most widely used method for data
manipulation, it would be interesting to ask: does data aug-
mentation affect the importance of a sample?

In our study, we examined the impact of four data augmen-
tation techniques—ColorJitter, Grayscale, HorizontalFlip, and
VerticalFlip—under two specific scenarios. In both scenarios,

we selected 1,000 samples for augmentation while leaving the
rest of the dataset unaltered:

Augmented Versions Only: In this scenario, we aimed to in-
vestigate how data augmentation impacts the importance of the
augmented samples and the unaltered samples in the dataset.
Specifically, we replaced 1,000 samples with their augmented
versions, recalculated their importance values, and compared
these values to the original. As illustrated in Figure 8, we
found that the augmented versions had variable effects on im-
portance: some samples gained higher importance, while others
lost it. Overall, a slight majority of the samples experienced a
decrease in importance following augmentation. However, the
augmented samples had a negligible impact on the remaining
non-augmented samples.

Original and Augmented Versions: In this scenario, we
examined the effect of having both augmented and original
versions of certain samples in the dataset. We added 1,000
augmented samples to the original dataset and recalculated
the importance values for the original samples. To control for
dataset size, we also considered a baseline case where the same
1,000 samples were duplicated. As shown in Figure 9, the
presence of both original and augmented samples had minimal
impact on the importance of the original samples, with no
significant differences compared to simple duplication.

We acknowledge that more complex augmentation tech-
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niques, such as those using generative models, may have dif-
ferent effects. The exploration of these complex augmentation
techniques remains an avenue for future research.

Takeaways: Our findings highlight the vulnerability of high
importance samples to membership inference attacks. Sig-
nificant differences were observed in the behavior of high
importance and low importance samples, particularly in the
low false-positive rate region, where high importance samples
exhibited substantially higher true-positive rates. This empha-
sizes the necessity of addressing the privacy risks associated
with high importance samples and implementing effective safe-
guards. Simultaneously, it encourages researchers to explore
strategic sampling methods to enhance the effectiveness of
privacy audits.

The observation also suggests a potential enhancement
to membership inference attacks through the introduction of
sample-specific criteria. We empirically validate the practical-
ity of using importance values to calibrate membership metrics,
thereby enhancing attack efficiency.

Moreover, our findings reveal the “privacy onion effect”
within the sample importance distribution, where previously
overlooked samples gain importance when key samples are
removed. Furthermore, by revisiting an advanced membership
poisoning attack from the perspective of data importance, we
suggest that actively manipulating sample importance can be
a potent strategy for developing sophisticated cybersecurity
measures, both offensive and defensive, but finding general
manipulating methods needs further investigation.

V. MODEL STEALING

Model stealing attack [63], [62], [52], [21], [8] differs from
membership inference attack as it aims to compromise the
confidentiality of the model itself rather than exploiting privacy
information about training samples. This type of attack does
not have information about the target model’s architecture or
parameters but seeks to create a surrogate model that emulates
the functionality of the target model. Such attacks can be em-
ployed by adversaries for various purposes, including monetary
gains or as a preliminary step for subsequent attacks [45].

The workflow of a model stealing attack is visualized
in Figure 10. The adversary samples data from a specific
distribution D and simultaneously queries the target and sur-
rogate models. To ensure similarity between the surrogate and
target models, the adversary optimizes the surrogate model to
produce similar outputs S(x) as the target outputs T (x). While

Fig. 10: The workflow of model stealing attack, the adversary
leverages the target model to guide the surrogate model.

the attack approach is straightforward, selecting an appropriate
query data distribution poses a challenge, as it directly impacts
the stolen accuracy and query efficiency. Recent research
has explored efficient and data-free methods for launching
these attacks [44], [26], [52], yet the question of selecting
high-quality samples when the target task is known remains
intriguing.

In this work, we focus on the primary scenario where the
adversary can query the target model to obtain corresponding
posteriors, while having knowledge of the target task. Specifi-
cally, the adversary could query the model with a dataset from
the same or a similar distribution. This scenario has practical
applications, such as creating a surrogate model to facilitate
further attacks or to save on labeling costs. We limit our
discussion to this primary scenario and do not delve into more
advanced model stealing techniques that focus on reducing the
dataset assumption, as our interest lies in understanding how
different data interact with the model stealing process.

Our goal is to investigate whether query samples with dif-
ferent importance values exhibit varying efficiency in stealing
models. We explore two settings in our experiments. First, we
launch the attack using query data from the same distribution
as the target model trained on. For example, if the target model
is trained on CIFAR10, we employ CIFAR10 data to query the
model. The second scenario involves using data from different
distributions, specifically CelebA and TinyImageNet, to query
the CIFAR10 model. We choose accuracy and query budget
as the metrics to evaluate the success of the attack, using less
query budget to achieve higher accuracy denotes better attack
performance.

A. Same Distribution Query

Three target models were trained using a standard training
procedure, resulting in testing accuracies of 95.15% for CI-
FAR10, 79.05% for CelebA, and 65.01% for TinyImageNet.
After training the target models, our attack solely interacts with
the target models through their outputs without accessing or
reading their parameters.

To initiate the attack, we establish a query budget ranging
from 100 to 10,000. Once the query budget is determined, we
prioritize collecting high importance data until the budget is
exhausted, and the same principle applies to the collection of
low importance data.

The attack results are illustrated in Figure 11, highlighting
the superior efficiency of high importance samples in the model
stealing process. For instance, when the query budget is set
to 1000, high importance data steal a CIFAR10 model with
53.77% accuracy, which is 1.6× higher than the model stolen
by low importance data (33.29%). This trend holds true for
the other two datasets as well. Taking TinyImageNet as an
example, when the query budget is 1000, high importance data
yield a model accuracy of 19.25%, whereas low importance
data only result in a model accuracy of 9.25%, exhibiting a
notable 2.1-fold disparity.

One plausible explanation for this difference may arise
from variations in class balance, given that the query sets
are chosen based on sample importance. It is conceivable that
the low importance query set may lack samples from certain
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Fig. 11: Model stealing attack that queried with data from the same distribution. High importance samples exhibit greater
efficiency in stealing models when the target model is trained on the same distribution as the query distribution.
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Fig. 12: Model stealing attack that queried with data from
different distributions. The target model is trained on the
CIFAR10 task. Results show that importance does not transfer
between different tasks.

classes, thereby resulting in suboptimal performance. Prior
research has suggested that a more balanced data distribution
could potentially improve model stealing performance [52],
[33]. However, upon examining the data distribution for both
high and low significance samples, we observed no significant
disparities. For example, in the case of CIFAR10, the entropy
values for the top-10,000 high importance and low importance
distributions were 3.282 and 3.245, respectively. Even when
considering 1000 samples, the corresponding entropy values
were 3.161 (high importance) and 3.229 (low importance).
For context, a perfectly uniform distribution has an entropy
of 3.322. This indicates that both the high and low impor-
tance subsets closely approximate a uniform distribution. Such
findings reinforce our assertion that high importance data
can indeed augment model stealing performance, mitigating
concerns related to distributional biases.

B. Different Distribution Query

The previous section highlighted the enhanced efficiency
of high importance samples in stealing models trained on
the same task. However, it remains uncertain whether this
efficiency persists when the target model is trained using a
different dataset or task, and whether importance values can
be transferred across tasks.

To investigate, we conducted experiments involving query
data that differed from the distribution used to train the target

model. Specifically, we employed a CIFAR10 model as the
target model and queried it with the CelebA and TinyImageNet
datasets.

Interestingly, as depicted in Figure 12, we observed that
the advantage of high importance samples disappeared in this
cross-task scenario. When the query budget was consistent, the
stolen accuracy for both high and low importance samples was
comparable. This suggests that samples deemed important for
one task may not transfer effectively to arbitrary tasks.

Takeaways: Our findings demonstrate that high importance
samples exhibit greater efficiency in stealing models when
the target model is trained on the same distribution as the
query distribution. Importantly, this enhanced efficiency cannot
be solely attributed to distribution bias. This suggests that
adversaries, when aware of the target task, can employ high
importance samples to optimize attack performance with a
reduced query budget. However, this conclusion does not
hold when the target task differs from the query distribution.
Consequently, this implies that selecting a group of high
importance samples as a “universal” query set for efficient
model stealing attacks, regardless of the target task, is not
feasible.

VI. BACKDOOR ATTACK

Backdoor attack [17], [32], [49] is a training-time attack
that involves actively interfering with the training process to
manipulate the resulting model. Its primary objective is to
introduce malicious behavior into the model, making it behave
like a benign model for normal inputs. However, when a
specific trigger is detected, the backdoored model intentionally
misclassifies the input to a predetermined class. This type of
attack can have severe consequences, such as compromising
the integrity and reliability of the model, leading to potential
security breaches, data manipulation, or unauthorized access
to sensitive information.

Despite the severe consequences that a backdoor attack
may cause, the attack itself is relatively easy to achieve
by poisoning the training dataset, thereby posing an even
stronger threat. For instance, a straightforward attack approach
called BadNets [17] adds a fixed trigger to a portion of the
training dataset, resulting in a perfect attack where almost all
triggered samples are misclassified into the target class, while
the accuracy on the original task remains largely unaffected.
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Fig. 13: Relationship between attack success rate and the poisoning rate, high importance samples enhance the efficiency of the
poisoning process, particularly when the poisoning rate is small.

In the context of backdoor attacks, the poison rate plays
a critical role as it directly influences the effectiveness and
concealment of the attack. A higher poison rate can lead to
an increased attack success rate, but it also raises the risk of
detection since a large number of samples need to be modified.
Conversely, a lower poison rate may offer better concealment,
but it may not achieve optimal attack performance. Addition-
ally, there are situations where the adversary can only control
a small set of samples, making it impossible to poison a large
number of samples to achieve the attack. Consequently, the
problem of backdooring a model with a limited poison rate
becomes an interesting and challenging research question.

In this section, we conduct empirical investigations to
explore whether poisoning samples with different importance
levels influences the attack performance under the same poison
rate. We utilize two metrics to evaluate the attack performance:

1) Accuracy. This metric assesses the deviation of the
backdoored model from the clean model. We measure
the performance of the backdoored model on the
clean dataset, and a successful attack should result
in accuracy close to that of the clean model, making
it difficult to detect.

2) Attack Success Rate (ASR). This metric evaluates
the functionality of the backdoored model and is
measured on the triggered dataset. A desirable back-
doored model should exhibit a high ASR, indicating
its ability to misclassify all triggered samples into the
target label.

By analyzing these metrics, we aim to gain insights into the
influence of data importance on the attack performance and
further understand the trade-offs between attack effectiveness
and concealment in the context of backdoor attacks.

In this part, we adopt the same approach as BadNets to
backdoor the model, with hyperparameter details provided
in Appendix C. Additionally, we validate the generalizability of
our conclusion across five other backdoor attacks—Blend [11],
SSBA [30], LF [73], SIG [6], and CTRL [29]—which utilize
various trigger patterns or target different learning paradigms,
as discussed in the extended version [65].

We present the visualized attack success rate in Figure 13.
As depicted in the figure, there is a noticeable increase in
the attack success rate as the number of poisons increases.

Concurrently, we observe significant differences between poi-
soning high importance samples and low importance samples.
Specifically, poisoning an equal number of high importance
samples proves to be more effective in increasing the attack
success rate compared to poisoning low importance samples.
This phenomenon becomes more pronounced when the poi-
soning rate is small. For instance, in the case of CIFAR10,
with a poisoning size of 50, poisoning high importance data
results in a model with an ASR of 54.42%, whereas poisoning
low importance data only achieves 37.74%, indicating a 1.44×
advantage. Similar trends can be observed across the other two
datasets.

However, we also find that when the poisoning rate is
large, the difference is not significant. We believe this is due to
the trade-off between the importance advantage and the attack
upper bound. As the number of poisons increases, the advan-
tage of using high importance data becomes more evident.
However, achieving the optimal ASR for the backdoor attack
does not require a large amount of data. Generally, poisoning
approximately 10% of the dataset is sufficient. Therefore, as
the number of poisons increases, the gap between high impor-
tance and low importance samples is reduced. Nevertheless,
it is still observed that poisoning high importance samples
requires poisoning fewer samples to achieve its optimal ASR.

In scenarios where adversaries have limited access to data,
determining the true importance of samples can be challenging,
which impacts the feasibility of selectively poisoning high
importance samples. In this case, we empirically demonstrate
that calculating the importance value using just a fraction of
the training set can provide a good approximation of the true
importance. For example, with just 2% of the CIFAR10 data
available, the computed importance values correlate strongly
with those derived from the entire dataset, achieving a cor-
relation coefficient of 0.811 ± 0.016. The accuracy of these
approximations improves with more data: with 5% of the data,
the correlation coefficient rises to 0.899±0.006, and with 20%
of the data, it exceeds 0.96. These results demonstrate that even
with limited data access, it is feasible to closely estimate the
importance of samples, facilitating effective attack planning
under realistic constraints.

Additionally, our investigation into the impact on clean
accuracy reveals no significant trends suggesting that poisoning
samples of differing importance levels affects clean accuracy.
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Fig. 14: Attribute inference attack performance on different attributes, no significant correlation between attribute inference
attacks and data importance is observed. These confirm our hypothesis that the importance of data samples is context-dependent
and can vary based on the specific task at hand.

In both scenarios, the influence on clean accuracy remains
below 2%, indicating the concealment of the backdoor attack.
Due to space constraints, detailed results are presented in the
extended version [65].

Takeaways: Our experimental results demonstrate that poi-
soning high importance samples enhances the efficiency of
the poisoning process, particularly when the poisoning rate
is small. This insight offers valuable guidance for developing
attack strategies aimed at compromising models with restricted
data accessibility. Beyond refining trigger patterns for effective
injections, prioritizing the poisoning of high importance sam-
ples emerges as a promising approach. On the other hand,
the influence on clean accuracy does not yield a definitive
conclusion, as poisoning either type of data has a limited
impact on clean accuracy.

VII. ATTRIBUTE INFERENCE ATTACK

Attribute inference attack is a privacy attack that aims
to infer sensitive attributes that are not directly related to
the original task of a machine learning model. For instance,
a model trained to predict age from profile photos may
unintentionally learn to predict race as well [56], [39], [57].
This type of attack has significant implications for privacy
and fairness, as the inadvertent leakage of sensitive attributes
can have far-reaching consequences, including the violation of
privacy rights, potential discrimination, and the undermining
of trust in machine learning systems.

In this work, we focus on a commonly considered attack
scenario as depicted in Figure 15, where the adversary exploits
the embeddings of a target sample obtained from the target
model to predict its sensitive attributes 2 To perform attribute
inference, the adversary assumes auxiliary information about
the training dataset and collects a shadow dataset from similar
distributions. They train a shadow model to mimic the behavior
of the target model and use the embeddings and sensitive
attributes to train an attack classifier.

2We acknowledge that there exists a separate line of research on attribute
inference attacks targeting tabular data [38], [23], [15], which primarily
aims to reconstruct missing attribute values in original records. Given that
these attacks employ different technical methodologies and pursue distinct
objectives, our conclusions may not necessarily apply to such work.

In this section, we investigate the impact of data importance
on the CelebA dataset, which contains several attributes that
can be inferred. We categorize the samples into five groups,
each comprising 10,000 samples, based on their importance
values ranging from low to high. Following this categorization,
we train five models using these groups as target models.

To perform the attack, we utilize 10,000 samples, disjoint
from the 50,000 training samples, to train a shadow model.
This shadow model is employed to generate datasets for
training the attack model, where the inputs are embeddings,
and the associated sensitive attributes serve as labels. We
train a two-layer fully connected network as the attack model,
which is then utilized to infer the sensitive attribute from the
embeddings.

To evaluate the attack performance, we utilize relative
accuracy as the metric, comparing the accuracy against a
random guessing baseline that varies for different attributes
due to the uneven distribution of the CelebA dataset.

The experimental results, as shown in Figure 14, reveal
no significant connection between data importance and the
success of attribute inference attacks. For instance, the “Arched
Eyebrows” attribute is easily inferred for high importance sam-
ples, while only low importance samples can be inferred for the
“High Cheekbones” attribute. Furthermore, the vulnerability
to attribute inference for the “Mouth Slightly Open” attribute
is most prominent among samples with middle importance
values. These results demonstrate that there is no significant
correlation between attribute inference attacks and data impor-
tance.

Fig. 15: The attack scenario for attribute inference attack. The
adversary can get the embeddings and aims to infer sensitive
attributes based on the information encoded in embeddings.
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Fig. 16: Relationship between reconstruction quality and data importance, reconstruction performance remains steady regardless
of the importance level of the data samples.

One possible explanation for these results is that the
importance value of data samples may vary depending on the
prediction task. In other words, the significance of certain
features or attributes may differ across different prediction
tasks. For example, while whiskers may be an important
feature for predicting gender, it may hold less importance
when predicting income. We further validate our conjecture by
visualizing the correlation among importance values assigned
to different attributes in the extended version [65]. It indicates
that a sample’s elevated importance on one attribute may not
align with its importance on another attribute.

Takeaways: Our findings indicate that there is not a straight-
forward correlation between the significance of data samples
and the performance of an attack, aligning with our initial
hypothesis. A pivotal insight from this section demonstrates
that the importance of data samples is context-dependent and
can vary based on the specific task at hand, which resonates
with our earlier discovery in Section V-B.

VIII. DATA RECONSTRUCTION ATTACK

Data reconstruction attack [75], [72], [14], [69], [48]
refers to recovering the target dataset with limited access
to the target model, with the aid of additional knowledge
possessed by the adversary. While data reconstruction attack
shares similarities with membership inference attack, there
are significant differences that make data reconstruction a
stronger attack. Specifically, membership inference operates
at the sample level, determining the membership status of
individual samples. In contrast, data reconstruction is a dataset-
level attack aimed at extracting the entire training dataset. This
distinction necessitates different technical approaches for data
reconstruction.

Fig. 17: The workflow of a basic data reconstruction attack,
the adversary optimizes the input to maximize the likelihood
of the target class.

In this work, we employ two data reconstruction attacks,
namely DeepInversion [72] and Revealer [75], to investigate
the influence of data importance on the reconstruction process.
These attacks are based on the optimization of input samples,
as illustrated in Figure 17. Specifically, given a target class
y, both methods initialize a sample x and iteratively update
it to maximize the likelihood or probability of belonging to
that class while keeping the model parameters fixed. This
optimization process is guided by the following loss function:

min
x
L(fθ(x), y)

DeepInversion leverages statistical information encoded in the
batch normalization layer to enhance the quality of recon-
structions, while Revealer employs a Generative Adversarial
Network (GAN) to generate high-quality reconstructions.

To investigate the impact of data importance on the perfor-
mance of data reconstruction attacks, we partition the samples
into groups of 10,000 based on their importance values, rang-
ing from low importance to high importance. Subsequently, we
train one target model for each sample group, resulting in a
total of five models for CIFAR10 and CelebA datasets, and ten
models for TinyImageNet. We then apply two reconstruction
attacks on each of them. We leverage Fréchet Inception Dis-
tance (FID) to measure the similarity between reconstructed
samples and the training samples, given its established utility
in evaluating the quality of generated distributions [75], [72],
[60]. A smaller FID denotes better reconstruction quality.
For each target model, we generate 10,000 reconstructions,
matching the size of the training dataset. Subsequently, we
calculate the FID score, quantifying the discrepancy between
the reconstructions and the corresponding training dataset.

The findings presented in Figure 16 suggest that there is no
significant distinction between high and low importance data
samples in terms of data reconstruction. Taking CIFAR10 as an
example, DeepInversion exhibits a maximum deviation of only
13.02% compared to the mean value, indicating a consistent
performance. Similar results are observed with Revealer, where
the maximum deviation is merely 5.35% compared to the
mean value. Moreover, this consistent performance extends to
more complex datasets. For instance, in the case of CelebA
dataset, the maximum deviation is less than 8.27%, while for
TinyImageNet, the deviation is less than 4.01%. These findings
suggest that the reconstruction performance remains steady
regardless of the importance level of the data samples.
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Fig. 18: Relationship between membership inference attack advantage and data importance. Results show that our conclusion
can be generalized to different model architectures and data modalities.

IX. TRANSFERABILITY STUDY

In order to fortify the generalizability of our conclusions,
this section investigates the transferability of our findings
across various model architectures and data modalities. For
the vision modality, we conducted experiments employing two
distinct model architectures, namely MobileNetV2 [51] and
ResNet50 [19].

To evaluate the transferability to diverse data modalities,
we introduced the tabular dataset Purchase-100 [3], consisting
of 600 binary features for classifying 100 classes. We focus
on the tabular modality considering that existing Shapley
methods predominantly support vision and tabular modalities.
We utilize a Multilayer Perceptron (MLP) to process the
Purchase task, aligning with established practices in prior
research [55], [50].

Our experimental results consistently support our conclu-
sions, irrespective of the model architecture and data modality.
For example, in Figure 18, the three left figures depict a
consistent relationship between the advantage of membership
inference attacks and the importance of data across all three
model architectures. This trend is also evident when perform-
ing the attack based on the distance to the boundary (see
results in the extended version [65]). Additionally, Figure 18d
illustrates that this conclusion holds for the tabular modality.
Although slight fluctuations are observed in the low importance
area, the overall picture demonstrates a consistent relationship
between importance and membership vulnerability, aligning
with the conclusions drawn from the vision modality.

Furthermore, this conclusion extends to other attack types,
such as model stealing and backdoor attacks. Due to space
constraints, we defer full results to the extended version [65].
These findings reaffirm the consistent impact of data im-
portance across different attack scenarios, underscoring the
generalizability of our observations.

X. LIMITATIONS AND FUTURE WORK

While our research provides valuable insights into the rela-
tionship between data importance and vulnerability to specific
attacks, several limitations exist that warrant further investiga-
tion. Our study focuses on a specific set of attacks. Although
these are important, they may not cover the entire spectrum of
potential threats. Other types of attacks could exhibit different
relationships between data importance and vulnerability, and

understanding how these various attacks interact with data
importance remains an open area for exploration.

Extending our findings to Large Language Models (LLMs)
presents substantial challenges despite their promising ad-
vancements. The primary obstacle is the computational cost
associated with calculating importance values. To manage this
burden, current methods often resort to computationally lighter
algorithms like KNN for classification tasks. However, it is
unclear whether similar computationally efficient approaches
can be adapted to approximate auto-regression models, es-
pecially since LLMs exhibit unique emergent characteristics
when scaled beyond certain thresholds. Additionally, the con-
siderably larger datasets typical of LLMs further complicate
the feasibility of extending these methods.

Furthermore, our research does not examine more complex
augmentation techniques, such as those utilizing generative
models. Future work should investigate whether these ad-
vanced techniques affect data importance and vulnerability
differently. Additionally, exploring whether there exists a gen-
eralizable method to manipulate data importance across various
augmentation techniques would be invaluable. To foster further
research and collaboration, we have open-sourced our evalu-
ation framework, available at https://github.com/TrustAIRLab/
importance-in-mlattacks. This will enable other researchers to
examine whether the observed data discrepancies hold for new
types of attacks, thereby benefiting the broader community.

XI. CONCLUSION

In this paper, our research systematically studies the vulner-
ability of heterogeneous data when confronted with machine
learning attacks. Our findings underscore a heightened sus-
ceptibility of high importance data samples to privacy attacks,
including membership inference attacks and model stealing
attacks. Our findings also carry practical implications, inspiring
researchers to design more efficient attacks. For example, we
empirically showcase the potential enhancement of member-
ship inference attacks through the incorporation of sample-
specific criteria based on importance values. Additionally, we
demonstrate that our findings can be strategically employed to
guide the creation of more advanced attacks through the active
manipulation of sample importance.
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Memorization is Relative. In Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2022.

[10] Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-
Enriched Distributional Model Inversion Attacks. In IEEE International
Conference on Computer Vision (ICCV), pages 16158–16167. IEEE,
2021.

[11] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. CoRR abs/1712.05526, 2017.

[12] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and
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APPENDIX

A. CelebA Attribute Selection

The CelebA dataset contains 40 binary attributes, which is
not suitable for multi-class classification. Therefore, we follow
previous works [43], [49], [76], [35] that select the three most
balanced attributes (Heavy Makeup, Mouth Slightly Open, and
Smiling) to create an 8-class (23) classification task.

To validate that our findings are not dependent on this
specific attribute selection, we conducted the same experi-
ments using another randomly selected set of attributes (High
Cheekbones, Arched Eyebrows, and Wearing Lipstick). We
evaluated the performance on membership inference attacks,
model stealing, and backdoor attacks. The results are depicted
in Figure 19, confirming that our findings are consistent across
these different attribute sets. For example, Figure 19a demon-
strate that samples with higher importance are more vulnerable
to membership inference attack, it also reflects on the worst-
case evaluation as illustrated in Figure 19b. The conclusion
holds for backdoor and model stealing attack, specifically, with
a 1500 query budget, high importance samples can steal a
surrogate model with 48% higher accuracy than that stolen by
low importance samples.

B. Measurement Hyperparameter

In implementing the KNN-Shapley method, we set the
hyperparameter k = 6, following the suggestion in the original
paper [24]. Further experimentation with k = 7 and k = 8
indicated that performance remains largely consistent across
these settings. Specifically, the correlation between importance
values calculated with k = 6 and k = 7 is 0.9988, and between
k = 6 and k = 8, it’s 0.9972, demonstrating the robustness of
our results with respect to this hyperparameter.

C. Hyperparameters for Backdoor Attacks

For the three datasets evaluated in our study—CIFAR10,
CelebA, and TinyImagenet—a consistent modification was
applied to each image: a black square was positioned at the
bottom left corner.

The dimension of this black square, or backdoor trigger,
varied according to the image sizes of the respective datasets
to maintain proportional consistency. Specifically, for the CI-
FAR10 dataset, with an image resolution of 32×32, the trigger
was sized at 2×2. In the case of CelebA, which features larger
images with dimensions of 178 × 218, the trigger’s size was
increased to 8×8. Lastly, for images from TinyImagenet, which
are 64× 64 pixels, a 5× 5 square was used as the trigger.

D. Related Work

In addition to the attack approach investigated in our work,
several methods exist for privacy and security attacks against
machine learning models. In the following section, we provide
a brief overview of these approaches.

1) Membership Inference Attack: Membership Inference
Attacks (MIA) [55], [50], [31], [66], [20], [74] have emerged
as a significant threat to privacy in the context of machine
learning models. These attacks aim to reveal the membership
status of a target sample, i.e., whether the sample was part of
the training dataset or not, thereby directly breaching privacy.

The seminal work by Shokri et al.[55] introduced MIA
against machine learning models, wherein multiple shadow
models were trained to mimic the behavior of the target model.
This attack originally required access to data from the same
distribution as the training dataset. However, Salem et al.[50]
relaxed this assumption by demonstrating the effectiveness of
using only a single shadow model, substantially reducing the
computational cost involved.

Subsequent research [12], [31] has explored more challeng-
ing settings for MIA. In these scenarios, the adversary only has
access to hard-label predictions from the target model. Li and
Zhang [31] proposed a method that approximates the distance
between the target sample and its decision boundary using
adversarial examples, enabling the attacker to make decisions
based on this distance.

Recent advancements in MIA have focused on enhancing
attack performance. Carlini et al.[7] leveraged the discrepancy
between models trained with and without the target sample
to improve attack effectiveness. Liu et al.[34] demonstrated
the utility of loss trajectory analysis in MIA. Furthermore,
Tramèr et al. [61] highlighted the potential of data poisoning,
showing that even with access to a small fraction of the training
dataset, the attacker can significantly boost the performance of
membership inference attacks.

2) Model Stealing Attack: Model stealing attacks [62],
[44], [26], [63], [33], [67] aim to extract information from
a victim model and construct a local surrogate model. This
attack was initially proposed by Tramèr et al.[62], assuming
that the adversary has access to a surrogate dataset for stealing
the model. Orekondy et al. further advanced this approach
by developing a reinforcement learning-based framework that
optimizes query time and effectiveness [44].

Recent research has focused on the more stringent data-
free setting, where adversaries lack access to any data. In this
context, Kariyappa et al. [26] propose MAZE, which employs
a generative model to generate synthetic data samples for
launching the attack. The generator is trained to maximize
disagreement between the victim model and the clone model,

17



10000 20000 30000 40000 50000
Importance Order

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
tt

ac
k

A
dv

an
ta

ge

Confidence

Entropy

Modified Entropy

(a) MIA (metric-based)

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

High

Low

(b) MIA (log-scale)

0 250 500 750 10001250150017502000
Number of Poisons

10

20

30

40

50

60

70

80

A
tt

ac
k

S
uc

ce
ss

R
at

e High

Low

(c) Backdoor ASR

0 2000 4000 6000 8000 10000
Query Budget

10

20

30

40

50

60

A
cc

ur
ac

y

High

Low

(d) Model Stealing

Fig. 19: Attack performance on samples with high and low importance. The results demonstrate that our conclusions are consistent
across different sets of selected attributes.
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Fig. 20: LOO and Trak fail to capture the complex interac-
tions between subsets of data, resulting in suboptimal sample
importance identification performance.

requiring the gradients from the victim model. To approximate
these gradients with only black-box access, zeroth-order gra-
dient estimation techniques are adopted.

Truong et al. [63] present a similar approach, where they re-
place the loss function from Kullback-Leibler (KL) divergence
to ℓ1 norm loss for training the student model. In contrast to
the previous attacks that generate “hard” queries that differ
in predictions between the victim and clone models, Sanyal
et al. [52] adopt a different strategy by generating ”diverse”
queries to increase predictions belonging to different classes.

3) Backdoor Attack: Backdoor attacks [17], [32], [49], [5],
[29] are training-time attacks that introduce malicious behavior
into the model, making it behave like a benign model for
normal inputs, while intentionally misclassifying the input to
a predetermined class when the trigger appears.

The seminal work by Gu et al.[17] introduced the concept
of the backdoor attack on machine learning models. Building
upon this, Liu et al.[32] proposed an advanced backdooring
technique that incorporates enhanced triggers and relies on
fewer assumptions. However, these attacks were limited to
injecting static triggers, making them susceptible to detection.

Salem et al.[49] integrated generative models to perform
dynamic backdoor attacks, where the trigger is not fixed thus
increasing the difficulty of detection. Nguyen and Tran[42]
further extended this concept to design an input-aware attack.
Most existing attacks in this domain are based on poisoning
attacks [68], [40], [53], [77], which involve poisoning the

training dataset. In contrast, Bagdasaryan and Shmatikov [5]
propose a distinct attack target in the scenario where the
learning algorithm itself is poisoned, presenting an alternative
approach in this field of study.

4) Data Reconstruction Attack: Data reconstruction at-
tacks [14], [69], [18], [48] aim to recover the target dataset with
limited access to the target model, with the aid of additional
knowledge possessed by the adversary.

In the realm of data reconstruction attacks, exist-
ing approaches can be broadly classified into three cate-
gories: optimization-based attacks, training-based attacks, and
analysis-based attacks.

Optimization-based attacks, first introduced by Fredrikson
et al.[14], represent the majority of existing reconstruction
attacks. These attacks employ an iterative optimization pro-
cess to reconstruct the training dataset, with the objective of
obtaining a high likelihood score for the desired class. Notably,
the integration of generative models by Zhang et al.[75]
has contributed to improving the quality of reconstruction.
Building on this line of research, several studies have explored
diverse architectural choices [10], [64] and loss functions [60]
to further enhance reconstruction performance.

Conversely, training-based attacks [69] regard the target
model as an encoder and train a corresponding decoder
network to reconstruct inputs based on the model’s outputs.
Recently, Haim et al. [18] presented a theoretical demonstra-
tion that, under specific assumptions, the training data can be
completely recovered, leading to a new attack approach.
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