
Backdoor Attacks Against Dataset Distillation

Yugeng Liu,† Zheng Li,† Michael Backes,† Yun Shen,§ and Yang Zhang†
†CISPA Helmholtz Center for Information Security §NetApp

{yugeng.liu, zheng.li, director, zhang}@cispa.de, yun.shen@netapp.com

Abstract—Dataset distillation has emerged as a prominent
technique to improve data efficiency when training machine
learning models. It encapsulates the knowledge from a large
dataset into a smaller synthetic dataset. A model trained on this
smaller distilled dataset can attain comparable performance to
a model trained on the original training dataset. However, the
existing dataset distillation techniques mainly aim at achieving
the best trade-off between resource usage efficiency and model
utility. The security risks stemming from them have not been
explored. This study performs the first backdoor attack against
the models trained on the data distilled by dataset distillation
models in the image domain. Concretely, we inject triggers into
the synthetic data during the distillation procedure rather than
during the model training stage, where all previous attacks are
performed. We propose two types of backdoor attacks, namely
NAIVEATTACK and DOORPING. NAIVEATTACK simply adds
triggers to the raw data at the initial distillation phase, while
DOORPING iteratively updates the triggers during the entire
distillation procedure. We conduct extensive evaluations on mul-
tiple datasets, architectures, and dataset distillation techniques.
Empirical evaluation shows that NAIVEATTACK achieves decent
attack success rate (ASR) scores in some cases, while DOORPING
reaches higher ASR scores (close to 1.0) in all cases. Furthermore,
we conduct a comprehensive ablation study to analyze the factors
that may affect the attack performance. Finally, we evaluate
multiple defense mechanisms against our backdoor attacks and
show that our attacks can practically circumvent these defense
mechanisms.1

I. INTRODUCTION

Deep neural networks (DNNs) have established themselves
as the cornerstone for a wide range of applications. To achieve
state-of-the-art performance, it becomes a new norm that large-
scale datasets of millions of samples are used to train modern
DNN models [11], [28], [57], [73]. Unfortunately, this ever-
increasing scale of data significantly increases the cost [63] of
storage, training time, energy usage, etc.

Dataset distillation is an emerging research direction with
the goal of improving the data efficiency when training DNN
models [5], [52], [53], [79], [88], [89], [90]. Its core idea
is distilling a large dataset into a smaller synthetic dataset
(see Figure 1 for illustration). A model trained on this smaller
distilled dataset can attain comparable performance to a model
trained on the original training dataset. For instance, the
pioneering work by Wang et al. [79] compresses 50,000

1Code is available at https://github.com/liuyugeng/baadd.

Oringinal Training Dataset (X)

Distilled Dataset (X)~

Train Train

Dataset
Distillation

L = l(X, θ)

L = l(X, θ)~+~

(θ)

Comparable
Performance

Fig. 1: Overview of dataset distillation. The dataset distillation model
θ distills the original training dataset X into a smaller dataset X̃.
The model trained on the distilled dataset X̃ can attain comparable
performance to a model trained on the original training dataset X.

training images of the CIFAR10 dataset into only 100 synthetic
images (i.e., 10 images per class). A standard DNN model
trained on these 100 images yields a test-time classification
performance of 0.646, compared to 0.848 of the model trained
on the original full dataset. Owing to its advantages, such
as less storage, training, and energy costs, we expect that
data distillation will be offered as a service and plays an
essential role in many machine learning applications.2 For
those researchers and companies without the capacity to store
or the capability to process a vast amount of data, using a
distilled dataset from dataset distillation services will become
a promising alternative.

Despite its novel advantage in condensing the information
of the entire dataset in a smaller dataset, dataset distillation
is essentially a DNN model (see Section II). Previous stud-
ies [42], [47] have shown that DNN models (e.g., image clas-
sifiers, language models) are vulnerable to security and privacy
attacks, such as adversarial attacks [21], [35], [55], inference
attacks [18], [26], [54], [59], [61], [66], backdoor attacks [24],
[60], [76], [86]. Yet, existing dataset distillation efforts [5],
[52], [53], [89] mainly focus on designing new algorithms to
distill a large dataset better. The potential security and privacy
issues of dataset distillation (e.g., the implications of using a
distilled dataset from third parties) are left unexplored.

Motivation. In this study, we consider the backdoor attack
that a malicious dataset distillation service provider can launch
from the upstream (i.e., data distillation provider). We ex-
clusively focus on the dataset distillation in the image do-
main. Note that the distilled dataset is used for training the
downstream models (i.e., the models consuming the distilled

2https://ai.googleblog.com/2021/12/training-machine-learning-models-more.
html.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24287
www.ndss-symposium.org

https://github.com/liuyugeng/baadd
https://ai.googleblog.com/2021/12/training-machine-learning-models-more.html
https://ai.googleblog.com/2021/12/training-machine-learning-models-more.html

datasets). Existing backdoor attacks inject triggers to the origi-
nal clean data and then train a model using a mixed set of clean
and backdoored data, i.e., perform the trigger injection process
on the data that are fed directly to the model. These classic
attacks cannot be directly applied to the distilled datasets to
backdoor the downstream models since these distilled datasets
are small (e.g., 10 synthetic images for SVHN [10] and 100
synthetic images for CIFAR10 [1]) and not sufficient enough
to inject the backdoor. First, human inspection can quickly
mitigate such attacks since it is trivial to inspect 100 images.
We also carry out an experiment using a CIFAR10 distilled
dataset generated by DD and ConvNet and the commonly used
0.01 poisoning ratio [2], [3], [50], [64], [92] (i.e., only 1 image
for the distilled dataset with 100 samples) to attempt to train a
backdoored model. In this case, the model utility score is 0.405
while the attack success rate (ASR) score only reaches 0.152.
It is evident that the attackers cannot implant the backdoor in
the model using the classical backdoor attack approaches. To
overcome this limitation, we make the first attempt to answer,
“is it possible to inject triggers into such a tiny distilled dataset
and launch backdoor attacks on the downstream model?”

Our Contributions. In this paper, we present two backdoor
attacks, namely NAIVEATTACK and DOORPING. NAIVEAT-
TACK adds triggers to the original data at the initial distillation
phase. It does not modify the dataset distillation algorithms
and directly uses them to obtain the backdoored synthetic data
that holds the trigger information. Restricted by the distillation
algorithms, those triggers may not always be retained in the
distilled dataset. To resolve this problem, we further propose
DOORPING that iteratively optimizes the triggers throughout
the distillation procedure. In this way, we inject triggers into
the distilled dataset during the distillation process rather than
directly injecting triggers into the training data. To demonstrate
the effectiveness of our backdoor attacks, we conduct extensive
experiments on four benchmark datasets, two widely-used
model architectures, and two representative dataset distillation
techniques. Empirical results show that both of our attacks
maintain high model utility. NAIVEATTACK achieves a reason-
able attack success rate (ASR) in some cases, while DOORPING
consistently attains a higher ASR (close to 100%) in all cases.
Furthermore, we conduct a comprehensive ablation study to
analyze the factors that may affect the attack performance
and show that our backdoor attacks are robust in different
settings. Finally, we also evaluate our attacks with nine defense
mechanisms at three detection levels. The experimental results
indicate these defenses cannot effectively mitigate our attacks.
Our contributions can be summarized as the following:

• We perform the first backdoor attacks against dataset
distillation. Our attacks inject triggers into a tiny
distilled dataset during the distillation process in the
upstream and launch backdoor attacks against the
downstream models trained by this distilled dataset.

• We propose two types of backdoor attacks un-
der different settings, including NAIVEATTACK and
DOORPING. Extensive experiments demonstrate that
NAIVEATTACK can achieve decent attack perfor-
mance and DOORPING consistently achieves remark-
able attack performance.

• We conduct a comprehensive ablation study to evalu-
ate our attacks in different settings. Empirical results

Algorithm 1 Dataset Distillation

Input: The original training dataset X, learning rate η
Output: The distilled dataset X̃

1: Randomly initialize distilled datasets X̃
2: while update distilled images do
3: Initialize the model θ0
4: while update model do
5: θi+1 = θi − η∇θiℓ(X̃, θi)
6: end while
7: L = ℓ(X, θ), L̃ = ℓ(X̃, θ)
8: X̃ ← UPDATE(X̃,L, L̃)
9: end while

show that both attacks are robust in most settings.

• We evaluate our attacks under nine state-of-the-art
defenses at three defense levels. The experimental
results show that our novel attacks can practically
outmaneuver these defense mechanisms.

II. PRELIMINARY

A. Dataset Distillation

Overview. Dataset distillation (see Figure 1 for illustration) is
an emerging topic in machine learning research [5], [52], [53],
[79], [88], [89], [90]. Its goal is to distill a large dataset into
a smaller synthetic dataset. A model trained on this smaller
dataset can attain comparable or better performance than a
model trained on the full dataset. In turn, dataset distillation
reduces the resources (e.g., memory, GPU hours, etc.) required
to train an effective model.

Workflow. At a high level, the distillation process works as
follows. The input is the original full dataset X = {xi}Ni=1.
The output is a synthetic dataset X̃ = {x̃i}Mi=1, where
M≪ N. The core of the distillation process is training a model
parameterized by θ. The optimization goal is minimizing the
learning loss between the original training dataset L = ℓ(X, θ)
and the distilled dataset L̃ = ℓ(X̃, θ), where ℓ(·, ·) is a task-
specific loss (e.g., cross-entropy loss). L and L̃ are combined
in a task-specific manner to update X̃ (see Section II-B). The
distilled dataset X̃, instead of the entire dataset X, is later used
to train the downstream model.

Note. It is important to note that dataset distillation is or-
thogonal to knowledge distillation [23], [27], [77]. Knowledge
distillation (i.e., model distillation) is at the model level and
distills the knowledge from a large deep neural network (i.e.,
teacher model) into a small network (i.e., student model).
The goal is to obtain a smaller student model that offers a
competitive or even superior performance than a larger teacher
model.

B. Dataset Distillation Techniques

We introduce two state-of-the-art dataset distillation tech-
niques used in our study, namely dataset distillation [79] and
dataset condensation with gradient matching [90]. Dataset
distillation [79] (abbreviated as DD) is the pioneering work
of this research direction. Dataset condensation with gradient

2

matching [90] (abbreviated as DC) is a recent dataset distil-
lation technique. We unify these two methods in Algorithm 1
and use it to guide the description of these two algorithms.

DD Algorithm [79]. DD algorithm is the first work in the
domain of dataset distillation. The core idea of the DD
algorithm is directly minimizing a model loss on both X̃
and X. To attain the goal, DD algorithm adopts a bi-level
optimization approach to iteratively update both X̃ and θ, as
shown in Equation 1.

X̃∗ = argmin
X̃

ℓ(X, θ)

subject to θ∗ = argmin
θ

ℓ(X̃, θ)
(1)

It first uses the loss of the synthesized dataset X̃ (i.e., ℓ(X̃, θ))
to update the distillation model θ. It then uses the loss of the
original dataset X (i.e., ℓ(X, θ)) to update X̃. In turn, for DD
algorithm, UPDATE function at line 8 in Algorithm 1 is replaced
by Equation 2 below, where η is the learning rate for updating
the distilled images.

X̃ = X̃− η∇X̃ℓ(X, θ) (2)

DC Algorithm [90]. DC algorithm is another fundamental
work in the domain of dataset distillation. The core idea of
DC algorithm is learning a distilled dataset X̃ that a model
trained on it (denoted as θX̃) can achieve two goals. The first
goal is that θX̃ attains comparable performance of a model
trained on the original dataset X (denoted as θX). The second
goal is that θX̃ converges to a similar solution of θX in the
parameter space (i.e., θX̃ ≈ θX). To achieve these goals, the
DC algorithm also adopts a bi-level optimization approach but
with a different optimization object function (see Equation 3
below).

X̃∗ = min
X̃

γ(θX̃, θX)

subject to θ∗ = argmin
θ

ℓ(X̃, θ)
(3)

where θX = argminθ ℓ(X, θ) and γ(·, ·) is a distance function.
In practice, θX can be trained first in an offline stage [90] and
then used as the target parameter vector in Equation 3. In turn,
for DC algorithm, UPDATE function at line 8 in Algorithm 1
is replaced by Equation 4 below.

X̃ = γ(∇θX̃
ℓ(X̃, θX̃),∇θXℓ(X, θX)) (4)

Here, the distance function γ(·, ·) is instantiated as a sum
of layerwise losses as

∑H
h=1 d(∇θh

X̃
ℓ(X̃, θX̃),∇θh

X
ℓ(X, θX)),

where H is the number of layers and d(·, ·) is a distance
function between flattened vectors of gradients corresponding
to each output node in θX̃ and θX.

Note. Algorithm 1 shows that DC and DD models leverage
the same mechanism to update a model to distill a synthesized
dataset X̃ (line 5 in Algorithm 1). The only difference is how

the synthesized dataset X̃ is updated (line 8 in Algorithm 1).
This observation enables us to design a unified backdoor attack
that is effective for both algorithms in Section III.

C. Backdoor Attack

The backdoor attack is a training time attack. It implants
a hidden backdoor (also called neural trojan [31], [45]) into
the target model via backdoored training samples. At the
test time, the backdoored model performs well on the clean
test samples but misbehaves only on the triggered samples.
Formally, to launch a backdoor attack, the attacker controls
the backdoored training data DT = DC ∪DP , where DC and
DP respectively represents the clean training samples and the
backdoored samples. Each sample x̂ inDP is usually generated
by a trigger-insertion function A(x, t,m) = x̂, where x
denotes a clean sample, t denotes a trigger (either pre-defined
or optimized), and m denotes a mask (i.e., the position where
the trigger t is inserted). The model holder executes their
machine learning model on DT to obtain the model θ∗. In the
inference stage, the backdoored model θ∗ tends to misclassify
the triggered sample x̂ while maintaining good performance
on the clean sample x. The effectiveness of a backdoor attack
is commonly measured by attack success rate (ASR) and clean
test accuracy (CTA) [6], [24], [45], [60]. The ASR measures
its success rate in making θ∗ generate the wrong predictions
to the target label given triggered samples. The CTA evaluates
the utility of the model given clean samples. Additional details
about backdoor attacks can be found in Section VIII.

III. BACKDOOR ATTACKS AGAINST DATASET
DISTILLATION

A. Threat Model

Attack Scenarios. We envision the attacker as the malicious
dataset distillation service provider [49], [68]. Two attack
scenarios are taken into consideration in our study. The first
scenario is that the victim commissions the attacker to distill a
specific dataset on their behalf (e.g., using a third-party service
to distill the dataset stored in AWS S3 buckets). This scenario
is in line with the generic purpose of dataset distillation [79],
[88], [90]. The second scenario is more on the practical side.
Instead of buying the original training dataset with millions
of images, the victim opts to purchase a smaller synthesized
dataset from the attacker to reduce the cost.

Attacker’s Capability. As we can see in the aforementioned
attack scenarios, the only capability we presuppose the attacker
has is controlling the dataset distillation process. This assump-
tion is practical since the attacker acts as the dataset distillation
service provider [49], [68]. Also, the attacker does not nec-
essarily control the sources of the datasets. For instance, the
victim can upload their own dataset for distillation. Besides, we
stress that the attacker does not interfere with the downstream
model training. The attacker only supplies the distilled dataset
to the victim.

Attacker’s Goal. The attacker’s goal is to inject the trigger
into the distilled dataset and consequently backdoor the down-
stream models that are trained on this distilled dataset. Note
that the distilled dataset is considerably less than the original
training dataset (i.e., |X̃| ≪ |X|). For example, Wang et
al. [79] compressed 50,000 training images of the CIFAR10

3

Original Training
Dataset (X)

X~
Downstream

Backdoored
Model

Pre-defined
Trigger

Fig. 2: Trigger insertion via NAIVEATTACK.

(a) Trigger image (b) DD distilled image (c) DC distilled image
Fig. 3: Illustration of pre-defined trigger used by the NAIVEATTACK
and samples of distilled images by DD and DC models. We use
airplane class from CIFAR10 for DD model to generate Figure 3b
and DC model to generate Figure 3c.

dataset into only 100 synthetic images (10 per class). It is
thus utter most important for the attacker to make sure that
the trigger is negligible and indistinguishable to the human
moderators to avoid visual mitigation but remains effective in
the downstream tasks.

Attack Challenge. Recall the fact that the attackers have no
knowledge of and cannot interfere with the downstream model
training. Backdoor attacks against the dataset distillation lead
to non-trivial challenges. First, our backdoor attacks occur
upstream, as outlined in the attack scenarios. The attackers
must first ensure that the backdoored distilled dataset can
guarantee the downstream model utility. Secondly, they need to
ensure that the triggers are indistinguishable from the potential
human inspection (which is inevitable since |X̃| ≪ |X|).
Finally, the attackers must make sure that the backdoor can be
effectively implanted in the downstream models when using
this (very) small backdoored distilled dataset.

B. NAIVEATTACK

Motivation. We first consider NAIVEATTACK that inserts a
pre-defined trigger into the original training dataset before
the distillation. Recall that the attacker acts as the distillation
service. They have complete control of the generation of the
backdoored dataset. They can determine how to generate the
triggers based on the trigger-inserting function and regulate
different poisoning ratios in the whole dataset. The motivation
of NAIVEATTACK is that dataset distillation models tend
to generate a smaller but more informative dataset. Such a
distilled dataset may contain the distilled trigger, potentially
enabling an effective backdoor attack in the downstream task.

Trigger Insertion. Our NAIVEATTACK follows the method
from previous work [24] to insert the trigger to the original
training dataset X (see Figure 2). We choose a white square as
the trigger in a specific position. We define a mask m that can
record the position of the trigger. The trigger insertion function
Anaive is defined as follows.

Anaive(x) = x · (1−m) + t ·m

Algorithm 2 DOORPING Algorithm

Input: The original training dataset X, model/trigger learning
rate η/ηt, trigger position mask m, pre-defined threshold

Output: The distilled dataset X̃
1: Randomly initialize the distilled dataset X̃, and backdoor

trigger t
2: while update distilled images do
3: Initialize the model θ0
4: while update model do
5: θi+1 = θi − η∇θiℓ(X̃, θi)
6: end while
7: while update trigger do
8: out = f(t)
9: Lt = MSE(out, α · out)

10: if Lt < threshold or 10,000 steps then
11: Break
12: end if
13: Lt back-propagation
14: t ← UPDATE(t, ηt,Lt,m)
15: end while
16: Inject updated trigger t into ϵ|X| samples in X to build

the backdoored dataset X̂.
17: L = ℓ(X̂, θ), L̃ = ℓ(X̃, θ)
18: X̃ ← UPDATE(X̃,L, L̃)
19: end while

We also change the label of these images to our target label.
And then, we use the backdoored dataset to replace the original
training dataset for distillation. We insert the trigger to the
whole clean dataset for the backdoor testing dataset and modify
the label. We show an example of the trigger and distilled
image in Figure 3. As we can see in Figure 3, the trigger
inserted by the NAIVEATTACK is small and indistinguishable
in the distilled images.

Remark. NAIVEATTACK reuses the dataset distillation models
as is. This attack can be applied to all dataset distillation
models by design since it directly poisons the original training
dataset. The insights we gain from NAIVEATTACK lead us to
design an advanced attack in the next section.

C. DOORPING

Motivation. As we can see in Figure 3, the trigger inserted
by the NAIVEATTACK is small and indistinguishable in the
distilled images. However, our evaluation (see Section V) later
shows that NAIVEATTACK does not lead to an effective back-
door attack in the downstream task. Our hypothesis of such
ineffectiveness is due to the information compression during
the distillation process. Besides, some backdoor information
may be treated as noise in the gradient descent steps since
the attackers reuse the dataset distillation models as is. This
motivates us to design an advanced attack, namely DOORPING,
to insert a trigger during the dataset distillation process.

Observations. DOORPING attack is based upon two important
observations. The first observation is that our NAIVEATTACK
is essentially a dirty label attack (i.e., backdoored samples are
labeled as the target class). It forces the distillation models to
learn the trigger while distilling X̃ at each iteration. However,
the trigger t is pre-defined and cannot be adjusted; hence

4

Original Training
Dataset (X)

Updated Trigger

…

X~(0)

X~
(1)

X~(T)

Downstream

Backdoored
Model

Initial Trigger

Fig. 4: Trigger updating on DOORPING.

(a) DD trigger image (b) DD training image (c) DD distilled image

(d) DC trigger image (e) DC training image (f) DC distilled image
Fig. 5: Illustration of the optimized trigger by DOORPING attack
and samples of distilled images by DD and DC models. We use
the airplane class from CIFAR10 as our target backdoor class when
employing DOORPING.

not effectively preserved along the updating process. To boost
the backdoor attack performance in the downstream models,
the trigger must be fine-tuned at every epoch during the
distillation process to preserve its effectiveness. The second
observation is that the parameters of dataset distillation models
are not fixed when updating the distilled dataset X̃ due to
the bi-level optimization nature of those models. Recall our
analysis in Section II, and both distillation models leverage
the same mechanism to update an upstream model to distill
a synthesized dataset X̃ (line 5 in Algorithm 1). The only
difference is how the synthesized dataset X̃ is optimized from
the distillation models (line 8 in Algorithm 1). Our insights
imply that the attacker can potentially optimize a trigger t
before updating X̃ at each epoch (i.e., between line 5 and
8 in Algorithm 1) per the aforementioned first observation.
In this way, trigger t is optimized based on the updated
distillation model θ at each epoch (between line 7 and line
15 in Algorithm 2). We then randomly poison ϵ|X| samples
in X using this optimized trigger t (ϵ denotes the poisoning
ratio). Finally, we use the backdoored training dataset to update
X̃ (between line 17 and line 18 in Algorithm 2).

Trigger Insertion. We illustrate the overall workflow of
DOORPING attack in Figure 4 and outline DOORPING attack
in Algorithm 2. Our goal is to optimize the trigger t so that
it can be better preserved during the distillation process. The
rationale is that the better trigger information can be preserved
in the distillation dataset, the higher probability a backdoor
attack can be successfully launched at the downstream model.
To this end, we first randomly initialize a trigger t and put it

into the model to get the output (line 8, Algorithm 2),

out = f(t)

where f = θ1:layer, and layer denotes the second to the last layer
of θ (i.e., the layer before the softmax layer) in our study. We
then re-organize the values of out in descending order based on
the sum of the weights of the associated parameters. We choose
the top-k values from out. The rationale here is to identify
top-k neurons that cause the distillation model to misbehave.
Finally, we calculate the mean squared error (MSE) loss be-
tween the output and the output multiplied by a magnification
factor α, and then the trigger image using Equation 5 (line
9, Algorithm 2). Note that we use α to magnify the output
by these top-k neurons purposely. In our main experiments,
we empirically set k to 1 (see Section VI-E) and α to 10
(see Section VI-I).

Lt = MSE(out, α · out) (5)

In summary, the above process enables the trigger t to
learn from the top-k neurons that cause the distillation model
to misbehave. Once we obtain this optimized trigger t (line
14, Algorithm 2), we use it to randomly poison ϵ|X| samples in
X (line 16, Algorithm 2). Then we use this backdoored dataset
X̂ to update the distilled dataset X̃ (line 18, Algorithm 2).

Analysis. DOORPING trigger insertion can be mathematically
summarized by Equation 6 and Equation 7. Note that Equa-
tion 6 distills a set of prospective distilled data and Equa-
tion 7 can be treated as DOORPING trigger insertion function
ADOORPING and insert an optimized trigger into the aforemen-
tioned prospective distilled data.

X̃∗ = Lθ(X̂, X̃)

subject to θ∗ = argmin
θ

ℓ(X̃, θ)
(6)

where Lθ denotes the model-specific distillation loss and X̂ is
the original training dataset with backdoor samples, which is
defined in Equation 7.

X̂ = ϵ ·X · (1−m) + t ·m
subject to t∗ = t−m · ηt∇tLt(t, θ)

(7)

where Lt(·, ·) is defined in Equation 5. It is straightforward
to observe that the DOORPING attack is also universally
applicable to the different dataset distillation models. Figure 5
illustrates the different optimized triggers and distilled images
for DD and DC models.

Note. Our method is different from [45]. DOORPING con-
tinuously optimizes the trigger t in every iteration to ensure
the trigger is preserved in the synthetic dataset X̃. As we
show in the experiments (see Section V), directly applying the
technique from [45] (i.e., using a one-time updated trigger)
leads to a sub-optimal performance, i.e., the ASR plunges
after several epochs. DOORPING enables us to optimize the
trigger t to maximize its effectiveness in the distilled dataset
X̃. This is particularly important since DOORPING does not

5

interfere with the model-specific dataset update process (line
18 in Algorithm 2). For instance, as we can see in Figure 5,
different distillation models lead to different optimized triggers
and considerably different distilled images given the same
target class (i.e., airplane). It is also important to note that
DOORPING allows the attacker to keep a trigger trajectory (i.e.,
a collection of triggers) during the distillation process (line
14, Algorithm 2). This unique capability enables the attackers
to outmaneuver input-level defense mechanisms, as we later
show in Section VII-B.

IV. EXPERIMENTAL SETTINGS

Datasets. We use four widely used benchmark datasets in our
study.

• Fashion-MNIST (FMNIST) [82] is an image dataset
containing 70,000, 28×28, gray-scale images. Each
class contains 7,000 images. The classes include
T-shirt, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot.

• CIFAR10 [1] consists of 60,000, 32×32 color images
in 10 classes, with 6,000 images per class. There are
50,000 training images and 10,000 test images. The
classes are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck.

• STL10 [10] is a 10-class image dataset similar to
CIFAR10. Each class contains 1,300 images. The size
of each sample is 96×96. The classes include airplane,
bird, car, cat, deer, dog, horse, monkey, ship, and
truck.

• SVHN [51] is a digit classification benchmark dataset
that contains the images of printed digits (from 0 to
9) cropped from pictures of house number plates. The
size of each sample is 32×32. Among the dataset,
73,257 digits are for training, while 26,032 digits are
for testing.

All the samples in the datasets are re-sized to 32×32 pixels.
This is a common practice to ensure that the comparison
among different datasets is fair.

Dataset Distillation Models. In this paper, we utilize
two different model architectures for dataset distillation -
AlexNet [33] and 128-width ConvNet. These two models have
been widely used in the domain of dataset distillation [5],
[52], [53], [79], [88], [89], [90]. For ConvNet, it contains five
different layers. The first three are the convolutional layers with
ReLU activation, and the last two layers are the fully connected
layers. For the distillation process, we first randomly initialize
10 different images for each class, with 100 images in total as
our default settings for both DD and DC algorithms, which is
the same distilled images per class as the original works [79],
[90]. Then we use these images to train the models.

Hyperparameters of Dataset Distillation. We reuse the
default settings from the respective distillation methods as
outlined in [79], [90]. In particular, 400 epochs are used in
DD where Adam is used as the optimizer. The batch size for
the original training dataset is 1,024. We run DC for 1,000
epochs and employ stochastic gradient descent (SGD) as the

optimizer. Note that DC has an additional SGD optimizer for
updating the images.

Backdoor Attack Settings. We outline our backdoor attack
settings below.

• NAIVEATTACK. As we mentioned in Section III-B,
we add backdoor triggers before distillation. The trig-
ger is a 2 × 2 white patch (i.e., 4 pixels in total).
We insert the trigger in the bottom right corner of an
image.

• DOORPING. We first randomly initialize a 2×2 trig-
ger and insert it in the bottom right corner of an image.
When optimizing the triggers (see Algorithm 2), we
use Adam as the optimizer and MSE as the loss func-
tion. We train the trigger up to 10,000 epochs if the
MSE loss is not less than the threshold. Empirically,
we set this threshold to 0.5 as this value is small
enough for the loss function, and the corresponding
trigger is also good enough for our attacks. More
concretely, if the MSE loss is less than this threshold,
it indicates a less effective trigger can be learned from
the selected neurons. Thus, the algorithm makes an
early stop to accelerate the learning process. Note that
the threshold is not related to any datasets or models
since it is only used to reduce the trigger optimizing
process. We set the poisoning ratio ϵ to commonly
used value 0.01 by default [2], [3], [50], [64], [92].

Evaluation Metrics. In this paper, we adopt attack success
rate (ASR) and clean test accuracy (CTA) as our evaluation
metrics.

• The ASR measures the attack effectiveness of the
backdoored model on a triggered testing dataset.

• The CTA assesses the utility of the backdoored model
on the clean testing dataset.

Both ASR and CTA scores are normalized between 0.0 and 1.0.
The higher the ASR score is, the better the backdoor trigger
injected. The closer the CTA score of the backdoored model
to the one of a clean model, i.e., a model trained using clean
data only, the better the backdoored model’s utility.

Downstream Models. Note that dataset distillation tailors the
distilled dataset for a given architecture. Due to this limitation
of dataset distillation, all of the downstream models should be
the same architecture as the dataset distillation models. In our
evaluation, the downstream models are also AlexNet and 128-
width ConvNet and share the same architectural design as the
dataset distillation models (see Section IV).

Runtime Configuration. Unless otherwise mentioned, we
consider the following parameter settings for both NAIVEAT-
TACK and DOORPING by default: 2 × 2 trigger size, 0.01 of
the poisoning ratio, and 10 images of each class in distilled
dataset. All the experiments in this paper are repeated 10 times.
For each run, we follow the same experimental setup laid out
before. We report the mean and standard deviation of each
metric to evaluate the attack performance.

Remark. We outline additional hyper-parameters and experi-
mental settings in our technical report [46].

6

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

〈DD, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

1.0

〈DC, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

1.0

〈DD, ConvNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

1.0

〈DC, ConvNet〉

Clean Model NaiveAttack DoorPing

Fig. 6: ASR of clean model, NAIVEATTACK and DOORPING for different distillation algorithms and different model architectures.

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

C
T

A

〈DD, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DC, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DD, ConvNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DC, ConvNet〉

Clean Model NaiveAttack DoorPing

Fig. 7: CTA score of clean model, NAIVEATTACK and DOORPING for different distillation algorithms and different model architectures.

V. EVALUATION

In this section, we present the performance of NAIVEAT-
TACK and DOORPING against dataset distillation. We conduct
extensive experiments to answer the following research ques-
tions (RQs):

• RQ1: Do both NAIVEATTACK and DOORPING
achieve high attack performance?

• RQ2: Do both NAIVEATTACK and DOORPING pre-
serve the model utility?

Concretely, we first evaluate the attack performance (ASR
score) of NAIVEATTACK and DOORPING on all tasks, model
architectures, and distillation methods. We then evaluate the
utility performance (CTA score) of the backdoored model
attacked by NAIVEATTACK and DOORPING. We use a tu-
ple in the format of ⟨Distillation Algorithm, Architecture,
Dataset⟩ for ease of presentation. For instance, ⟨DD, AlexNet,
CIFAR10⟩ refers to an experiment that is carried out using the
DD distillation algorithm with Alexnet architecture to distill
the CIFAR10 dataset.

A. Attack Performance

We first show the attack performance of both NAIVEAT-
TACK and DOORPING to answer RQ1. To measure the at-
tack performance of our attacks, we conduct a comparative
evaluation of the ASR score between the backdoored model
and the clean model trained by the normal dataset distillation
procedure. We expect the backdoored model misclassifies the
input containing a specific trigger, while the clean model
behaves normally. Figure 6 reports the ASR score of NAIVEAT-
TACK and DOORPING on all datasets, model architectures, and
dataset distillation methods.

NAIVEATTACK. As shown in Figure 6, we can clearly ob-
serve that the attack on the clean model achieves low ASR

scores ranging between 0.042 and 0.120. In contrast, in some
cases, our NAIVEATTACK achieves higher ASR scores than
the attack on the clean model. For instance, the ASR score
of ⟨DD, AlexNet, CIFAR10⟩ is 0.692, and the ASR score
of ⟨DD, ConvNet, SVHN⟩ is 0.712. These results show that
our NAIVEATTACK generally performs well but fails in some
cases, implying that fixed triggers simply added to the distilled
data cannot be closely connected to the hidden behavior.

DOORPING. As shown in Figure 6, almost all of the ASR
scores are over 0.950 except for AlexNet trained by DC
distilling STL10 and SVHN. For example, the ASR score of
⟨DD, AlexNet, CIFAR10⟩ is 1.000. Note that the lowest ASR
score of ⟨DC, AlexNet, STL10⟩ and ⟨DC, AlexNet, SVHN⟩
are 0.811 and 0.693, respectively. These scores are also much
higher than our NAIVEATTACK and the attack on the clean
model. On the other hand, the standard deviation of these two
ASR scores is higher than the others. These results indicate that
the ASR scores are spread out. More epochs may be required
to optimize the triggers in these cases. In general, the results
demonstrate that iteratively optimizing triggers throughout the
distillation process can establish a strong connection between
the triggers and the hidden behavior injected into the back-
doored model.

Takeaways. Our attack methods can successfully inject the
predefined triggers into the model. NAIVEATTACK generally
performs well, though it fails in some settings. In contrast,
DOORPING achieves remarkable performance among all the
datasets, downstream model architectures, and dataset distilla-
tion methods.

B. Distillation Model Utility

Here, we focus on the utility performance of the back-
doored model, i.e., measuring whether our attack leads to
significant side effects on the primary task, to answer RQ2.

7

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

(a) Distilled clean images by DD algorithm

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

(b) Distilled images by DOORPING and DD algorithm
Fig. 8: Comparison of distilled images by DOORPING, where ⟨DD,
AlexNet, CIFAR10⟩.

Ideally, a backdoored model should be as accurate as a clean
model, given clean test data to ensure its stealthiness. In this
study, we evaluate the model utility from both quantitative and
qualitative perspectives.

We first conduct a quantitative evaluation of the CTA
score between the clean and backdoored models. As shown
in Figure 7, we find that the CTA scores of the backdoored
models from NAIVEATTACK or DOORPING are similar to that
of the clean models. For instance, the CTA score of clean
model for ⟨DD, AlexNet, CIFAR10⟩ is 0.649. Meanwhile,
the CTA scores for NAIVEATTACK and DOORPING are 0.646
and 0.635, respectively, which drop only by 0.464% and
2.1% compared to the clean model. Our results exemplify
that the side effects caused by our backdoor attacks are
within the acceptable performance variation of the model. They
have no significant impact on utility performance. A similar
observation can be drawn from other CTA scores. Besides,
for ⟨DC, AlexNet, SVHN⟩, the clean model has the lowest
CTA score, which is respectively 2.531% and 6.751% lower
than NAIVEATTACK and DOORPING. As such, we carry out
a Welsh t-test on the results (as we repeat the evaluation 10
times per our runtime configuration). Our null hypothesis is
that the mean CTA score of DOORPING and the clean model
is the same. The t-test results show that Welch-Satterthwaite
Degrees of Freedom is 17.986 and ρ-value is 0.894; hence
we cannot reject our null hypothesis. We conclude that such a
difference is due to fluctuation.

We then conduct a qualitative evaluation by visualizing
some examples of distilled images by normal dataset dis-

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

(a) Distilled clean images by DC algorithm

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

(b) Distilled images by DOORPING and DC algorithm
Fig. 9: Comparison of distilled images by DOORPING, where ⟨DC,
AlexNet, CIFAR10⟩.

tillation and our attack in Figure 8 and Figure 9. The im-
ages distilled by DOORPING are much similar to the ones
in Figure 8a More propitiously, the backdoor trigger is totally
unrecognizable to human inspection, meaning that the trigger
is completely hidden in the synthetic image.

Takeaways. Our experimental results demonstrate that all
the backdoored models still have the same level of utility
performance as the clean model, i.e., our proposed backdoor
attacks preserve the model’s utility.

VI. ABLATION STUDY

A. Effectiveness on Complex Datasets

We also add the ablation study on the effectiveness of
complex datasets. We test our attack using CIFAR100 [1],
which has 100 classes containing 600 images each. For DD,
due to the GPU memory limitation, we distill five images per
class and 500 synthetic images in total. For DC, the hyper-
parameters and other settings remain the same as our main
experiments. Table I illustrates the results of CIFAR100. All
ASR scores are larger than 0.900 without significant CTA
degradation compared with those of the clean model and
NAIVEATTACK. Our results show that DOORPING can be
easily extended to more complex datasets.

Takeaway. DOORPING can be extended to more complex
datasets with more classes and data samples.

8

TABLE I: ASR and CTA of DOORPING with CIFAR100.

DD DC
ASR CTA ASR CTA

Clean Model AlexNet 0.014±0.010 0.385±0.009 0.012±0.002 0.217±0.007
ConvNet 0.029±0.011 0.215±0.014 0.012±0.002 0.197±0.007

NAIVEATTACK
AlexNet 0.128±0.013 0.375±0.010 0.007±0.003 0.209±0.005
ConvNet 0.011±0.010 0.214±0.011 0.006±0.021 0.190±0.004

DOORPING
AlexNet 0.919±0.014 0.373±0.011 0.961±0.024 0.209±0.006
ConvNet 1.000±0.000 0.205±0.012 1.000±0.000 0.196±0.002

B. Effectiveness on Cross Architectures

Several dataset distillation methods [5], [90] explore cross-
architecture (CA) data distillation (i.e., the data distillation
model is different from the downstream model). To understand
the effectiveness of DOORPING on such cross-architecture
scenarios, we choose three model architectures - AlexNet [33],
ConvNet, and VGG11 [67] in our study. We use AlexNet (Con-
vNet) as the distillation model and the other two architectures
for evaluation. As we can see in Table II, given DC algorithm,
DOORPING achieves good ASR and CTA scores on VGG11
as the downstream model, which is trained on the synthetic
data distilled by ConvNet. In general, DOORPING performs
well on all cross-architecture models using the synthetic data
distilled by ConvNet architecture. However, DOORPING does
not perform well in most cross-architecture models using the
synthetic data distilled by DD algorithm. We speculate that the
root cause is the difference in the distillation algorithms. For
DD, it compresses the image information (gradient calculated
by the specific model) into the distilled dataset, i.e., model-
specific. In contrast, DC forces the synthetic dataset to learn
the distribution of the original dataset, i.e., model-independent.
Therefore, DC can better preserve the information of the
original training images hence better preserving the trigger in
the distilled dataset. Consequently, DC leaves the backdoor in
a different model trained on this distilled dataset.

Takeaway. DOORPING can be used to attack cross-
architecture models. However, its effectiveness may be affected
by the distillation models.

C. Number of Distilled Samples per Class

Previous distillation work [5], [52], [53], [88], [89], [90]
has proven that better CTA can be achieved by increasing the
number of distilled samples. It motivated us to investigate the
effect of the number of distilled samples per class on our
attacks. Concretely, we select 1, 10, and 50 samples per class to
assess the effect on both NAIVEATTACK and DOORPING. We
show the backdoor attack performance in Table III. In general,
we can see that the ASR score increases with the number of
distilled samples in each class. We can also find that the attack
performances of NAIVEATTACK and DOORPING are subopti-
mal when the number of distilled samples is 1, especially on
the DC algorithm. So, if the gradient distribution of distilled
image has a significant standard deviation compared to that of
the original training samples, this distilled image cannot fully
represent these training samples. However, when the number of
distilled images varies from 10 to 50, the ASR scores become
more stable, with only one below 0.970 (approximately 0.861).
As for the CTA, we can observe a similar trend. More distilled
samples lead to higher model utility performance. Yet, the

model utility does not improve much in most cases when
attacking the DD algorithm, except for ⟨DD, AlexNet, SVHN⟩.
Takeaways. The increasing number of distilled samples leads
to better ASR and CTA scores. This is expected since the
downstream model is trained on more distilled training samples
(hence more backdoored samples).

D. Number of Original Samples

Dataset distillation aims to reduce the redundancy in the
training datasets. One more possible redundancy is the number
of original training samples. Here, we study the impact of the
number of original training samples on the performance of our
attacks. Concretely, we vary the proportion of the entire dataset
from 0.2 to 1 to report the ASR and CTA scores. We show the
trends with the increase of the number of the original training
samples in Figure 10. As we can see, the ASR score generally
grows with the upswing of the sample numbers. In particular,
the ASR score of some cases remains stationary throughout.
However, almost all cases start with a much lower ASR score,
i.e., when only 20% of the samples from the original training
dataset are used to distill images, both of our attacks only
achieve relatively poor attack performance. For instance, the
ASR score of ⟨DD, AlexNet, STL10⟩ is only 0.235. These
results demonstrate that the number of original training dataset
affect the attack performance significantly. As expected for
the CTA score, the majority of the model utility increase with
the increasing number of original training samples. Only some
CTA scores oscillate in an ultra-fine range. For example, the
CTA score of ⟨DC, ConvNet, SVHN⟩ fluctuates from 0.190 to
0.217, and the ASR score is 1.000 when using DOORPING.
Besides, we can also find that for ⟨DC, AlexNet, STL10⟩, the
CTA score only increases from 0.305 to 0.319, but the ASR
score surges to over 0.811 after the proportion gets larger than
0.4. This means it is acceptable to distill less training data, as
the model utility does not change much but still achieves an
acceptable attack performance.

Takeaways. The increasing size of the original training dataset
leads to better ASR and CTA scores. This is also expected since
the distillation models have learned sufficient patterns from
additional samples.

E. Number of Selected Neurons

We aim to understand the impact of the number of selected
neurons to optimize the trigger in DOORPING (i.e., the impact
of top-k). Especially in the penultimate layer of the models,
we conduct the evaluation by setting the number of selected
neurons to 1, 2, 5, and 10, respectively. We report the ASR
score, the CTA score, and the average running time per epoch
in Figure 11, Figure 12, Figure 13, and Figure 14. As we can
see from these figures, with the number of selected neurons in-
creasing, the ASR scores decrease while the runtime increases.
The experiments also show that the CTA scores are almost
unchanged. For example, the ASR scores of ⟨DD, AlexNet,
CIFAR10⟩ are 0.999, 1.000, 0.665, and 0.440. Their respective
runtime increases from 15s to 602s, while the CTA scores
remain stable (0.635, 0.636, 0.648, 0.635. respectively). The
reason behind this is that the weights of some selected neurons
connecting these neurons to the preceding and following layers
are smaller than others. In other words, we need to refrain from

9

TABLE II: ASR and CTA of cross model architectures.

FMNIST CIFAR10 STL10 SVHN

AlexNet ConvNet AlexNet ConvNet AlexNet ConvNet AlexNet ConvNet

CA Model ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA

DD

AlexNet 1.000±0.000 0.868±0.013 0.500±0.500 0.300±0.118 0.999±0.000 0.635±0.009 0.000±0.000 0.102±0.005 0.999±0.000 0.438±0.010 1.000±0.000 0.120±0.011 0.970±0.009 0.759±0.010 0.000±0.000 0.091±0.008

ConvNet 0.411±0.069 0.342±0.031 1.000±0.000 0.804±0.014 0.471±0.014 0.214±0.013 1.000±0.000 0.476±0.011 0.994±0.002 0.216±0.009 1.000±0.000 0.371±0.011 0.000±0.000 0.195±0.013 1.000±0.000 0.375±0.015

VGG11 0.000±0.000 0.115±0.012 0.000±0.000 0.151±0.077 0.385±0.472 0.097±0.010 0.200±0.400 0.104±0.013 0.100±0.300 0.208±0.018 0.100±0.300 0.127±0.027 0.000±0.000 0.133±0.040 0.000±0.000 0.085±0.038

DC

AlexNet 1.000±0.000 0.751±0.012 1.000±0.000 0.716±0.013 1.000±0.000 0.364±0.029 1.000±0.000 0.301±0.019 0.811±0.146 0.317±0.034 1.000±0.000 0.312±0.012 0.693±0.177 0.419±0.097 1.000±0.000 0.446±0.039

ConvNet 0.235±0.200 0.681±0.027 1.000±0.000 0.734±0.008 0.108±0.016 0.287±0.011 1.000±0.000 0.308±0.008 0.017±0.010 0.308±0.021 0.981±0.000 0.331±0.013 0.321±0.131 0.180±0.009 1.000±0.000 0.203±0.021

VGG11 0.349±0.434 0.744±0.009 1.000±0.000 0.759±0.005 1.000±0.000 0.312±0.009 1.000±0.000 0.287±0.005 1.000±0.000 0.306±0.006 1.000±0.000 0.281±0.008 1.000±0.000 0.477±0.011 1.000±0.000 0.380±0.014

TABLE III: Attack performance under different target models and distilled samples per class.

FMNIST CIFAR10 STL10 SVHN

NAIVEATTACK DOORPING NAIVEATTACK DOORPING NAIVEATTACK DOORPING NAIVEATTACK DOORPING

ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA

AlexNet

DD

1 0.102±0.025 0.828±0.010 1.000±0.000 0.821±0.009 0.692±0.016 0.646±0.014 1.000±0.000 0.633±0.015 0.113±0.011 0.407±0.010 1.000±0.000 0.424±0.011 0.577±0.015 0.374±0.012 0.997±0.002 0.406±0.014

10 0.103±0.006 0.867±0.012 1.000±0.000 0.868±0.009 0.692±0.009 0.646±0.011 0.999±0.000 0.635±0.013 0.123±0.009 0.428±0.011 0.999±0.000 0.438±0.010 0.797±0.009 0.729±0.019 0.970±0.009 0.759±0.010

50 0.186±0.010 0.871±0.011 1.000±0.000 0.882±0.011 0.809±0.014 0.652±0.013 0.972±0.028 0.650±0.015 0.110±0.007 0.454±0.010 1.000±0.000 0.436±0.012 0.782±0.020 0.765±0.015 1.000±0.000 0.755±0.017

DC

1 0.085±0.008 0.536±0.032 0.098±0.006 0.541±0.023 0.214±0.059 0.229±0.016 0.268±0.054 0.234±0.014 0.126±0.294 0.196±0.044 0.179±0.120 0.180±0.033 0.332±0.118 0.111±0.013 0.284±0.131 0.111±0.012

10 0.118±0.006 0.757±0.009 1.000±0.000 0.751±0.029 0.133±0.032 0.358±0.047 1.000±0.000 0.364±0.012 0.098±0.046 0.305±0.040 0.811±0.146 0.317±0.034 0.333±0.270 0.412±0.083 0.693±0.177 0.419±0.097

50 0.126±0.013 0.828±0.004 1.000±0.000 0.813±0.003 0.151±0.021 0.467±0.006 0.990±0.009 0.470±0.006 0.153±0.016 0.462±0.005 0.861±0.062 0.471±0.007 0.763±0.030 0.741±0.010 0.979±0.010 0.735±0.007

ConvNet

DD

1 0.124±0.007 0.784±0.014 1.000±0.000 0.800±0.010 0.137±0.014 0.450±0.012 1.000±0.000 0.453±0.014 0.151±0.008 0.357±0.013 1.000±0.000 0.367±0.010 0.612±0.016 0.332±0.021 1.000±0.000 0.340±0.013

10 0.126±0.009 0.803±0.010 1.000±0.000 0.804±0.011 0.105±0.026 0.478±0.011 1.000±0.000 0.476±0.014 0.136±0.012 0.363±0.012 1.000±0.000 0.371±0.011 0.712±0.002 0.372±0.016 1.000±0.000 0.375±0.015

50 0.242±0.010 0.828±0.013 1.000±0.000 0.828±0.009 0.121±0.008 0.482±0.013 1.000±0.000 0.489±0.014 0.134±0.005 0.378±0.013 1.000±0.000 0.370±0.010 0.912±0.025 0.477±0.017 1.000±0.000 0.482±0.016

DC

1 0.081±0.007 0.535±0.023 0.091±0.004 0.545±0.013 0.222±0.043 0.230±0.006 0.225±0.051 0.229±0.007 0.166±0.024 0.223±0.007 0.181±0.037 0.217±0.009 0.090±0.056 0.113±0.007 0.114±0.029 0.111±0.006

10 0.102±0.006 0.732±0.007 1.000±0.000 0.734±0.008 0.113±0.012 0.310±0.017 1.000±0.000 0.308±0.008 0.093±0.004 0.321±0.012 0.981±0.000 0.331±0.013 0.430±0.187 0.215±0.015 1.000±0.000 0.203±0.021

50 0.107±0.005 0.776±0.005 1.000±0.000 0.774±0.004 0.117±0.008 0.380±0.007 1.000±0.000 0.361±0.007 0.106±0.007 0.413±0.011 0.998±0.002 0.421±0.007 0.851±0.059 0.480±0.027 1.000±0.000 0.490±0.021

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

〈DD, AlexNet〉

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈DC, AlexNet〉

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈DD, ConvNet〉

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

〈DC, ConvNet〉

0.2 0.4 0.6 0.8 1.0
Proportion of Dataset

0.2

0.4

0.6

0.8

1.0

C
T

A

0.2 0.4 0.6 0.8 1.0
Proportion of Dataset

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
Proportion of Dataset

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
Proportion of Dataset

0.2

0.4

0.6

0.8

1.0

NaiveAttack on FMNIST

DoorPing on FMNIST

NaiveAttack on CIFAR10

DoorPing on CIFAR10

NaiveAttack on STL10

DoorPing on STL10

NaiveAttack on SVHN

DoorPing on SVHN

Fig. 10: ASR and CTA of NAIVEATTACK and DOORPING under the different proportions of original training datasets and different model
architectures. The X-axis represents the proportion of the original samples used in the dataset distillation process.

exploiting these neurons to enhance the triggers. We, therefore,
set the number of the selected neurons to 1 throughout all
experiments in the paper.

Takeaways. The increasing number of selected neurons harms
the attack performance while increasing the runtime. This
observation is in line with previous work [45].

F. Poisoning Ratio

Here, we investigate the impact of the poisoning ratio
(i.e., ϵ in Section III-C) in the entire training dataset. We
vary the poisoning ratio from 0.01 to 0.5 and report both
attack and utility performance in Figure 15. For the attack
performance, we can find that the ASR scores vary significantly
in general. For instance, the ASR scores increase from 0.811

to 1.000 and from 0.693 to 1.000 for ⟨DC, AlexNet, STL10⟩,
and ⟨DC, AlexNet, SVHN⟩ in DOORPING, respectively. For
the majority of cases in NAIVEATTACK, with the poisoning
ratio increasing from 0.05 to 0.5, the ASR scores are also
increasing. Taking ⟨DD, AlexNet, STL10⟩ as an example, for
the poisoning ratio of NAIVEATTACK increases from 0.01 to
0.05, the ASR score fluctuates between 0.136 and 0.175. When
the poisoning ratio increases to 0.1 and expends to 0.5, the
ASR score rises and eventually reaches 0.990. However, unlike
DOORPING, we find it challenging to achieve a 1.000 ASR
score in NAIVEATTACK, which exemplifies that DOORPING
is more effective than NAIVEATTACK. For the model utility
performance, we can observe a general downward trend. For
example, the CTA score of DOORPING decreases from 0.364

10

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00
A

S
R

/C
T

A

〈DD, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DD, ConvNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, ConvNet〉

0

50

100

150

200

0

10

20

30

0

100

200

300

0

5

10

15

20

T
im

e

ASR CTA Time

Fig. 11: ASR, CTA, and the running time of DOORPING with different selected neurons for FMNIST dataset.

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

A
S

R
/C

T
A

〈DD, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DD, ConvNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, ConvNet〉

0

200

400

600

0

10

20

30

0

100

200

0

5

10

15

20

T
im

e

ASR CTA Time

Fig. 12: ASR, CTA, and runtime of DOORPING with different selected neurons for CIFAR10 dataset.

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

A
S

R
/C

T
A

〈DD, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DD, ConvNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, ConvNet〉

0

20

40

60

0

10

20

30

0

10

20

0

5

10

15

20

T
im

e

ASR CTA Time

Fig. 13: ASR, CTA, and the running time of DOORPING with different selected neurons for STL10 dataset.

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

A
S

R
/C

T
A

〈DD, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, AlexNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DD, ConvNet〉

1 2 5 10
Selected Neurons

0.00

0.25

0.50

0.75

1.00

〈DC, ConvNet〉

0

200

400

600

0

5

10

15

20

0

100

200

300

400

0

5

10

15

T
im

e

ASR CTA Time

Fig. 14: ASR, CTA, and the running time of DOORPING with different selected neurons for SVHN dataset.

to 0.325 on ⟨DC, AlexNet, CIFAR10⟩. We also observe similar
trends in NAIVEATTACK.

Takeaways. The poisoning ratio impacts the ASR scores,
especially for NAIVEATTACK. However, the CTA scores may
vary given different backdoor sample ratios incurred by the
respective properties of distillation models (e.g., hyperparam-
eters, architectures, etc.).

G. Trigger Size

Previous work [45] has shown that the larger the trigger
size is, the higher the attack performance is. Thus, we first
investigate the impact of trigger size on attack performance.
We set the trigger size to 2× 2, 3× 3, and 4× 4 to investigate
their impacts on the attack and utility performance. Table IV
shows the ASR and the CTA scores with respect to different
trigger sizes. For NAIVEATTACK, as the trigger size increases,
the ASR score also increases, especially from 3×3 to 4×4. For
instance, the ASR score of NAIVEATTACK for ⟨DC, ConvNet,

11

0.02 0.04 0.1 0.3 0.5
0.00

0.25

0.50

0.75

1.00
A

S
R

〈DD, AlexNet〉

0.02 0.04 0.1 0.3 0.5
0.00

0.25

0.50

0.75

1.00

〈DC, AlexNet〉

0.02 0.04 0.1 0.3 0.5
0.00

0.25

0.50

0.75

1.00

〈DD, ConvNet〉

0.02 0.04 0.1 0.3 0.5
0.00

0.25

0.50

0.75

1.00

〈DC, ConvNet〉

0.02 0.04 0.1 0.3 0.5
Poisoning Ratio

0.2

0.4

0.6

0.8

1.0

C
T

A

0.02 0.04 0.1 0.3 0.5
Poisoning Ratio

0.2

0.4

0.6

0.8

1.0

0.02 0.04 0.1 0.3 0.5
Poisoning Ratio

0.2

0.4

0.6

0.8

1.0

0.02 0.04 0.1 0.3 0.5
Poisoning Ratio

0.2

0.4

0.6

0.8

1.0

NaiveAttack on FMNIST

DoorPing on FMNIST

NaiveAttack on CIFAR10

DoorPing on CIFAR10

NaiveAttack on STL10

DoorPing on STL10

NaiveAttack on SVHN

DoorPing on SVHN

Fig. 15: ASR and CTA of NAIVEATTACK and DOORPING under the different poisoning ratios and different model architectures. The X-axis
represents the poisoning ratio in the whole training dataset.

SVHN⟩ increases from 0.430 to 0.769. For DOORPING, we can
see that the ASR score is close to 1.0 in most cases, regardless
of the trigger size setting. For example, given ⟨DD, AlexNet,
STL10⟩, when the trigger size is increased from 2×2 to 4×4,
the ASR score increases from 0.811 to 0.984. Similarly, the
ASR score increases from 0.693 to 0.805 for SVHN. These
results show that larger triggers generally lead to higher attack
performance in our attacks. In terms of the impact of trigger
size on utility performance, we find that the majority of CTA
scores slightly decrease with the increase of the trigger size.
To this end, we calculate the Pearson correlation coefficient
between the trigger size and the CTA score. In total, we have
32 correlation values. Among those values, 9 are positive, and
23 are negative. The average of the correlations is -0.370.
Therefore, the CTA negatively correlates with the trigger size.
Despite the side effects caused by larger trigger sizes, the CTA
scores are still within the acceptable performance variation of
the model. They do not significantly impact the model utility
performance.

Takeaways. When the trigger size becomes more prominent
and larger, the final synthetic image contains more trigger
information but less information of the original images. It may
lead to the inevitable trade-off between attack performance and
model utility.

H. Trigger Trajectory

During the distillation process, as we update the backdoor
trigger based on the model parameters during the distillation
process, these triggers should be different theoretically at dif-
ferent distilled epochs. We collect all the generated backdoor
triggers from different distilled epochs. We use the distilled
images to train the downstream model after the distillation
and test all the trigger images we collect. We find that the
ASR scores from these triggers can also achieve similar results
as the results after the distillation. For example, the triggers
generated in the 10 distilled epochs lead to a ASR score of
1.000 on the backdoored model trained on 400 distilled-epoch
images of ⟨DD, AlexNet, CIFAR10⟩. This reality is actually an

advantage of our attack, especially facing a defense like De-
trigger that needs to know the exact triggers. In our situation,
we have numerous triggers from different distilled epochs,
which makes the defense much harder. This also means our
distilled images contain information about the triggers in the
distillation process, even though these triggers are different
in each distilled epoch. This trajectory during the training
procedure can result in a more challenging trigger detection.
We name this phenomenon trigger trajectory.

Takeaways. The trigger trajectory is a unique feature offered
by DOORPING. It enables the attackers to record a set of
triggers that can later be used to attack the downstream models.

I. Value of Magnifying Factor α

We calculate the MSE Loss between the output and the
output magnified by α. Thus, we should know how α acts
on the optimized trigger. Theoretically, the larger α is, the
better the triggers are during the distillation process. Previous
works [36], [45] set the magnifying value to a specific con-
stant, 100, whereas the optimizer will allow the outputs from
the selected neurons in the penultimate larger closer to this
number. However, the weakness of setting constants is that
the optimizer will not work when the output itself is close to
100. To solve this problem, our method chooses to magnify the
output to α times so that the triggers will always substantially
affect these selected neurons. In particular, we choose α from
10, 50, and 100. Figure 16 and Figure 17 reports the results
among different α. We can see from Figure 16, the ASR scores
are almost close to 1.000 with the alpha increasing, and the
utilities are stable in Figure 17. In our experiments, we simply
set it to 10.

Takeways. The ASR increases with the increasing magnifying
factor α. However, the attack performance plateaus after α is
greater than 50.

Remark. We also investigate the impact of the number of
distillation epochs on attack and utility performance. and test

12

TABLE IV: Attack performance of different target models and trigger sizes.

FMNIST CIFAR10 STL10 SVHN

NAIVEATTACK DOORPING NAIVEATTACK DOORPING NAIVEATTACK DOORPING NAIVEATTACK DOORPING

ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA ASR CTA

AlexNet

DD

2 0.103±0.006 0.867±0.012 1.000±0.000 0.868±0.009 0.692±0.009 0.646±0.011 0.999±0.000 0.635±0.013 0.123±0.009 0.428±0.011 0.999±0.000 0.438±0.010 0.797±0.009 0.729±0.019 0.970±0.009 0.759±0.010

3 0.729±0.007 0.833±0.013 1.000±0.000 0.814±0.013 0.789±0.013 0.646±0.014 1.000±0.000 0.614±0.012 0.126±0.008 0.413±0.011 1.000±0.000 0.418±0.010 0.805±0.005 0.699±0.015 0.982±0.011 0.702±0.020

4 0.929±0.010 0.809±0.012 1.000±0.000 0.809±0.011 0.809±0.010 0.582±0.016 1.000±0.000 0.606±0.014 0.154±0.010 0.423±0.009 1.000±0.000 0.442±0.012 0.857±0.020 0.677±0.026 0.993±0.005 0.639±0.017

DC

2 0.118±0.006 0.757±0.009 1.000±0.000 0.751±0.029 0.133±0.032 0.358±0.047 1.000±0.000 0.364±0.012 0.098±0.046 0.305±0.040 0.811±0.146 0.317±0.034 0.333±0.270 0.412±0.083 0.693±0.177 0.419±0.097

3 0.062±0.028 0.749±0.036 1.000±0.000 0.734±0.011 0.105±0.024 0.347±0.019 1.000±0.000 0.347±0.029 0.123±0.203 0.296±0.066 0.965±0.000 0.318±0.054 0.323±0.016 0.437±0.057 0.633±0.303 0.448±0.118

4 0.124±0.019 0.750±0.010 1.000±0.011 0.753±0.008 0.160±0.087 0.333±0.065 0.988±0.011 0.342±0.010 0.154±0.054 0.293±0.030 0.984±0.000 0.308±0.039 0.475±0.254 0.434±0.098 0.805±0.185 0.424±0.122

ConvNet

DD

2 0.126±0.009 0.803±0.010 1.000±0.000 0.804±0.011 0.105±0.026 0.478±0.011 1.000±0.000 0.476±0.014 0.136±0.012 0.363±0.012 1.000±0.000 0.371±0.011 0.712±0.002 0.372±0.016 1.000±0.000 0.375±0.015

3 0.216±0.003 0.791±0.006 1.000±0.000 0.784±0.012 0.125±0.014 0.467±0.013 0.999±0.000 0.477±0.014 0.133±0.006 0.353±0.013 1.000±0.000 0.346±0.012 0.770±0.006 0.365±0.019 0.999±0.000 0.356±0.017

4 0.560±0.009 0.800±0.013 1.000±0.000 0.798±0.012 0.167±0.013 0.465±0.013 1.000±0.000 0.456±0.013 0.139±0.009 0.366±0.011 1.000±0.000 0.374±0.010 0.771±0.036 0.368±0.017 0.975±0.021 0.378±0.012

DC

2 0.102±0.006 0.732±0.007 1.000±0.000 0.734±0.008 0.113±0.012 0.310±0.017 1.000±0.000 0.308±0.008 0.093±0.004 0.321±0.012 0.981±0.000 0.331±0.013 0.430±0.187 0.215±0.015 1.000±0.000 0.203±0.021

3 0.079±0.009 0.737±0.010 1.000±0.000 0.737±0.006 0.107±0.023 0.315±0.015 0.998±0.001 0.317±0.008 0.128±0.011 0.320±0.011 0.991±0.000 0.333±0.008 0.588±0.043 0.228±0.016 1.000±0.000 0.210±0.040

4 0.110±0.011 0.732±0.006 0.998±0.001 0.707±0.006 0.120±0.016 0.321±0.012 1.000±0.000 0.305±0.011 0.136±0.015 0.334±0.015 1.000±0.000 0.327±0.012 0.769±0.153 0.168±0.022 1.000±0.000 0.211±0.033

FMNIST CIFAR10 STL10 SVHN
0.00

0.25

0.50

0.75

1.00

A
S

R

〈DD, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.00

0.25

0.50

0.75

1.00
〈DC, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.00

0.25

0.50

0.75

1.00
〈DD, ConvNet〉

FMNIST CIFAR10 STL10 SVHN
0.00

0.25

0.50

0.75

1.00
〈DC, ConvNet〉

α = 10 α = 50 α = 100

Fig. 16: ASR of DOORPING with different α.

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

C
T

A

〈DD, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DC, AlexNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DD, ConvNet〉

FMNIST CIFAR10 STL10 SVHN
0.0

0.2

0.4

0.6

0.8

〈DC, ConvNet〉

α = 10 α = 50 α = 100

Fig. 17: CTA of DOORPING with different α.

another trigger pattern technique, invisible trigger [36]. Due to
space limitations, we defer them to our technical report [46].

VII. DEFENSES

To mitigate the threat of backdoor attacks, many defense
mechanisms have been proposed in the literature. These de-
fenses can be broadly categorized into three detection lev-
els [85], i.e., model-level (if a model is backdoored) [39], [44],
[76], input-level (if the test time input contains triggers) [9],
[19], [34], and dataset-level (if a training dataset is back-
doored) [25], [72], [74]. In this section, we evaluate if our
attacks can be defended by the existing mechanisms at all three
levels. For each detection level, we select three representative
approaches. Note that we only evaluate DOORPING here due
to its good attack performance (see Section IV).

A. Model-Level Defense

ABS [44]. ABS analyzes the inner neuron behavior by deter-
mining how the output activation changes when introducing
different levels of stimulation to a neuron. The neurons that
substantially elevate the activation of a particular output label,

regardless of the input, are considered potentially compro-
mised. We apply ABS to identify these neurons in the back-
doored models. For all experiments, ABS does not identify
any backdoor neurons or layers for all the models. All the
compromised neuron candidate lists are empty. We conclude
that ABS cannot defend DOORPING.

Neural Attention Distillation (NAD) [39]. NAD is an ar-
chitecture to erase backdoors from backdoored models. It
utilizes a teacher model to fine-tune the backdoored student
model using a small subset of clean data. In this way, the
intermediate-layer attention of the student model aligns with
that of the teacher model. The backdoor is then effectively
removed. In our experiments, we choose a subset of the clean
dataset with a proportion of 0.050 and a clean model trained
by the clean dataset as our teacher model. We report the ASR
and CTA scores after the fine-tuning process in Table V. We
can clearly see that all the fine-tuned models classify the input
into one specific class. This behavior leads to low CTA scores
(∼0.100) and ASR scores of 1.000 or 0.000. Our results show
that NAD is not an effective defense against DOORPING either.

Neural Cleanse [76]. Neural Cleanse generates Anomaly Index

13

TABLE V: ASR and CTA of DOORPING backdoored models after
NAD process.

AlexNet ConvNet
DD DC DD DC

ASR CTA ASR CTA ASR CTA ASR CTA

FMNIST 0.000 0.100 1.000 0.100 1.000 0.100 1.000 0.100
CIFAR10 0.000 0.100 1.000 0.100 1.000 0.100 1.000 0.100

STL10 1.000 0.100 1.000 0.100 1.000 0.100 1.000 0.100
SVHN 1.000 0.067 1.000 0.067 1.000 0.067 1.000 0.067

TABLE VI: Anomaly Indices produced by Neural Cleanse for
DOORPING. A classifier is predicted to be backdoored if the Anomaly
Index is larger than 2.

AlexNet ConvNet
DD DC DD DC

FMNIST 1.466 1.670 1.304 0.995
CIFAR10 1.338 0.919 0.745 1.895

STL10 0.879 0.676 0.676 1.218
SVHN 1.835 1.908 1.266 0.739

TABLE VII: ASR and CTA of NAIVEATTACK backdoored models
after De-noising Autoencoder process.

AlexNet ConvNet
DD DC DD DC

ASR CTA ASR CTA ASR CTA ASR CTA

FMNIST 0.050 0.414 0.000 0.669 0.207 0.504 0.059 0.660
CIFAR10 0.098 0.279 0.000 0.337 0.320 0.261 0.008 0.284

STL10 0.011 0.305 0.000 0.289 0.263 0.275 0.004 0.119
SVHN 0.000 0.347 0.000 0.484 0.000 0.143 0.000 0.133

of neuron units for a given classifier. If the Anomaly Index
is greater than 2, the classifier is considered a backdoored
model. We adopt the default parameter settings of Neural
Cleanse and use the original testing dataset as a clean dataset in
the evaluation. Table VI reports the Anomaly Index produced
by Neural Cleanse for DOORPING. We can see that all the
Anomaly Indices are consistently smaller than 2. It indicates
that Neural Cleanse cannot detect our backdoor attacks in the
distilled classifiers.

B. Input-Level Defense

De-noising Autoencoder [9]. De-noising Autoencoder builds a
deep autoencoder model by learning from paired clean images
and their counterparts with added Gaussian noise. Upon the
model being trained, De-noising Autoencoder removes the
noise (i.e., the trigger) of the model input by feeding them
to the autoencoder model, as we believe some triggers are
recognized as noise in NAIVEATTACK and DOORPING. We
follow the same procedure outlined in [9] to train the au-
toencoder in our experiments and then use the autoencoder
to remove the noise of our backdoored distilled images. We
evaluate the ASR and CTA of the backdoored model at the test
time (i.e., the test time samples are first filtered by De-noising
Autoencoder). As we can see in Table VII and Table VIII, most
of ASR scores decrease. However, the CTA score also drops
significantly in most cases. For example, the CTA score is only
0.191, which is lower than the original model utility of 0.654
of ⟨DD, AlexNet, CIFAR10⟩. The reason is that De-noising
Autoencoder may also remove helpful information from the
input images besides the trigger. There is a clear utility-defense
trade-off when applying De-noising Autoencoder.

De-trigger Autoencoder [34]. Similar to De-noising Autoen-
coder, De-trigger Autoencoder learns from both clean images
and clean images with the trigger to reconstruct the clean

TABLE VIII: ASR and CTA of DOORPING backdoored models after
De-noising Autoencoder process.

AlexNet ConvNet
DD DC DD DC

ASR CTA ASR CTA ASR CTA ASR CTA

FMNIST 0.000 0.615 0.000 0.679 0.000 0.486 0.001 0.653
CIFAR10 0.000 0.264 0.013 0.344 0.081 0.285 0.000 0.287

STL10 0.000 0.334 0.000 0.297 1.000 0.283 0.000 0.262
SVHN 0.000 0.413 0.028 0.261 0.385 0.073 0.857 0.153

TABLE IX: ASR and CTA of DOORPING backdoored models after
De-trigger Autoencoder process.

AlexNet ConvNet
DD DC DD DC

ASR CTA ASR CTA ASR CTA ASR CTA

FMNIST 0.039 0.508 0.049 0.574 0.003 0.287 0.002 0.390
CIFAR10 0.145 0.191 0.282 0.202 0.066 0.154 0.088 0.165

STL10 0.169 0.144 0.075 0.203 0.000 0.100 0.264 0.161
SVHN 0.122 0.143 0.260 0.197 0.065 0.195 0.126 0.133

images. The defenders must know the trigger information (i.e.,
pattern and location) to train a De-trigger Autoencoder. All the
testing procedures are the same as we outline in De-noising
Autoencoder. We report the results in Table IX. All ASR scores
and CTA scores decrease sharply. The majority are even worse
than the result of De-noising Autoencoder. In conclusion, De-
trigger Autoencoder cannot defend the DOORPING as it suffers
from the same utility-defense trade-off.

STRIP [19]. STRIP filters triggered samples at the test time
based on the predicted randomness of perturbated samples (i.e.,
by applying different image patterns to suspicious images).
Its detection capability is assessed by two metrics: false
rejection rate (FRR) and false acceptance rate (FAR). The
FRR is the probability when the benign input is regarded as
a backdoored input by the STRIP detection system. The FAR
is the probability that the backdoored input is recognized as
the benign input by the STRIP detection system. A detection
system usually attempts to minimize the FAR while using a
slightly higher FRR as the trade-off. STRIP algorithm chooses
the detection threshold by using the percent point function
(PPF) on the distribution of the entropy of benign samples.

We use STRIP to check if the defender can use it to identify
triggered samples in the test data. Table X reports the FRR
and FAR scores of STRIP detecting the testing dataset (clean
and backdoor). Here, we add the trigger to 2,000 images in
the testing dataset and employ another 2,000 as benign ones.
10 images are employed as the overlay samples, which are
used for replicating with the inputs to measure the randomness
(entropy) of predicted labels. As we can observe in Table X,
STRIP can achieve good detection performance for the testing
images with triggers, i.e., both FRR and FAR is close to 0.
In light of this finding, we further investigate why STRIP
performs so well and how to reduce its detection performance
from the perspective of an attacker. Recall that the critical
insight of STRIP is that the predictions of all perturbed inputs
of triggered images tend to be always consistent (i.e., the
target class). In other words, the high detection performance,
as shown in Table X, indicates that our optimized triggers
can be stably preserved in the perturbed images. Crucially,
our DOORPING attack enables the attacker to keep a trigger
trajectory (see Section VI-H) whereby different triggers are
preserved. Instead of using the final optimized trigger, we test
if other triggers along the trajectory can be employed to find a

14

TABLE X: FRR and FAR of STRIP detecting test samples (clean
and backdoor). We add the trigger into 40% of the original testing
dataset and use another 40% as the benign samples. 10 images are
treated as the overlay indices to evaluate FRR and FAR.

AlexNet ConvNet
DD DC DD DC

FRR FAR FRR FAR FRR FAR FRR FAR

FMNIST 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
CIFAR10 0.000 0.015 0.013 0.004 0.000 0.005 0.012 0.000

STL10 0.015 0.000 0.023 0.000 0.000 0.000 0.006 0.000
SVHN 0.015 0.000 0.016 0.024 0.020 0.110 0.016 0.000

0.2 0.4 0.6 0.8 1.0

ASR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

Fig. 18: Relationship between the ASR and FAR.

balance point between attack and detection performance. We
show the relationship between the ASR and FAR in Figure 18.
As we can see, the FAR score of STRIP can be significantly
increased (i.e., poor detection performance) when we apply
triggers that lead to a suboptimal ASR. For example, when the
FAR score is around 0.595, the ASR score is about 0.767, at-
taining a decent attack performance. Our finding indicates that
the DOORPING attack can practically evade STRIP detection
by trading off some attack performance.

C. Dataset-Level Defense

Statistical Analysis of DNNs (SCAn) [72]. SCAn leverages
an Expectation-Maximization (EM) algorithm to decompose
an image into its identity part (e.g., person) and variation part
(e.g., poses). Based on the global information of all categories,
the distribution of variations is exploited by a likelihood ratio
test to analyze the representations in each category, identifying
those that are more likely to be described by a mixture model
by adding attack samples into legitimate images of the current
category. When the test statistic of the class T (denoted as
J∗
T) is larger than 7.389, the class T is reported as being

contaminated. Here, 7.389 is actually e2 determined by SCAn.
Table XI reports the test statistic for our backdoor target class
(class 0). As we can see in Table XI, none of the J∗

T scores are
larger than 7.389. The results show that SCAn cannot detect
our backdoor target class effectively by DOORPING.

Spectral Signature [74]. Spectral signature builds on top of
the idea that a classifier amplifies signals that are critical to
classification. It finds that backdoored training datasets used in
backdoor attacks can leave detectable traces in the covariance
spectrum of the feature representation, i.e., the clean sample
leads to a small covariance value. In contrast, the backdoor
sample leads to an immense covariance value. Spectral signa-

TABLE XI: J∗
T of the target class from different model architectures

and datasets by SCAn.

AlexNet ConvNet
DD DC DD DC

FMNIST 1.868 2.224 6.817 7.075
CIFAR10 0.573 1.003 0.074 2.879

STL10 0.283 0.270 0.736 3.424
SVHN 0.671 0.015 0.954 0.226

TABLE XII: Average outlier score of samples generated by Spectral
Signature on DOORPING. The smaller the score is, the more likely
the sample is clean.

AlexNet ConvNet
DD DC DD DC

Backdoor Clean Backdoor Clean Backdoor Clean Backdoor Clean

FMNIST 7.623 9.476 4.584 2.203 6.829 9.077 5.411 2.883
CIFAR10 7.022 10.247 1.088 2.447 4.753 5.713 11.046 11.680

STL10 5.153 5.620 9.951 8.720 4.466 4.055 2.572 4.092
SVHN 6.416 10.972 4.198 15.856 5.131 9.406 23.041 10.793

TABLE XIII: Accuracy of detecting backdoor samples by using
SPECTRE.

AlexNet ConvNet
DD DC DD DC

FMNIST 60% 60% 90% 50%
CIFAR10 80% 70% 50% 40%

STL10 20% 50% 40% 50%
SVHN 100% 50% 100% 70%

ture calculates the outlier score of each sample and the mean
value for the backdoor and clean samples. The results are
shown in Table XII. As we can see in Table XII, most of the
average outlier scores of backdoor samples are smaller than
the clean ones. As such, Spectral Signature cannot detect the
backdoored distilled datasets generated by DOORPING attack.

SPECTRE [25]. SPECTRE is a defense algorithm using
robust covariance estimation to amplify the spectral signature
of backdoored data in the training dataset. The mean QUantum
Entropy (QUE) score of a backdoor sample is usually higher
than the clean sample. SPECTRE then marks such backdoor
samples with a robust spectral signature. In the original set-
tings, SPECTRE detects the backdoor sample in each class.
For the DOORPING attack, all backdoor images are included
in the target class we pre-defined. It means that there are no
backdoor images in the other classes. To this end, we modify
the settings of SPECTRE and only detect the backdoor samples
in the target class. We include an equal number of backdoored
and clean distilled images in the target class. Table XIII reports
the accuracy of the SPECTRE detection. We can observe
that SPECTRE performs well in some cases. For example,
given ⟨DD, SVHN⟩, SPECTRE can detect the triggers by
DOORPING. However, SPECTRE can not successfully identify
the triggers in the other datasets. See more discussion about
SPECTRE in our technical report [46]. We conclude that
SPECTRE is not robust for all of the datasets we test. This
inconsistency indicates that SPECTRE is not a reliable defense
mechanism against our DOORPING attack.

VIII. RELATED WORK

Backdoor Attack. Backdoor attack [8], [20], [24], [31], [45]
is a training time attack and has emerged as a major security
threat to deep neural networks (DNNs) in many application
areas (e.g., natural language processing [7], [62], image clas-
sification [14], [15], face recognition [8], point clouds [37],

15

[81], etc.). It implants a hidden backdoor (also called neural
trojan [31], [45]) into the target model via poisoning training
samples (i.e., attacker modified input-label pairs). The injected
backdoor can be activated during inference time if an attacker-
specific trigger (either pre-defined or optimization-based) is
presented. Previous works mainly focus on the effectiveness
of backdoor attacks on DNN-based classifiers [8], [24], graph
neural networks [80], [87], pre-trained encoders [30], [65],
contrastive learning-based models [4], transfer learning [86],
etc. In recent years, many efforts also adopt the concepts
and techniques in adversarial examples [17], [22] to improve
the stealthiness of the triggers and make them imperceptible
to human moderators [14], [15], [41]. Furthermore, previous
works mainly inject triggers to the original training dataset
during the model training procedure, which cannot be applied
to the distilled datasets as aforementioned. Thus, we take the
first step to inject triggers into the synthetic data during the
dataset distillation process.

Defense Against Backdoor Attacks. Defense mechanisms
against backdoor attacks [20], [31], [40] can be broadly
grouped into two categories. The first category of defense
mechanisms is identifying backdoored data samples and filter-
ing them out before training a model. Their central intuition
is that the backdoored data samples, due to the manipulation
from attackers, are statistically different from non-backdoored
counterparts either in the input space [12], [13], [48], [70]
or in the feature space [32], [56], [74]. The second category
of defense mechanisms orbits around the models. Given the
assumption that the model holders cannot pre-filter the training
data, these mechanisms secure the models by eliminating
the triggers at the training/test time [16], [19], [48], [71],
certifying their robustness to input perturbations [58], [75],
[83], [87], identifying backdoored models [76], [78], [91],
removing the backdoors from the backdoored models [38],
[43], [76], etc. We refer the audience to [20], [31], [40] for
comprehensive surveys on backdoor attacks and defenses. Our
experimental results indicate that existing defense mechanisms
provide insufficient robustness guarantees under DOORPING.

Dataset Distillation. Dataset distillation [5], [52], [53], [79],
[88], [89], [90] is a technique for data-efficient learning, which
does not rely on large datasets. The first work of dataset
distillation [79] calculates the loss gradient from a model
trained by the distilled dataset. Some other works related
to Dataset Condensation [88], [90] are proposed to improve
the quality of the distilled dataset. These works match the
gradient of the original training dataset with distilled datasets
to achieve similar performance. They also use differentiable
siamese augmentation [88] to improve the result but not much.
Zhao and Bilen [89] then provide a method for minimizing
the distribution discrepancy between real and synthetic data
in these sampled embedding spaces. KIP [52], [53] is another
method using large-scale Neural Tangent Kernel computation.
Another work [5] uses the trajectory of pre-trained models and
matches the parameters from a select model and the model
trained by distilled dataset. Nevertheless, this work has such
a tremendous learning rate (as large as 1000) for updating
distilled images that the matching loss will become NaN for
many situations. Note that the model architecture used in
the dataset distillation processing must be the same as the
downstream model architecture, which is required by most
current dataset distillation techniques.

IX. LIMITATION

In this section, we discuss our attack limitations in two
aspects. The first is the limitations of DD and DC themselves.
For DD and DC, neither work can utilize the model with the
BatchNorm (BN) layer as an upstream model. In fact, the
BN layer is one of the most widely used layers in neural
networks to accelerate convergence and avoid loss into NaN.
This drawback vastly limits the choice of upstream models.
Besides, for DD, it is hard for the users to distill an extensive
dataset. For example, the loss becomes NaN when distilling
large datasets such as SVHN (which contains over 70,000
samples). The second aspect is how they limit our attacks.
We present that the attack cannot be deployed in a federated
learning environment. The root cause is that both DD and
DC cannot be trivially deployed in collaborative systems
since they re-initialize the model parameters in every epoch.
For different samples in different clients, the results differ
significantly. Simply combining the distilled datasets or model
parameters from the clients is impracticable. Note that there are
preliminary efforts in federated dataset distillation [29], [69],
[84]. We consider backdoor attacks against these federated
systems as our future research direction.

X. CONCLUSION

In this paper, we propose the first backdoor attack against
the machine learning models via a malicious dataset distillation
service provider. We inject triggers into the synthetic data dur-
ing the distillation process rather than during the model train-
ing phase, where all previous attacks are performed. Immense
evaluations are conducted on multiple datasets, architectures,
and dataset distillation techniques. Our results demonstrate that
our proposed attacks achieve remarkable attack and utility per-
formance. We hope this study highlights the need to understand
the security and privacy issues of dataset distillation, especially
the consequences of using distilled datasets from third parties.

ACKNOWLEDGMENT

We thank all the anonymous reviewers for their construc-
tive comments. We also thank Shaofeng Li and Tian Dong
for their valuable discussions. This work is partially funded
by the Helmholtz Association within the project “Trustworthy
Federated Data Analytics” (TFDA) (funding number ZT-I-OO1
4) and by the European Health and Digital Executive Agency
(HADEA) within the project “Understanding the individual
host response against Hepatitis D Virus to develop a personal-
ized approach for the management of hepatitis D” (D-Solve).

REFERENCES

[1] https://www.cs.toronto.edu/∼kriz/cifar.html.
[2] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks

against Support Vector Machines. In ICML, 2012.
[3] Nicholas Carlini. Poisoning the Unlabeled Dataset of Semi-Supervised

Learning. In USENIX Security, 2021.
[4] Nicholas Carlini and Andreas Terzis. Poisoning and backdooring

contrastive learning. In International Conference on Learning Rep-
resentations (ICLR), 2022.

[5] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A.
Efros, and Jun-Yan Zhu. Dataset Distillation by Matching Training
Trajectories. In CVPR, 2022.

16

https://www.cs.toronto.edu/~kriz/cifar.html

[6] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, Qingni Shen,
Zhonghai Wu, and Yang Zhang. BadNL: Backdoor Attacks Against
NLP Models with Semantic-preserving Improvements. In ACSAC, pages
554–569, 2021.

[7] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing
Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang. Badnl: Backdoor
attacks against nlp models with semantic-preserving improvements. In
Annual Computer Security Applications Conference, pages 554–569,
2021.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526, 2017.

[9] Seungju Cho, Tae Joon Jun, Byungsoo Oh, and Daeyoung Kim. DA-
PAS: Denoising autoencoder to prevent adversarial attack in semantic
segmentation. International Joint Conference on Neural Networks,
2020.

[10] Adam Coates, Andrew Y. Ng, and Honglak Lee. An Analysis of Single-
Layer Networks in Unsupervised Feature Learning. In AISTATS, pages
215–223, 2011.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In NAACL-HLT, pages 4171–4186, 2019.

[12] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic
high-dimensional robust statistics. arXiv preprint arXiv:1911.05911,
2019.

[13] Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. Februus:
Input Purification Defense Against Trojan Attacks on Deep Neural
Network Systems. In ACSAC, pages 897–912, 2020.

[14] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with impercep-
tible input and latent modification. In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, 2021.

[15] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable,
imperceptible and robust backdoor attacks. In IEEE/CVF International
Conference on Computer Vision (ICCV), pages 11966–11976, 2021.

[16] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection
and backdoor attack detection via differential privacy. arXiv preprint
arXiv:1911.07116, 2019.

[17] Liam Fowl, Micah Goldblum, Ping-Yeh Chiang, Jonas Geiping, Wojtek
Czaja, and Tom Goldstein. Adversarial Examples Make Strong Poisons.
In NeurIPS, 2021.

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model Inversion
Attacks that Exploit Confidence Information and Basic Countermea-
sures. In CCS, pages 1322–1333, 2015.

[19] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C
Ranasinghe, and Surya Nepal. STRIP: A Defence Against Trojan
Attacks on Deep Neural Networks. In ACSAC, pages 113–125, 2019.

[20] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi
Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Gold-
stein. Dataset security for machine learning: Data poisoning, backdoor
attacks, and defenses. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[21] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. In ICLR, 2015.

[22] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[23] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
Knowledge distillation: A survey. International Journal of Computer
Vision, 129(6):1789–1819, 2021.

[24] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Grag. Badnets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain. CoRR abs/1708.06733, 2017.

[25] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh.
SPECTRE: Defending against backdoor attacks using robust covariance
estimation. In ICML, 2021.

[26] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and
Yang Zhang. Stealing Links from Graph Neural Networks. In USENIX
Security, pages 2669–2686, 2021.

[27] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the
Knowledge in a Neural Network. CoRR abs/1503.02531, 2015.

[28] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua
Wang, Niki Trigoni, and Andrew Markham. RandLA-Net: Efficient
Semantic Segmentation of Large-Scale Point Clouds. In CVPR, pages
11105–11114, 2020.

[29] Shengyuan Hu, Jack Goetz, Kshitiz Malik, Hongyuan Zhan, Zhe Liu,
and Yue Liu. FedSynth: Gradient Compression via Synthetic Data in
Federated Learning. CoRR abs/2204.01273, 2022.

[30] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. BadEncoder:
Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning.
In S&P, 2022.

[31] Sara Kaviani and Insoo Sohn. Defense against neural trojan attacks: A
survey. Neurocomputing, 423:651–667, 2021.

[32] Pang Wei Koh and Percy Liang. Understanding black-box predictions
via influence functions. In International conference on machine learn-
ing, pages 1885–1894, 2017.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In NIPS,
pages 1106–1114, 2012.

[34] Hyun Kwon. Defending Deep Neural Networks against Backdoor
Attack by Using De-trigger Autoencoder. IEEE Access, 2021.

[35] Bo Li and Yevgeniy Vorobeychik. Scalable Optimization of Random-
ized Operational Decisions in Adversarial Classification Settings. In
AISTATS, pages 599–607, 2015.

[36] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and
Xinpeng Zhang. Invisible Backdoor Attacks on Deep Neural Networks
via Steganography and Regularization. IEEE Transactions on Depend-
able and Secure Computing, 2020.

[37] Xinke Li, Zhirui Chen, Yue Zhao, Zekun Tong, Yabang Zhao, Andrew
Lim, and Joey Tianyi Zhou. Pointba: Towards backdoor attacks in 3d
point cloud. In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 16492–16501, 2021.

[38] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li, and
Xingjun Ma. Neural attention distillation: Erasing backdoor triggers
from deep neural networks. In International Conference on Learning
Representations, 2021.

[39] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun
Ma. Neural Attention Distillation: Erasing Backdoor Triggers from
Deep Neural Networks. In ICLR, 2021.

[40] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.
Backdoor learning: A survey. arXiv preprint arXiv:2007.08745, 2020.

[41] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and
Siwei Lyu. Invisible backdoor attack with sample-specific triggers. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 16463–16472, 2021.

[42] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu,
Bo Li, and Ting Wang. DEEPSEC: A Uniform Platform for Security
Analysis of Deep Learning Model. In S&P, pages 673–690, 2019.

[43] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Removing backdoor-
based watermarks in neural networks with limited data. In 2020 25th
International Conference on Pattern Recognition (ICPR), pages 10149–
10156. IEEE, 2021.

[44] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer,
and Xiangyu Zhang. ABS: Scanning Neural Networks for Back-Doors
by Artificial Brain Stimulation. In CCS, pages 1265–1282, 2019.

[45] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning Attack on Neural
Networks. In NDSS, 2018.

[46] Yugeng Liu, Zheng Li, Michael Backes, Yun Shen, and Yang Zhang.
Backdoor Attacks Against Dataset Distillation. CoRR abs/2301.01197,
2023.

[47] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang,
Michael Backes, Emiliano De Cristofaro, Mario Fritz, and Yang Zhang.
ML-Doctor: Holistic Risk Assessment of Inference Attacks Against
Machine Learning Models. In USENIX Security, 2022.

[48] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017
IEEE International Conference on Computer Design (ICCD), pages 45–
48. IEEE, 2017.

17

[49] Mohammad Malekzadeh, Anastasia Borovykh, and Deniz Gündüz.
Honest-but-curious nets: Sensitive attributes of private inputs can be
secretly coded into the entropy of classifiers’ outputs. In ACM CCS,
2021.

[50] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph,
enjamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. Doug Tygar,
and Kai Xia. Exploiting Machine Learning to Subvert Your Spam Filter.
In First USENIX Workshop on Large-Scale Exploits and Emergent
Threats, 2008.

[51] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y. Ng. Reading Digits in Natural Images with Unsuper-
vised Feature Learning. In NIPS, 2011.

[52] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset Meta-
Learning from Kernel Ridge-Regression. In ICLR, 2021.

[53] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee.
Dataset Distillation with Infinitely Wide Convolutional Networks. In
NeurIPS, 2021.

[54] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael
Wellman. SoK: Towards the Science of Security and Privacy in Machine
Learning. In Euro S&P, pages 399–414, 2018.

[55] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. The Limitations of Deep
Learning in Adversarial Settings. In Euro S&P, pages 372–387, 2016.

[56] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu,
Soheil Feizi, Tom Goldstein, and John P Dickerson. Deep k-nn defense
against clean-label data poisoning attacks. In European Conference on
Computer Vision, pages 55–70. Springer, 2020.

[57] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing
Huang, and Junzhou Huang. Self-Supervised Graph Transformer on
Large-Scale Molecular Data. In NeurIPS, 2020.

[58] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter.
Certified robustness to label-flipping attacks via randomized smoothing.
In International Conference on Machine Learning, pages 8230–8241.
PMLR, 2020.

[59] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and
Yang Zhang. Updates-Leak: Data Set Inference and Reconstruction
Attacks in Online Learning. In USENIX Security, pages 1291–1308,
2020.

[60] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang.
Dynamic Backdoor Attacks Against Machine Learning Models. In Euro
S&P, 2022.

[61] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario
Fritz, and Michael Backes. ML-Leaks: Model and Data Independent
Membership Inference Attacks and Defenses on Machine Learning
Models. In NDSS, 2019.

[62] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov.
You autocomplete me: Poisoning vulnerabilities in neural code comple-
tion. In 30th USENIX Security Symposium (USENIX Security), pages
1559–1575, 2021.

[63] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green
AI. Commun. of the ACM, 2020.

[64] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison Frogs!
Targeted Clean-Label Poisoning Attacks on Neural Networks. In
NeurIPS, pages 6103–6113, 2018.

[65] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi,
Chengfang Fang, Jianwei Yin, and Ting Wang. Backdoor pre-trained
models can transfer to all. arXiv preprint arXiv:2111.00197, 2021.

[66] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership Inference Attacks Against Machine Learning Models. In
S&P, pages 3–18, 2017.

[67] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR, 2015.

[68] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine
Learning Models that Remember Too Much. In CCS, pages 587–601,
2017.

[69] Rui Song, Dai Liu, Dave Zhenyu Chen, Andreas Festag, Carsten
Trinitis, Martin Schulz, and Alois C. Knoll. Federated Learning
via Decentralized Dataset Distillation in Resource-Constrained Edge
Environments. CoRR abs/2208.11311, 2022.

[70] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified
defenses for data poisoning attacks. Advances in neural information
processing systems, 30, 2017.

[71] Mahesh Subedar, Nilesh Ahuja, Ranganath Krishnan, Ibrahima J
Ndiour, and Omesh Tickoo. Deep probabilistic models to detect data
poisoning attacks. arXiv preprint arXiv:1912.01206, 2019.

[72] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon
in the Variant: Statistical Analysis of DNNs for Robust Backdoor
Contamination Detection. In USENIX Security, pages 1541–1558, 2021.

[73] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing
Large-scale and High-dimensional Data. In WWW, pages 287–297,
2016.

[74] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in
backdoor attacks. Advances in neural information processing systems,
31, 2018.

[75] Binghui Wang, Xiaoyu Cao, Neil Zhenqiang Gong, et al. On certifying
robustness against backdoor attacks via randomized smoothing. arXiv
preprint arXiv:2002.11750, 2020.

[76] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao. Neural Cleanse: Identifying
and Mitigating Backdoor Attacks in Neural Networks. In S&P, pages
707–723, 2019.

[77] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-
teacher learning for visual intelligence: A review and new outlooks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[78] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and
Meng Wang. Practical detection of trojan neural networks: Data-limited
and data-free cases. In European Conference on Computer Vision, pages
222–238. Springer, 2020.

[79] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros.
Dataset Distillation. CoRR abs/1811.10959, 2018.

[80] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph Backdoor.
In USENIX Security, 2021.

[81] Zhen Xiang, David J. Miller, Siheng Chen, Xi Li, and George Kesidis.
A backdoor attack against 3d point cloud classifiers. In IEEE/CVF
International Conference on Computer Vision (ICCV), pages 7597–
7607, 2021.

[82] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. CoRR
abs/1708.07747, 2017.

[83] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. Crfl: Certifiably
robust federated learning against backdoor attacks. In International
Conference on Machine Learning, 2021.

[84] Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, and Cho-Jui
Hsieh. FedDM: Iterative Distribution Matching for Communication-
Efficient Federated Learning. CoRR abs/2207.09653, 2022.

[85] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and
Bo Li. Detecting AI Trojans Using Meta Neural Analysis. In S&P,
2021.

[86] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. Latent
Backdoor Attacks on Deep Neural Networks. In CCS, pages 2041–
2055, 2019.

[87] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong.
Backdoor Attacks to Graph Neural Networks. In SACMAT, pages 15–
26, 2021.

[88] Bo Zhao and Hakan Bilen. Dataset Condensation with Differentiable
Siamese Augmentatio. In ICML, 2021.

[89] Bo Zhao and Hakan Bilen. Dataset Condensation with Distribution
Matching. CoRR abs/2110.04181, 2021.

[90] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset Condensa-
tion With Gradient Matching. In ICLR, 2021.

[91] Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank Goswami,
and Chao Chen. Topological detection of trojaned neural networks.
Advances in Neural Information Processing Systems, 34, 2021.

[92] Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph
Studer, and Tom Goldstein. Transferable Clean-Label Poisoning At-
tacks on Deep Neural Nets. In International Conference on Machine
Learning, pages 7614–7623, 2019.

18

	Introduction
	Preliminary
	Dataset Distillation
	Dataset Distillation Techniques
	Backdoor Attack

	Backdoor Attacks Against Dataset Distillation
	Threat Model
	NaiveAttack
	DoorPing

	Experimental Settings
	Evaluation
	Attack Performance
	Distillation Model Utility

	Ablation Study
	Effectiveness on Complex Datasets
	Effectiveness on Cross Architectures
	Number of Distilled Samples per Class
	Number of Original Samples
	Number of Selected Neurons
	Poisoning Ratio
	Trigger Size
	Trigger Trajectory
	Value of Magnifying Factor

	Defenses
	Model-Level Defense
	Input-Level Defense
	Dataset-Level Defense

	Related Work
	Limitation
	Conclusion
	References

