
You Are Where You APP: An Assessment on
Location Privacy of Social APPs
Fanghua Zhao∗, Linan Gao∗, Zeyu Wang†, Yang Zhang‡ and Shanqing Guo∗

∗School of Software
Shandong University, Jinan, China

†School of Computer Science and Technology
Shandong University, Qingdao, China

‡CISPA
Saarland University, Saarland, Germany

Abstract—The development of positioning technologies has
digitalized people’s mobility traces for the first time in history.
With GPS sensors equipped with mobile devices, people can
share their positions by allowing APPs to access their location.
The large amount of mobility data can help to build appealing
applications, e.g., location recommendation. Meanwhile, location
privacy has become a major concern.

In this paper, we design a general system to assess whether
an APP is vulnerable to location inference attacks. We utilize
a series of automatic testing mechanisms, including UI match
and API analysis to extract the location information (distance)
an APP provides. According to different characteristics of these
Apps, we classify them into two categories, corresponding to two
kinds of attacks, namely attack with distance limitation (AWDL)
and attack without distance limitation (AWODL). By evaluating
800 APPs, we found that 24.7% of them are vulnerable to the
AWDL attack while 11.0% to AWODL attack. Moreover, some
APPs even allow us to modify the parameters in Http requests
which largely increases the scope of the attacks. In addition, 5
APPs directly expose the exact geo-coordinates of the potential
victims.

Keywords-Android APPs, Location Privacy, Automatic Testing,
Relative Distance, Trilateration

I. INTRODUCTION

The fast development of ICT technologies has digitalized
people’s mobility traces for the first time in human history.
Nowadays, with GPS-equipped mobile devices, such as smart
phones and tablets, users can directly share their locations
through various social network platforms such as Facebook,
Twitter, and Instagram. Meanwhile, many APPs resided in a
mobile device ask the users to grant them the access to their
location data. Multiple parties could benefit from the large-
scale mobility data: industry can use the data to build appeal-
ing applications, such as location recommendation systems;
governments can use the data to improve traffic condition and
reduce air pollution; meanwhile, academia can use the data to
gain a deeper understanding of many fundamental questions
in the society, such as epidemiology.

While bringing a lot of benefits, location data also raise
the severe threat to people’s privacy. In [1], the authors have
pointed out that location is the most sensitive data being col-
lected from each individual. Several studies show that knowing

the locations users have visited can leak their attributes [2]–
[5], and social relations [6]–[8]. In addition, being able to
infer/track a user’s location allows an adversary to stalk the
user [9]. In particular, the privacy threat is severe for users
of certain mobile APPs whose functionality heavily relies on
location information, such as Tinder, Skout, and Whisper.

To mitigate the privacy threat, many location-based mo-
bile APPs have taken countermeasures. The most common
approach is only displaying the distance between two users,
instead of showing their exact locations (geo-coordinates). For
instance, a Whisper user can only know how far away a certain
user is to her. However, the authors of [9] have shown that
by simply modifying Whisper’s API for location spoofing, a
user’s location can be inferred through triangulation. Other
works in this direction include [8], [10], [11]. However, all
these previous works have studied the location vulnerability of
only one or a few APPs. To fully assess the location privacy
threat, a large-scale study on most of the popular APPs is
necessary, which, to our surprise, is still missing.

We crawled the top 800 social APPs from Google Play
(500) and Wandoujia (300) and 109 of them passed the
automatic testing and was roughly identified having location
clues (i.e., “Distance”) by triggering all these APPs’ activities
and monitoring them on a customized Android system [12].
24.7% of these APPs are vulnerable to the AWDL attack while
11.0% of the them can leak users’ locations with the AWODL
attack. Moreover, some APPs even allow users to modify
the original Apps to send crafted requests, which means the
database could be disclosed by web API misuse. In addition,
we identified 5 APPs which directly expose the exact geo-
coordinates of the potential victims.

We further perform simulations on inferring users’ loca-
tions. We have conducted our experiments in two cities, New
York and Beijing. The evaluation shows that with only three
location queries (based on trilateration), we are able to track
more than 90% users.

We conduct a study on popular social APPs with respect to
the location privacy threat. It turns out that various measures in
the transmission and protection of location data are taken and
a lot of them seems effective but actually invalid. For exam-
ple, the relative distance is designed to protect the victims’

geographic coordinates from being positioned by attackers.
The server should send users’ relative distances to clients
when requested. However, some APPs seem to provide relative
distances on user interface but actually give the latitudes and
longitudes of other users to attackers and let clients do the
math.

In summary, this paper makes the following contributions :
• We propose a series of testing mechanisms, including

UI match and API analysis to automatically evaluate a
certain social APP on location privacy leakage.

• We discover an effective way to filter the location-based
APPs by parsing the APK files and intercepting Http
packages. There are 109 social APPs that successfully
pass the automatic testing. We discover that 24.7% of
these APPs are vulnerable to the AWDL attack while
11.0% of the APPs can leak users’ locations with the
AWODL attack. We further show that some APPs’ API
design allows us to perform even stronger attacks.

• We perform simulations to demonstrate the feasibility
of our location inference attacks. Experiments was con-
ducted mainly in Beijing and New York on three APPs,
Feeling, SKOUT and Blued, which turns out that three
location queries, based on trilateration algorithm, can
track more than 90% users.

Roadmap.The remainder of this paper is structured as
follows: Section II elaborates our motivation and provides an
example of the social APPs which leak users’ location privacy.
By then, Section III details an overview of our assessment sys-
tem and proposes two attack models. The default settings and
overall results of our experiments are presented in Section IV.
And we also propose three real-world simulation of different
APPs on different regions in this section. Section V introduces
the previous works related to us on privacy protection of LBS
services. Moreover, a discussion of the challenges, insights,
and future works is manifested in Section VI. Finally, we
conclude our work in Section VII.

II. MOTIVATION AND AN EXAMPLE

A. Motivation

The security of a portable device is not up to the best
software installed on it, but the worst one. The majority of
mobility researches focused on popular APPs like Facebook,
Twitter, WeChat and so on. These APPs may do better in
location protection and possess a large number of users.
Nonetheless, location-based APPs are universal while a con-
siderable number of them are deficient in privacy protection
mechanisms. At this point, we propose an assessment on
location privacy of mobile social APPs and develop a system
to detect each specific APP.

B. An Example-SKOUT

To illustrate the problem clearly, we employ SKOUT, a
typical location-based global social application which has got
attention of several researchers in recent years [13], [14],
as an instance. The number of SKOUT installations (50-100
million on Google Play) is not as overwhelming as Facebook.

However, we have no reason to doubt that hunderds of APPs
like SKOUT are capable of covering a considerable scale of
users.

Fig. 1: Http request & response

Like most dating APPs, SKOUT provides multiple ways to
help users connect with others all over the world. In general,
once a user logs in by ID and correct password, the server
would issue a certain token for the client as a part of signer
authentication. If GPS is permitted to be available to this app,
client will automatically send an Http request with location
information to the server to specify the location of the current
user and get access to server by the token as Figure 1.
The period of validity of the token varies from an APP to
another and the period of SKOUT is long enough to actualize
replay attack. We modified latitude and longitude parameters
values (e.g., latitude=110.908 & longitude=98.770) and resent
this modified request successfully, which makes it possible to
relocate a user anywhere an attacker needs.

There are two approaches to find new guys who are avail-
able to be friends, one is freshing the people nearby as Figure 2
(a), the other is searching for a sepecific ID as Figure 2 (b).
Figure 2 (a) is an abstract from the SKOUT interface showing
nearby users, there are 6 users loaded to the client one time and
their basic information fetched from the server are shown on
UI. The “Distance” parameter included in Http response which
can also be interrupted demonstrates the relative distance. As
a protection technique, server provides the distance between
the user and others instead of exposing the geographic coor-
dinate of them. Those relative distances can be used to locate
victims in trilateration algorithm [15]. In trilateration locating
algorithm, if we get three relative distances of one victim to
three other users, we can perform location attack. In particular,
SKOUT also provides the function to search any user by ID,
which refers attackers can obtain detailed information by user
ID (e.g.,90644621) as Figure 2 (b) with relative distances and
cast the trilateration on it to trace the location of this user.

We use Burp Suite as a proxy server to capture requests
and responses between the client and the server. As can be
noticed, the location information of SKOUT users is reflected
in Http requests and responses as follows.

• No encryption in Http requests and responses.
All the location information contained in network traffic
is unencrypted during transmission. Once network traffic
is intercepted, all users’ data would be exposed.

• Weak protection for location Infomation.

Fig. 2: Http request & response, abstract UI features of nearby
users list (a) and a selected user (b)

Although the relative distance is a kind of protection
for users to some extent, it could be attacked easily by
trilateration algorithm.

Location-based social applications like SKOUT, which is
weak in the protection of user information, are quite a lot in
various APP stores. What is more, there are social APPs that
directly expose the geo-coordinates of users. To that point,
we propose an assessment of multiple location-based social
applications and an evaluation system to detect the leakages
of every new location-based social APP.

III. SYSTEM OVERVIEW

Assessment
System

AWDL
Assessment

System

AWODL

Social
APPs

“Distances”

Attack Models

Location
Points of
Victims

Fig. 3: The whole workflow

At present, there are a large number of social applications
providing relative distance service (relative distance from a
nearby user or any user searched in APP) like SKOUT. Our
work attempts to find these applications and evaluate whether
they can reveal users’ locations. As shown in Figure 3, our
ultimate goal is to obtain the location point of victims, the as-
sessment system is mainly aimed to find location information
leaking cues (like “Distance”) or directly location point (like
geo-coordinates) and the attack models are designed to help
get location points when cues are detected.

A. Assessment System Overview

An overview of the assessment system is presented in
Figure 5. There are three key components: (1) Keywords
Search, a static decompile analysis process to preliminarily
determine whether those APPs have location-related func-
tionalities. (2) UI Automatic Matching, a dynamic analysis
process to substantially confirm location-related functionalities
according to UI features we defined in the following. (3)
Automatic Analysis of APIs. Collecting all the APIs invoked
by location-related functionalities to analyse and utilize API
parameters’ values to perform attacks.

1) Keywords Search: Many applications require access to
the users’ location when installed, but do not necessarily have
the function to use it. By observation and testing, we found
social applications with location-related functionalities always
have similar features on the user interface (UI).

The programmers prefer to avoiding hard coding (embed-
ding an input or configuration data directly into the source
code of a program or other executable object, or fixed for-
matting of the data) in the development practice of Android
projects. Usually all the strings (maybe in different languages)
that appeared on the user interface (e.g.login) would be re-
placed by standard string names to cater to and promote inter-
national standards. There is normally a file namely string.xml
in the res directory of each Android Package (Apk) that
transfer all the string names, which would be shown on the
UI, into programmable values.

The first step is to analysing the string.xml file. Any word
in any language which needs to be shown on the interface for
users must appear in this file. So all the location related words
could be detected to be attached to which variable values. In
this process, we scan all the strings used by an application
to preliminarily estimate whether it has location-related func-
tions. Through static analysis, decompiling APKs with the help
of apktool and dex2jar, we can get all resource files of APKs,
where the string.xml points out all the global strings. We
decompile the given apk, get the file string.xml and scan all
the contents of labels (e.g., “location” in < stringname =
”contents location” > location < /string >) to find out if
keywords including ”location”, ”nearby”, ”distance”and corre-
sponding Chinese characters appear. This process is allowed to
search any strings in any languages. We selected four words to
filter the location-related APPs based on empirical knowledge.
The result was quite delightful: nearly half of the APPs were
detected to be location-related.

2) UI Automatic Matching: Keywords search can prelimi-
narily screen out applications with location-related functions
by analysing the static code. But plenty of the functionality
are available only if the APP gets access to be online. UI
automatic matching will trigger all these functions to sub-
stantially confirm them and get the interfaces these functions
call. Based on static analysis of APKs, this process involves
dynamic automatic testing to install and run applications and
trigger the location-related functions. Firstly, the UI features
are as follows.

1

2 3

4 5
Widgets of

Page*

Test Case * (APK)

UIAutomator

Test Case
Pack

Robotium Solo Library

UI structure

Page
*

Fig. 4: Automatic testing

In social applications, (i) F1 refers to the UI like Figure 2
(a), with the functionality to display nearby users and relative
distances from them. (ii) F2 refers to the search bar UI in
Figure 2 (b), with the functionality to search any users. (iii)
F3 refers to UI like the Textview widget (e.g., Distance :
100km) in Figure 2 (b), with the functionality to show other
users’ location-related information.

• Feature-1 (F1): Multiple Textview widgets, with text
attributes “ * km”,“ * m” or “* mi”;

• Feature-2 (F2): EditText widget as a Search bar, with the
hint attribute “ID” or “username” and other similar tips;

• Feature-3 (F3): One Textview widget, with the text at-
tributes “* km” or “* m” or “* mi”;

The UI automatic matching needs the following tools:
UIAutomator, which we use to obtain all the widgets of UI;
Junit regression testing framework, which we use to generate
automatic test cases for every UI; Solo library of Robotium,
automatically triggering widgets in test cases generated by
Junit regression testing.

To automatically traverse the UI structure (all pages can be
triggered) of application, we follow the principle of breadth
priority (the test order is 1→ 2→ 3→ 4→ 5 in UI structure
of Figure 4). Our system aims to cover all the UIs to find the
UI features (Fk, k=1,2,3) we defined.

For each page, we designed a test case in the form of an
APK to dynamically trigger all the widgets and our system
will automatically install and run the APK on the Android
device. As shown in Figure 4, the test case (APK) embodies
all widgets of the tested page obtained by UIAutomator and the
use of it is to trigger all those widgets drawing support from
solo library of Robotium. In detail, all the widgets obtained
by UIAutomator are stored in a queue, once one widget is
triggered, it will be cleared. The test case will continue to
trigger all the widgets until the queue is empty. If any widgets
trigger a new page, we preserve it for the next test case
generation. In the meanwhile, we maintain a path to save the
test case triggering process from the start page to any other
page.

Algorithm 1: UI Automatic Matching Algorithm
Input: Set Sfeature = Φ, Fk(k = 1, 2, 3): 3 kinds of

feature.
Output: Features Set Sfeature of Current APP
for each APP do

Install its APK via Android Debug Bridge (ADB);
Set G = the initial page;
for page* in G do

Set T = all the UI widgets of page*;
for each i ∈ T do

if i matches Fk (k=1,2,3) then
Sfeature ← Sfeature ∪ {Fk};

end
if i triggers a page Pj /∈ G then

G← G ∪ {Pj};
end

end
end

end

UI automatic matching algorithm (shown in algorithm 1) in-
cludes UI features (Fk, k=1,2,3) matching and automatic test-
ing. During automatic testing, where all widgets are retrieved
and triggered, we discern the characteristics and attributes of
those widgets, and take features we defined to match. The
algorithm input is three features Fk (k=1,2,3), the output is
matched features Sfeature set.

Definition:
• Category-I: Output Sfeature = F1.
• Category-II: Output Sfeature = F2, F3.
• Category-I -II: Output Sfeature = F1, F2, F3.
We roughly divide APPs to three categories in this section,

If Sfeature returns F1, the tested APP belongs to Category-I,
it is very likely that it supplies relative distances from nearby
users. If Sfeature returns F2, F3, the tested APP belongs to
Category-II and it is that it can supply relative distance from
arbitrary user searched. If Sfeature returns F1, F2, F3, the
tested APP belongs to Category-I -II and has the above two
functionalities.

3) Automatic Analysis of APIs: In SKOUT, utilizing pa-
rameters (e.g., Distance, ID) that intercepted in HTTP requests
and responses make it possible to perform trilateration attack.
The ultimate goal of the assessment system is also to discover
useful interface information and implement location attack.
So, as UI automatic matching has triggered the location-
related functionalities, we can make sure which APIs are
invoked. Therefore, this process includes collecting APIs and
the automatic analysis of them.

At the same time, we intercept all APIs of the tested
Android phone with the help of the proxy in Burp Suite. If
the Sfeature is not empty for an APP, we export the APIs
according to their host name and separately store for different
APPs and also as the input of API automatic analysis algorithm
(shown in Algorithm 2).

APKs

UI Automatic
Match

UI
Features

APIs

API
Catgories

API
Automatic
Analysis

KeyWords
Search

Key
Words

Attack
Models

Assessment System

Fig. 5: A high-level overview of assessment system

Similarly, the analysis and utilization of the interface can not
be separated from several types of typical APIs. We define
three typical APIs that can be used to perform the attack,
the detail of http requests and responses forms are shown in
Figure 6. Category-I always has API-1 and API-2, Category-II
always has API-1 and API-3, Category-I-II has API-1, API-2,
and API-3.

(a) API-1

(b) API-2

(c) API-3

Request: nearby users （range limits）

Response: {"userID", "distance", "lon" , "lat"}......
{"userID", "distance", "lon" , "lat"}

Request: any userID (without range limits）

Response: "userID", "distance", "lon" , "lat"

Request: "lon" , "lat"

Response: HTTP 200 OK

Fig. 6: Typical API categories: API-1, API-2, API-3

• API-1: API that is used to submit the latitude and
longitude of the client.

• API-2: API that is used to get location information (e.g,
distance) of a list of potential victims.

• API-3: API that is used to get location information (e.g,
distance) of a certain potential victim searched by ID or
user name.

B. Attack Models AWDL and AWODL

In the whole work flow, the attack models AWDL and
AWODL are shown in Figure 7.

Definition:

Algorithm 2: API Automatic Analysis Algorithm
Input: Set SAPI = Φ, Set Ω = {Requests}, Set Λ =

{Responses}.
Output: API Categories Set SAPI of Current APP
for each i ∈ Ω do

if i includes GPS coordinates then
SAPI ← SAPI ∪ {API − 1};

end
end
for each i ∈ Λ do

if i includes a list of location information then
SAPI ← SAPI ∪ {API − 2};

end
else if i returns a location through searching

ID/uesrname then
SAPI ← SAPI ∪ {API − 3};

end
end

Fig. 7: Attack models AWDL & AWODL

• AWDL: Attack with distance limit (AWDL), is designed
for the APPs offering relative distances of nearby users
with a range limitation.

• AWODL: Attack without distance limit (AWODL), is
designed for the APPs offering relative distances of a
selected and searched user (which means almost any user)
without any distance limitation.

In our system, we propose two attack models as the guide
of assessment for the testing result, Category-I or Category-
II. The attack model AWDL refers to the APPs offering
nearby users lists with a range limitation mainly for Category-
I. The attack model AWODL refers to the APPs offering
relative distances of a selected and searched user without any
distance limitation, mainly for Category-II and both AWDL
and AWODL models for Category-I -II. These two attack
models are both based on trilateration algorithm.

For the AWDL cases (as shown in Figure 7 (a)), T1, T2, T3

are three real accounts we registered as tool users and their
three tokens are used to replay web APIs to get location
clues (relative distances). Victim users (An;n ≥ 0) are in
the intersection of nearby users (Bn;n ≥ 0) of three tool
users with distance limit. By replaying API-1, T1, T2, T3 can
be relocated to three position points and then get http response
with Bn and relative distance values in it by replaying API-2
according to the position points. Set An is the intersection of
three Bn sets. So for all the victims in An, three distances
(D1, D2, D3) can be obtained and as input to trilateration
algorithm. In the attack model, distance limit restricts the
attack range, tool users can’t get relative distances to all users
because of the limitation on nearby people size or regional
scope limitation which means not all the users are victims.
But by API-1, we can relocated T1, T2, T3 to anywhere and
perform attacks on users in any area.

For the AWODL cases (as shown in Figure 7 (b)), any users
of an application are victim users. If any userID or other
key words of one user is offered, replaying API-3 can find
this unique user. Since there is no distance limit, by API-
3, relative distance between the tool user and the searched
user is included in the response. As similar to AWDL, by
replaying API-1, T1, T2, T3 are located to three position points.
For any given victim (Ai; i = 1, 2...n), API-3 can help get
three relative distances (D1, D2, D3) and D1, D2, D3 are the
input of trilateration algorithm to get longitude and latitude of
the victim. Every one using the tested APP can be searched
by unique ID or other key words (user name or telephone
number). Hence, in AWODL, it is obviously probable to
infringe on all users of an application to the maximum extent.

IV. EXPERIMENT

We introduce the details of our experiments including
dataset, default settings, and overall results. A three-stage
experiment is performed to evaluate our technique. On the
first stage, we employ all the APPs we collected to our system
and evaluate their safety level based on the previous definitions
(AWDL and AWODL). Hereafter, we formulate a simulation
on three typical APPs (SKOUT, Feeling, and Blued) aiming to

assess different attack models: 1) AWDL, 2) AWODL, and 3)
both AWDL and AWODL respectively. Last but not least, we
propose a summarization for location tracking attack aimed to
point out the effectiveness of our system.

A. Dataset collection and experiment environment

We crawled top 500 APPs from google play and top 300
APPs from Wandoujia in the social category. Removing the
duplicate ones, we tested 737 APPs on our assessment system
totally. By the process of location-based filtering, we got 365
apps in our dataset.

All of these apps were installed automatically to a LG Nexus
5 smartphone with Android 7.0 OS and the smartphone is
connected to a Win10 PC running atop an Intel (R) Core
(TM) i5-3470 3.20GHz CPU with 16.0GB RAM by Android
Debug Bridge (ADB) commands. For the assessment process,
the static process keyword search is executed just on Win10
PC without real Android phone, the static process of UI
automatic matching is also executed on Win10 PC but dynamic
process of UI automatic matching need the smartphone to
step in. In automatic analysis of APIs, we set the proxy in
BurpSuite to collect all the Http requests and responses of
LG Nexus 5 smartphone and the data is stored on the PC.
Our location inference attacks run on Genymotion Android
Emulator installed on Win10 PC and we start three Android
emulators at the same time to maintain all the tool-users
online.

B. The overall result

The keywords search process running in a thread pool with
five threads spent 4 minutes to filter 365 location-related social
APPs from 737 in total with 372 not location-related. 109 of
them were successfully installed and tested in the dynamic
process of UI automatic matching. In these 109 APPs, 29
(24.7%) shown in successfully matched in UI matching and
as shown in Figure 8, 27 of them match Feature 1 (category-
I) when 12 (11.0%) of them match Feature 2 & Feature 3
(category-II) because 10 of them match all three features and
belong to category-I & category-II in the meantime.

Fig. 8: UI and API categories for 29 high risk APPs

The Http requests and responses were extracted to XML
format files from Burp suite. We extacted 29 XML files of

those 29 APPs. As shown in Figure 8, our automatic analysis
of APIs successfully detect 21 of them containing which
categories of APIs we defined.

C. Evaluation of detection result

To evaluate the detection result of our system, in those
19 APPs detected fit for AWDL attack, we sampled
10 APPs to perform AWDL attack and 6 (cn.yourole,
com.feeling, nnmcw.example.mozu, com.skout.android,
com.soft.blued, com.roogooapp.im) of their users could
be successfully located. Reasons of failure mainly
includes : 1. the content of requests and responses are
encoded (com.wodi.who), 2. the content is encrypted
(com.android.lesdo, com.immomo.momo.apk), 3. the API-1
of them can’t be replayed to locate tool-users (com.thel).

In the above 6 APPs in AWDL attack, 4
(nnmcw.example.mozu, com.skout.android, com.soft.blued,
com.roogooapp.im) of them are also fit for AWODL attack.
So we perform AWODL to them to assess the detection result
of our system. Our evaluation result shows that potential
victims in all those 4 APPs can be located.

D. Simulations of location inference attacks,

We perform simulations to demonstrate the feasibility of our
location inference attacks, experiments performed in Beijing
and New York on three APPs Feeling, SKouT, and Blued
because of their respect characteristics.

Fig. 9: Instance of AWODL attack in New York with SKOUT

1) Feeling APP in AWDL: In our assessment system,
Feeling APP is detected matching F1 and F2 as well have
API-1 & API-2, which is actually fits for AWDL. In each
response, Feeling server gives back a list of nearby users and
the parameter pageSize (pageSize = 20 in default) in API-
2 is the limitation of the number of nearby people in each
corresponding request.

We performed this simulation attack in Beijing based on
Feeling’s users’ distribution.

As the attack result shows, we can obtain 19 attackable
victims and locate 16 of them in trilateration, shown in
Figure 10 (a).

For further discovery, we even found that the interface
parameters can be modified. PageSize in API-2 can be reset
to expand AWDL attack coverage. As shown in Figure 10,
we gradually expanded the parameter pageSize from 20 to
1000, the discovery of parameter’s change attack breaks the
limitation to some extent. From Figure 10 (a) to Figure 10
(c), there is evident increasing of victims in the chosen area
of Beijing. But when we continued to expand the parameter
pageSize of the request, there is no obvious increase in the
chosen area, which means the result in Figure 10 (c) are
revealing all the users in the chosen area to some degree.
Through continuous relocating three tool-users and repeating
the above experiment, we are capable of locating all the users
in any area of one APP which fits AWDL.

2) SKOUT APP in AWODL: In our assessment system,
SKOUT is detected matching F1, F2, F3 and have API-1
& API-2, means it fits both AWDL and AWODL. It offers
an interested-people list which takes relative distance into
consideration.

By modifying the pagesize to request more interested-
people like the technique we utilized in AWDL, we broke the
limitation and obtain a list of the interested-people information
(especially, the IDs). Then we automatically extract the users’
ID as the potential victims of AWODL. We continuously
change the locations of those three tool-users (in or around
New York) until the potential victim is located. The results
show that SKOUT does have users in New York, and because
SKOUT interested-people list takes relative distance as an
aspect of ”interesting”, most of ID located in the east of
America. we can return latitudes and longitudes for each of
them and visualized them using geojson.io (in Figure 9).

3) Blued APP in AWDL and AWODL: Blued, which is
popular all over the world, is exactly a nearby-people APP and
also provides the function to search any users. The parameter
limit in API-2 is the limitation (default=60) of nearby people
number in one request. Besides the same finding in those
attacks performed in Feeling and SKOUT, we have some extra
discoveries. For AWDL, Blued limits the number of nearby
friends each response provided. Their initialized limitation
is 60. By manually continuous resetting, we found that the
biggest limitation can be accepted by Blued is 72. So Blued
suits AWDL not very well. Nonetheless, the Blued unique IDs
to identify users are continuous of uninterrupted integers (if
exist 2027, then exists 2026, 2025......). Based on this point
we can traverse all the ID in Blued database and locate them
to GPS coordinates. In simulation experiment, we located 100
ID on a global scale of AWODL and the results are shown in
Figure 11.

4) High risk APPs: Besides AWDL and AWODL attacks,
by the analyse of APIs, we even find some social APPs take
no steps on user location privacy protection and directly return
the geo-coordinates (in the form lat = “23. ∗ ∗ ∗ ∗45”, lon =
“123. ∗ ∗ ∗ ∗45”), including com.redwolfama.peonylespark,

Package name Downloads(From GooglePlay or
Wandoujia)

UI type API type

com.skout.android 50000000 category-I category-II API-1 API-2 API-3
com.feeling 23000 category-I API-1 API-2
com.soft.blued 21958000 category-I category-II API-1 API-2 API-3
com.lchr.diaoyu 22772000 category-I API-1 API-2
com.roogooapp.im 592000 category-I category-II API-1 API-2 API-3
com.redwolfama.peonylespark 333000 category-I category-II API-1 API-2 API-3
com.wodi.who 2015000 category-I API-1 API-2
com.thel 725000 category-I category-II API-1 API-2 API-3
com.hzsj.dsjy 12461000 category-II API-1 API-2 API-3
com.ya.sq.yuanfen 1425000 category-I API-1 API-2
com.yeyuetongcheng.main 1123000 category-I API-1 API-2
com.yuedan 5738000 category-I API-1 API-2
io.maper.android 50000 category-I API-1 API-2

TABLE I: The detection classification of partial APPs

Fig. 10: Instance of AWDL attack in Beijing with Feeling

nnmcw.example.mozu, com.esky.echat.apk, io.maper.android,
com.hoolai.moca.apk. Those 5 APPs are high risk social APPs
since they directly expose the exact latitudes and longitudes
of victims. But the total user volume of them is between
8,113,494 and 8,163,494 (according to Google Play and Wan-
doujia), security threats caused by them should be concerned.

Fig. 11: Simulation of a global scale attack of Blued

E. Tracking real-world users

Furthermore, we recruited 10 users for conducting a real-
world attack to better evaluate our system. All the participants
engaged in some sort of computer-oriented professions, such
as programmer or cyber security engineer, and has been using

the above three APPs for a period. These users were asked to
wear a smart watch for recording their position precisely and
backstage operate the procedure of three APPs. During this
attack, participants provided us their user ID on these APPs,
and we acquired their locations through searching ID or nearby
people continuously by using our system. At the end, we draw
our attained position connections and compared the similarity
between the attack result with users’ motion tracks recorded
by smart watch. This study lasted for about half a day.

Figure 12 (a) presents an instance of the comparison results
of tracking points by using Blued APP and the user’s motion
tracks in a period. The result obviously reveals that a quite
amount of tracking positions located in the curve of the user’s
motion tracks, i.e., most blue points located nearby the pink
curve.

For better comparison, we define the average coverage
distance as Pcov/Pall ∗ 100%, where Pcov is the number of
attacked positions that located nearby the motion curves (i.e.,
100% for 0 meter and 0% for 100 meter), and Pall is the
number of all tracked positions. Figure 12 (b) illustrates the
boxplot of 10 users’ average coverage percentage of three
APPs, while it’s worth to note that a number of attacked
positions can be well-formed fit with motion tracks similarly.

Hence, this real-world attack indicates that we can success-
fully track users’ location information on the vulnerable APPs
by using our attack models. It’s also worth to note that, during
this study, most users walked very slow and did not pick some
intense exercise such as running or taking taxi which may

largely influence the accuracy.

Fig. 12: (a) shows an instance of real-world location com-
parison between our attack results (blue points) with user’s
motion tracks (pink curve) by using Blued APP. (b) indicates
the boxplot of 10 users’ average coverage distance of SKOUT,
Feeling, and Blued.

F. Summary

Finally, we describe the highlight of our approach that
revealed by this experiment in summary.

AWDL: everywhere. The AWDL attack model can attack
and track locations by computing relative distances for nearby
users. This model can reveal user privacy everywhere around
the world. That is, we can attack any position and get the
nearby user’s information.

AWODL: everyone. The AWDL attack model can at-
tack and track locations by computing relative distances for
searched users. This model can attack everyone that we are
interested in through select their nicknames or user IDs.

Both of the attack models can perform well with high risk
APPs automated selected.

V. RELATED WORK

In this section, we discuss the previous works about the
location privacy protection of LBS services.

Location privacy protection on location-based services is a
long-standing topic which is crucial to other security problems
and has received a lot of attentions in the past years for the
rapid rise and widespread concern of LBS applications [16]–
[18].

During the past years, there are many investigations that
aimed to emphasizing the importance and proposing the
techniques for protecting privacy in LBS services [19]–[22].
While one of the most well-known and wide-applied strategy
is to employ k-anonymity metric of privacy protection [23].
A typical k-anonymity based privacy protection mechanism is
proposed by Gruteser et al. [24] by obscuring user’s location
to other k-1 dummy locations. A mondrian multidimensional
approach is proposed by LeFevre et al. [25]. Hereafter, Gedik
et al. [26] presented a technique whose protection model
permitted users to modulate the level of anonymity. Recently,

a dummy location selection algorithm is introduced to im-
prove the privacy level in terms of entropy. In addition, l-
diversity [27] and t-closeness [28] are proposed because k-
anonymity always cannot provide protection against proba-
bilistic attack.

There are also some approaches proposed to protect the
user’s position privacy when they are enjoying the LBS
service, such as obfuscation-based techniques [29], [30], mix
zones related approaches [31], [32], and some other methods
through adding dummy requests issued by fake location and
indistinguishable from real requests [33]. There also are some
other works tried to achieve the trade-off between the location
privacy and utility of LBS networks [34]–[37].

However, all these protection approaches are trying to
obscure the user’s location or the identity of the user ID
and aiming to increase the attack difficulty of the location
attacker. But in location-based social applications, the users’
demand is to share the nick name and exact location to do
position check-in, search for a charming nearby person, or
attain other location-based services. So the serious dependence
of the functions in social applications on user location and
the uncertainty of user willingness to share the position make
the location privacy protection more and more difficult and
important. Hence, we propose a series of assessment schemes,
which are aimed to improve the awareness of location protec-
tion by users and developers and also put forward suggestions
for developers and service providers.

VI. DISCUSSION

A. Are the attackers too strong or the developers too weak?

The rise of social needs contributes to the booming of
dating applications, which are the majority of location-based
APPs. Those state-of-the-art company like facebook have
comparatively rich experience and economic ability to design
APPs with good defense against different kinds of attacks. A
large number of following developers are busied in imitating
successful APPs, producing APPs with similar services and
putting them in the APP stores without considering the security
of users’ data or privacy. Through our assessment system, any
user could be an attacker using a proxy server (Burp suite,
Fiddler, Charles...) and a little bit mathematics without rich
knowledge about cryptography. Currently, the cost of privacy
is more and more concerned, developers should pay more
attention to users’ data protection.

B. Defendense Strategies.

From the results and evaluation of the experiment, great
potential safety hazard about location privacy leak exists in
large-scale social applications. Compared to APPs that pre-
formed well in our assessment,we put forward the following
suggestions for developers and service providers:

1) Https instead of Http: There is no encryption in Http, but
it can be used in combination with SSL (Secure Socket Layer)
to encrypt communications. After using SSL to establish a
secure communication line, Http communication can be made

on this line. The Http used in combination with SSL is called
Https (Http Secure, Hypertext Transfer Security Protocol).

2) Reduce the period of the validity of the token: The
validity of the original token request is vital to maintain access
for attackers. One of the reason we conducted our experiment
on SKOUT is that the SKOUT token is valid for over 12 hours.

3) Add hash value to messages: Adding the hash values
to the end of corresponding messages is efficient to defend
replay attack. The modification of readable messages would
not pass authentication if attackers do not use the selected hash
function to compute.

C. Limitations and Future Work.

First, the degree of automation of our assessment is still
priamry. We manually registered all the apps that are location-
based, which is really time-consuming. In the future work,
we consider to use the single-sign-on (e.g., with Facebook
Login [38]) to liberate labor, enhance accuracy and improve
efficiency.

Second, our assessment only focuses on those social ap-
plications that offer relative distances, so our corresponding
attack models are limited to two (AWDL and AWODL). In
the future work, we will consider other attack models or
level system to assess more social APPs. And trilateration has
been proved that has drawbacks and wrongly recognizes a
localizable graph as nonlocalizable in previous work [39]. But
it still is an effective approach to locate victims appropriately
when relative distance is used as a protective technique [40]
and multiple recent researches continuously focused on GPS
localization based on trilateration [41]–[43] .

Finally, location privacy leakage is a general problem in
LBS APPs and not just limits to social APPs on Android. Cur-
rently, we only developed the automatic testing on Android,
in the future, our scheme can be used to detect other APPs
on other operating systems. Whatever, we believe our research
result will alert other location-based services providers to pay
more attention to protecting the users’ location privacy.

VII. CONCLUSION

Users are more willing to authorize mobile APPs with
their location data for more services nowadays. However, the
incomplete user information preserving configurations of some
APPs can largely raise a lot of privacy issues. Hence, we
conducted an assessment on the location privacy threats of
social APPs in this paper.

Dedicated to automatically evaluate the safety of different
APPs, we propose a general privacy strategy detection frame-
work. Our framework utilizes a series of testing techniques,
especially UI matching and API analysis, to determine whether
a social APP is vulnerable to reveal information in location
tracking attacks. Hereafter, based on the position’s format of
different APPs which is relevant to their security strategies, we
identify two attack models (AWDL and AWODL) and provide
several available trilateration-based approaches to defense the
proposed models.

Furthermore, we illustrated the overall assessment results,
and three typical APPs (SKOUT, Feeling, Blued) were selected
as instances for manifesting the validity. This experiment
shows that our attack technique can successfully infer locations
of interested users. Moreover, for some APPs with even worse
privacy strategies such as Blued, indeed we can entirely
simulate a global scale attack for attaining locations of all
their users.

REFERENCES

[1] Y.-A. D. Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the Crowd: The Privacy Bounds of Human Mobility,”
Scientific Reports, vol. 3, p. 1376, 2013.

[2] J. Pang and Y. Zhang, “DeepCity: A Feature Learning Framework for
Mining Location Check-Ins,” in Proceedings of the 11th International
Conference on Web and Social Media (ICWSM). The AAAI Press,
2017, pp. 652–655.

[3] M. Humbert, T. Studer, M. Grossglauser, and J.-P. Hubaux, “Nowhere to
hide: Navigating around privacy in online social networks,” in European
Symposium on Research in Computer Security. Springer, 2013, pp.
682–699.

[4] J. Pang and Y. Zhang, “Location prediction: communities speak louder
than friends,” in Proceedings of the 2015 ACM on Conference on Online
Social Networks. ACM, 2015, pp. 161–171.

[5] P. Golle and K. Partridge, “On the anonymity of home/work location
pairs,” in Pervasive Computing, H. Tokuda, M. Beigl, A. Friday, A. J. B.
Brush, and Y. Tobe, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 390–397.

[6] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting Place Features in
Link Prediction on Location-based Social Networks,” in Proceedings of
the 17th ACM Conference on Knowledge Discovery and Data Mining
(KDD). ACM, 2011, pp. 1046–1054.

[7] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring
social links from mobility profiles.” in Proceedings of the 24th ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 1943–1957.

[8] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using
social network as a side-channel,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 628–637. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382262

[9] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao,
“Whispers in the dark: analysis of an anonymous social network,” in
Proceedings of the 2014 Conference on Internet Measurement Confer-
ence. ACM, 2014, pp. 137–150.

[10] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis,
“Where’s wally?: Precise user discovery attacks in location proximity
services,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 817–828.

[11] M. Xue, C. Ballard, K. Liu, C. Nemelka, Y. Wu, K. Ross, and H. Qian,
“You can yak but you can’t hide: Localizing anonymous social network
users,” in Proceedings of the 2016 ACM on Internet Measurement
Conference. ACM, 2016, pp. 25–31.

[12] J. Chen, X. Cui, Z. Zhao, J. Liang, and S. Guo, “Toward discovering
and exploiting private server-side web apis,” in Web Services (ICWS),
2016 IEEE International Conference on. IEEE, 2016, pp. 420–427.

[13] P. A. Quiroz, “From finding the perfect love online to satellite dating
and ’loving-the-one-you’re near’: A look at grindr, skout, plenty of fish,
meet moi, zoosk and assisted serendipity,” Humanity & Society, vol. 37,
no. 2, pp. 181–185, 2013.

[14] E. Toch and I. Levi, “What can ’people-nearby’ applications teach us
about meeting new people?” in UbiComp, 2012.

[15] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,”
IEEE Transactions on Robotics, vol. 21, no. 1, pp. 93–101, Feb 2005.

[16] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof
updating system for location-based services,” in INFOCOM, 2011 Pro-
ceedings IEEE. IEEE, 2011, pp. 1889–1897.

[17] K. G. Shin, X. Ju, Z. Chen, and X. Hu, “Privacy protection for users of
location-based services,” IEEE Wireless Communications, vol. 19, no. 1,
2012.

[18] M. Han, M. Yan, J. Li, S. Ji, and Y. Li, “Neighborhood-based uncertainty
generation in social networks,” Journal of Combinatorial Optimization,
vol. 28, no. 3, pp. 561–576, 2014.

[19] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-
anonymization,” in Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on. IEEE, 2005, pp. 217–228.

[20] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Preserving privacy
in gps traces via uncertainty-aware path cloaking,” in Proceedings of
the 14th ACM Conference on Computer and Communications Security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 161–171.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315266

[21] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, “Enhancing privacy through
caching in location-based services,” in Computer Communications (IN-
FOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 1017–1025.

[22] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Protecting location privacy: optimal strategy against
localization attacks,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 617–627.

[23] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[24] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proceedings of the 1st
international conference on Mobile systems, applications and services.
ACM, 2003, pp. 31–42.

[25] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimen-
sional k-anonymity,” in Data Engineering, 2006. ICDE’06. Proceedings
of the 22nd International Conference on. IEEE, 2006, pp. 25–25.

[26] B. Gedik and L. Liu, “Protecting location privacy with personalized k-
anonymity: Architecture and algorithms,” IEEE Transactions on Mobile
Computing, vol. 7, no. 1, pp. 1–18, 2008.

[27] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” in Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International Conference on. IEEE,
2006, pp. 24–24.

[28] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond
k-anonymity and l-diversity,” in Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on. IEEE, 2007, pp. 106–115.

[29] P. Samarati, “Protecting respondents identities in microdata release,”
IEEE transactions on Knowledge and Data Engineering, vol. 13, no. 6,
pp. 1010–1027, 2001.

[30] Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin, “Beyond k-anonymity:
protect your trajectory from semantic attack,” in Sensing, Communica-
tion, and Networking (SECON), 2017 14th Annual IEEE International
Conference on. IEEE, 2017, pp. 1–9.

[31] A. R. Beresford and F. Stajano, “Mix zones: User privacy in location-
aware services,” in Pervasive Computing and Communications Work-
shops, 2004. Proceedings of the Second IEEE Annual Conference on.
IEEE, 2004, pp. 127–131.

[32] J. Freudiger, R. Shokri, and J.-P. Hubaux, On the Optimal
Placement of Mix Zones. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 216–234. [Online]. Available: https://doi.org/10.
1007/978-3-642-03168-7 13

[33] T. Xu and Y. Cai, “Feeling-based location privacy protection for
location-based services,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 348–357. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653704

[34] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. ACM, 2013, pp. 901–914.

[35] Y. Wang, D. Xu, X. He, C. Zhang, F. Li, and B. Xu, “L2p2: Location-
aware location privacy protection for location-based services,” in INFO-
COM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1996–2004.

[36] K. Fawaz and K. G. Shin, “Location privacy protection for smartphone
users,” in Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2014, pp. 239–250.

[37] Q. Xiao, J. Chen, L. Yu, H. Li, H. Zhu, M. Li, and K. Ren, “Poster:
Locmask: A location privacy protection framework in android system,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1526–1528.

[38] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of commer-
cially deployed single-sign-on web services,” in 2012 IEEE Symposium
on Security and Privacy, May 2012, pp. 365–379.

[39] Z. Yang, Y. Liu, and X. Y. Li, “Beyond trilateration: On the localizability
of wireless ad hoc networks,” IEEE/ACM Transactions on Networking,
vol. 18, no. 6, pp. 1806–1814, 2010.

[40] Z. Yang and Y. Liu, “Quality of trilateration: Confidence-based iterative
localization,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 5, pp. 631–640, May 2010.

[41] K.-M. Cheung, G. Lightsey, and C. Lee, “Accuracy/computation perfor-
mance of a new trilateration scheme for gps-style localization.”

[42] A. Rafina Destiarti, P. Kristalina, and A. Sudarsono, “Swot: Secure
wireless object tracking with key renewal mechanism for indoor wireless
sensor network.”

[43] W. Liu, J. Zhang, G. Huang, G. Wang, and Z. Zhang, “The indoor
localization algorithm for combination of signal strength and anti-
disturbance,” in China Satellite Navigation Conference. Springer, 2018,
pp. 341–353.

