
Generated Graph Detection

Yihan Ma 1 Zhikun Zhang 1 2 Ning Yu 3 Xinlei He 1 Michael Backes 1 Yun Shen 4 Yang Zhang 1

Abstract
Graph generative models become increasingly ef-
fective for data distribution approximation and
data augmentation. While they have aroused pub-
lic concerns about their malicious misuses or mis-
information broadcasts, just as what Deepfake
visual and auditory media has been delivering to
society. Hence it is essential to regulate the preva-
lence of generated graphs. To tackle this problem,
we pioneer the formulation of the generated graph
detection problem to distinguish generated graphs
from real ones. We propose the first framework
to systematically investigate a set of sophisticated
models and their performance in four classifica-
tion scenarios. Each scenario switches between
seen and unseen datasets/generators during testing
to get closer to real-world settings and progres-
sively challenge the classifiers. Extensive experi-
ments evidence that all the models are qualified
for generated graph detection, with specific mod-
els having advantages in specific scenarios. Re-
sulting from the validated generality and oblivion
of the classifiers to unseen datasets/generators,
we draw a safe conclusion that our solution can
sustain for a decent while to curb generated graph
misuses.1

1. Introduction
Graph generative models aim to learn the distributions of
real graphs and generate synthetic ones (Xie et al., 2022;
Liu et al., 2021; Wu et al., 2021b). Generated graphs have
found applications in numerous domains, such as social
networks (Qiu et al., 2018), e-commerce (Li et al., 2020),
chemoinformatics (Kearnes et al., 2016), etc. In particular,
with the development of deep learning, graph generative
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models have witnessed significant advancement in the past
5 years (Stoyanovich et al., 2020; Liao et al., 2019; Kipf &
Welling, 2016; You et al., 2018a).

However, a coin has two sides. There is a concern that
synthetic graphs can be misused. For example, molecular
graphs are used to design new drugs (Simonovsky & Ko-
modakis, 2018; You et al., 2018a). The generated graphs
can be misused in this process (e.g., leading to unresolved
protein-ligand binding (Walters & Murcko, 2020; Bian &
Xie, 2021; Zeng et al., 2022)), hence it is essential for the
pharmaceutical factory to vet the authenticity of the molecu-
lar graphs. Also, synthetic graphs make deep graph learning
models more vulnerable to well-designed attacks. Existing
graph-level backdoor attacks (Xi et al., 2021) and mem-
bership inference attacks (Wu et al., 2021a) require the at-
tackers to train their local models using the same or similar
distribution data as those for the target models. Adversar-
ial graph generation enables attackers to generate graphs
that are close to the real graphs. It facilitates the attackers
to build better attack models locally hence keeping those
attacks more stealthy (since the attackers can minimize the
interaction with the target models). This advantage also
applies to the latest graph attacks such as the property infer-
ence attack (Zhang et al., 2022) and GNN model stealing
attack (Shen et al., 2022).

As a result, it is essential to regulate the prevalence of gener-
ated graphs. In this paper, we propose to target the generated
graph detection problem, i.e., to study whether generated
graphs can be differentiated from real graphs with machine
learning classifiers.

To detect generated graphs, we train graph neural network
(GNN)-based classifiers and show their effectiveness in en-
coding and classifying graphs (Zhang et al., 2020; Kipf &
Welling, 2017; Hamilton et al., 2017). Figure 2 (in Ap-
pendix A) illustrates the general pipeline of the generated
graph detection. To evaluate their accuracy and generaliz-
ability, we test graphs from varying datasets and/or varying
generators that are progressively extended toward the unseen
during training. The seen concept in dataset or generator
means that the graphs used in the training and testing stage
are from the same dataset or generated by the same gen-
erator, respectively. That is to say, they share the same or
similar distribution. And the unseen concept represents the
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opposite, which is that compared with the training stage, the
graphs used in the testing stage may come from different
datasets or are generated by different generators.

To sophisticate our solution space, we study three repre-
sentative classification models. The first model is a direct
application of GNN-based end-to-end classifiers (Kipf &
Welling, 2017; Hamilton et al., 2017; Chen et al., 2018;
Xu et al., 2019b). The second model shares the spirit of
contrastive learning for images (Chen et al., 2020; Wu et al.,
2018; Hénaff, 2020) and graphs (Zhu et al., 2021a; You
et al., 2020; Hassani & Ahmadi, 2020; Zhu et al., 2021b),
which, as one of the cutting-edge self-supervised represen-
tation learning models, learns similar representations for the
same data under different augmentations. The third model
is based on deep metric learning (Xing et al., 2002; Schroff
et al., 2015; Song et al., 2016), which learns close/distant
representations for the data from the same/different classes.
Note that in this paper, our goal is not proposing a new
algorithm, but solving a novel real-world problem using
existing methods to identify practical solutions. Thus the 3
proposed models are all based on previous work.

We systematically conduct experiments under different set-
tings for all the classification models to demonstrate the
effectiveness of our framework. Moreover, we conduct the
dataset-oblivious study which mixes various datasets in or-
der to evaluate the influence along the dataset dimension.
The evidenced dataset-oblivious property makes them in-
dependent of a specific dataset and practical in real-world
situations.

2. Preliminaries
Notations. We define an undirected and unweighted
homogeneous graph as G = (V, E ,A), where V =
{v1, v2, ..., vn} represents the set of nodes, E ⊆ {(v, u) |
v, u ∈ V} is the set of edges and A ∈ {0, 1}n×n denotes
G’s adjacency matrix. We denote the embedding of a node
u ∈ V as hu and the embedding of the whole graph G as
hG .

Graph Neural Networks. Graph neural networks (GNNs)
have shown great effectiveness in fusing information from
both the graph topology and node features (Zhang et al.,
2020; Hamilton et al., 2017; Kipf & Welling, 2017). In
recent years, they become the state-of-the-art technique
serving as essential building blocks in graph generators and
graph classification algorithms. A GNN normally takes
the graph structure as the input for message passing, during
which the neighborhood information of each node u is aggre-
gated to get a more comprehensive representation hu. The
detailed information of GNN is described in Appendix A.1.

Graph Generators. Graph generators aim to produce
graph-structured data of observed graphs regardless of the

domains, which is fundamental in graph generative models.
The study of graph generators dated back at least to the
work by Erdös-Rényi (Erdös & Rényi, 1959) in the 1960s.
These traditional graph generators focus on various random
models (Erdös & Rényi, 1959; Albert & Barabási, 2002),
which typically use simple stochastic generation methods
such as a random or preferential attachment mechanism.
However, the traditional models require prior knowledge
to obtain/tune the parameters and tie them specifically to
certain properties (e.g., probability of connecting to other
nodes, etc.), hence their limited capacity of handling the
complex dependencies of properties. Recently, graph gen-
erators using GNN as the foundation has attracted huge
attention (Liao et al., 2019; You et al., 2018b; Grover et al.,
2019; Simonovsky & Komodakis, 2018). The GNN-based
graph generators can be further grouped into two categories:
autoencoder-based generators and autoregressive-based gen-
erators. Autoencoder-based generator (Kipf & Welling,
2016; Grover et al., 2019; Mehta et al., 2019; Simonovsky
& Komodakis, 2018) is a type of neural network which
is used to learn the representations of unlabeled data and
reconstruct the input graphs based on the representations.
Autoregressive-based generator (Liao et al., 2019; You et al.,
2018b) uses sophisticated models to capture the properties
of observed graphs better. By generating graphs sequen-
tially, the models can leverage the complex dependencies be-
tween generated graphs. In this paper, we selectively focus
on eight graph generators that span the space of commonly
used architectures, including ER (Erdös & Rényi, 1959),
BA (Albert & Barabási, 2002), GRAN (Liao et al., 2019),
VGAE (Kipf & Welling, 2016), Graphite (Grover et al.,
2019), GraphRNN (You et al., 2018b), SBMGNN (Mehta
et al., 2019), and GraphVAE (Simonovsky & Komodakis,
2018) (see more detailed information about graph generators
in Appendix A.2).

3. Generated Graph Detection
3.1. Problem Statement

The generated graph detection problem studied in this pa-
per can be formulated as follows. Suppose we have a
set of real graphs RG = {rg1, . . . , rgℓ}, m seen graph
generators φseen = {ϕ1, . . . , ϕm}, k unseen graph gener-
ators φunseen = {ϕm+1, . . . , ϕm+k}, and a collection of
generated graphs by seen and unseen generators GG =
{GG1, . . . ,GGm+k}. Here each GGi is a set of graphs
generated by a graph generator ϕi. To be specific, let D =
{(x1, y1), (x2, y2), . . . , (xz, yz)}, where xi ∈ RG

⋃
GG,

yi represents the label of each graph (i.e., real or generated)
and z =

∑m+k
i=1 |GGi| is the total number of samples. A

generated graph detector f(·) is later trained on D. Once
trained, it classifies each testing graph as real or generated.
However, it is normal to see the arrival of graphs from un-

2



Generated Graph Detection

known generators that have never been seen in training, and
the graphs may not bear similar properties as the training
data in the real world. The existing solutions usually lever-
age model retraining to cope with the problem. Yet, it is
impractical to retrain a model from scratch every time a new
graph generator is added or unseen data is encountered. Ide-
ally, f(·) should be built in a way that it can be generalized
to previously unseen data/generator in the real world.

3.2. A General Framework for Generated Graph
Detection and Analysis

In this paper, we propose a general framework to detect
generated graphs. Specifically, this framework consists of
four scenarios depending on whether the dataset or graph
generator has been used to train the model. These scenar-
ios comprehensively cover from the simplest close-world
scenario to the most challenging full open-world detection
scenario. We discuss how we choose different ML models
to implement this framework in Section 3.3.

Closed World. In this scenario, the training and testing
graphs are sampled from seen dataset and generated by seen
generators. The goal is to predict whether a graph is real
or generated by seen generators. Under this setting, to train
the generated graph detector f(·), we sample real graphs
from RG as positive samples and sample graphs generated
by seen generators φseen as negative samples. The graphs
used to test f(·) share the same distribution with the training
set, i.e., they consist of real graphs sampled from RG and
generated graphs generated by seen generators φseen.

Open Generator. In this scenario, the negative samples of
the testing graphs are generated by unseen generators but
are in the same or similar distribution of training data (i.e.,
seen dataset). The training data of f(·) does not contain any
graphs generated by unseen generators φunseen. Since only
the graph generators used in the testing dataset are not seen
at the time of training, we thus name it the “Open Generator”
scenario. Under this setting, the detector f(·) is trained with
the graphs sampled from RG (positive samples) and graphs
generated by seen generators φseen (negative samples). The
positive samples used to test f(·) are also from RG while
the negative samples are generated by unseen generators
φunseen. The goal is to predict whether a graph is real or
generated by unseen generators.

Open Set. In this scenario, the testing graphs are from seen
generators that are trained on unseen datasets. Concretely,
the graph generators that the system sees in training are
what it will see in testing (i.e., seen generators). However,
the testing graphs are of different distributions of training
data (i.e., unseen datasets). For instance, f(·) was trained
using both real and generated graphs from chemical graphs,
yet, the testing graphs (either real or generated) are social
network graphs that are inherently different. As such, we

name this scenario the “Open Set” scenario. Similar to the
“Open Generator” scenario, the detector f(·) is trained with
the graphs sampled from RG (as positive samples) and
the graphs generated by seen generators φseen (as negative
samples). Unlike the previous experiments, the graphs used
to test f(·) are from different datasets. The testing graphs of
f(·) consist of real graphs sampled from other datasets and
graphs generated by seen generators φseen based on other
datasets. The goal is to predict whether a graph from the
unseen dataset is real or generated.

Open World. In this scenario, the testing graphs are from
unseen generators that are trained on unseen datasets. This
setting is the most challenging yet common in the real world.
It is normal to see the arrival of graphs from unknown gen-
erators that have never been seen at the training time, and
the graphs may not bear with similar properties as of the
training data. To be specific, certain generators that the
classifier sees at the testing time are not included in its train-
ing stage (i.e., unseen generators), and the testing graphs
are of the different distribution of training data (i.e., un-
seen datasets). Similar to “Open Generator” and “Open
Set” scenarios, the generated graph detector f(·) is trained
with the graphs sampled from RG (as positive samples) and
the graphs generated by seen generators φseen (as negative
samples). The testing graphs consist of real graphs sampled
from other datasets and graphs generated by unseen genera-
tors φunseen. The goal is to predict whether a graph from
the unseen dataset is real or generated by unseen generators.

3.3. Detection Methodologies

As discussed in Section 3.2, we need an ML model f(·) to
cope with the four generated graph detection scenarios. In
this section, we introduce three ML models – end-to-end
classifier (Kipf & Welling, 2017; Hamilton et al., 2017;
Chen et al., 2018; Xu et al., 2019b), contrastive learning-
based model (Zhu et al., 2021a; You et al., 2020; Hassani
& Ahmadi, 2020; Zhu et al., 2021b), and metric learning-
based model (Xing et al., 2002; Schroff et al., 2015; Song
et al., 2016) – to implement the aforementioned detection
framework. All the models can work as the f(·) to do
the final detection in all scenarios. For each scenario, f(·)
has the same structure, while trained or tested by different
samples. The pros and cons of each model are evaluated
and discussed in Section 4.

End-To-End Classifier. The most straightforward approach
to distinguishing between real and generated graphs is to
train a binary classifier in an end-to-end manner. As afore-
mentioned, among all the research, graph classification
methods based on graph convolutional networks (GCNs)
are commonly recognized as the state-of-the-art technique
in deep learning-based graph classification (Kipf & Welling,
2017; Hamilton et al., 2017; Chen et al., 2018; Xu et al.,
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2019b). Also, we can also see the results from Appendix A.5
also shows that GCN performs better most of the time com-
pared with other GNN networks. Therefore we choose
the GCN model (Kipf & Welling, 2017) as our end-to-end
classifier. The end-to-end classifier consists of four GCN
layers and a fully connected layer. We use a four-layer GCN
network to embed the graph data into a 128-dimensional
vector, and use a fully connected layer to compute the final
classification result.

Contrastive Learning-Based Model. Previous studies have
shown that contrastive learning helps to improve the graph
encoding performance (Zhu et al., 2021a; You et al., 2020;
Hassani & Ahmadi, 2020; Zhu et al., 2021b). Different from
the traditional binary classifier that trains the GNN model in
an end-to-end manner, the contrastive learning-based model
first learns a powerful graph encoder in a self-supervision
manner, then uses the graph encoder to transform the graphs
into graph embeddings, and employs a binary classifier to
predict the results. Figure 3 (in Appendix A.3) illustrates the
general workflow of our contrastive learning-based model.
We use support vector machines (SVM) as the final clas-
sifier following the previous work (Sun et al., 2020a; You
et al., 2020). The implementation details of the contrastive
learning-based model are introduced in Appendix A.3.

Metric Learning-Based Model. In the past few years, deep
metric learning has consistently achieved state-of-the-art
model performance (Xing et al., 2002; Schroff et al., 2015;
Song et al., 2016). As one of the cutting-edge unsupervised
representation learning models, deep metric learning aims
to map input data into a metric space, where data from
the same class get close while data from different classes
fall apart from each other. However, unlike other tasks
such as classification or face recognition in which only one
training sample is needed to get the output, in metric learn-
ing, at least two training samples are needed at one time,
as the output of metric learning is whether the two input
samples are from the same category (Guo et al., 2017; He
et al., 2018). Based on the core concept of metric learning,
siamese network (Guo et al., 2017; He et al., 2018) is pro-
posed, which takes paired samples as inputs and outputs
whether the paired samples are from the same category. The
implementation details of the metric learning-based model
are introduced in Appendix A.4. Since the metric learning-
based model takes paired samples as input and only predicts
whether the two input samples are from the same label,
to evaluate the performance of the metric learning-based
model in the perspective of getting prediction results of each
graph, we still need to predict the exact label for each testing
sample by querying the model using paired samples consists
of one testing sample needs to be predicted and one sample
with the known label.

In order to get the final classification results, for each testing

Table 1: Dataset statistics.

Dataset # of graphs Avg. Nodes Avg. Edges

AIDS 2,000 15.69 16.20
Alchemy 202,579 10.10 10.44
Deezer 9,629 23.49 65.25
DBLP 19,456 10.48 19.65
GitHub 12,725 113.79 234.64
COLLAB 5,000 74.49 2,457.78
Twitch 127,094 29.67 86.59

sample, we randomly select Nk samples of each label from
the training set and generate Nk ∗ Nclass paired samples.
HereNclass equals 2 (i.e., real and generated). After feeding
the paired samples into the siamese network, we will get
Nk posteriors for each label. Each posterior represents the
probability of the paired samples from the same label. After
calculating the mean value of the Nk posteriors for each
label, we can find the maximum mean value and take the
corresponding label as the predicted result of the testing
sample. For example, if the maximum mean value of the
posteriors is from label real, then we consider using real as
the final classification result.

4. Experiments
We first introduce the datasets and implementation details of
our experiments. Then following the application scenarios
described in Section 3, the experiments are conducted based
on each scenario.

4.1. Experimental Setup

Datasets. We use 7 benchmark datasets from TU-
Dataset (Morris et al., 2020) to evaluate the per-
formance, including AIDS (Riesen & Bunke, 2008),
Alchemy (Chen et al., 2019), Deezer ego nets (abbrevi-
ated as Deezer) (Rozemberczki et al., 2020), DBLP (DBL),
GitHub StarGazer (abbreviated as GitHub) (Rozemberczki
et al., 2020), COLLAB (Yanardag & Vishwanathan, 2015)
and Twitch ego nets (abbreviated as Twitch) (Rozemberczki
et al., 2020). Among them, Deezer, GitHub, and Twitch
are social networks with nodes representing users and edges
indicating friendships. DBLP and COLLAB are collabora-
tion networks with nodes representing papers/researchers
and edges indicating citations/collaborations. AIDS and
Alchemy are molecular graphs with nodes representing
atoms of the compound and edges corresponding to chem-
ical bonds. These graphs form our real datasets for the
rest of the evaluation. The statistics of all the datasets are
summarized in Table 1.

Sampling High-Quality Generated Graphs. Although
the graph generators are capable to generate graphs with
similar distribution as real graphs, some of the generated
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Table 2: The accuracy/F1-score of generated graph detection in “Closed World” scenario and “Open Generator” scenario.

Closed World Open Generator

Dataset FC(MLP) FC(XGBoost) End-To-End Contrastive Metric FC(MLP) FC(XGBoost) End-To-End Contrastive Metric

AIDS 0.75/0.73 0.74/0.74 0.89/0.85 0.87/0.84 0.91/0.90 0.73/0.70 0.72/0.71 0.82/0.81 0.84/0.82 0.87/0.84
Alchemy 0.78/0.78 0.79/0.78 0.87/0.87 0.85/0.80 0.90/0.89 0.74/0.73 0.76/0.76 0.80/0.77 0.82/0.79 0.84/0.82
Deezer 0.78/0.78 0.80/0.80 0.97/0.95 0.95/0.94 0.98/0.97 0.74/0.74 0.77/0.75 0.90/0.88 0.92/0.92 0.91/0.91
DBLP 0.70/0.68 0.72/0.71 0.84/0.83 0.82/0.82 0.82/0.82 0.75/0.74 0.75/0.75 0.79/0.79 0.82/0.82 0.80/0.79
Github 0.81/0.81 0.84/0.82 0.95/0.94 0.92/0.92 0.96/0.96 0.80/0.82 0.81/0.80 0.94/0.94 0.91/0.91 0.96/0.92
COLLAB 0.56/0.55 0.60/0.60 0.85/0.84 0.84/0.82 0.89/0.89 0.50/0.49 0.51/0.50 0.78/0.76 0.80/0.79 0.84/0.82
Twitch 0.56/0.55 0.61/0.60 0.92/0.89 0.90/0.88 0.95/0.93 0.51/0.49 0.53/0.51 0.85/0.85 0.90/0.89 0.86/0.86
Mixed 0.64/0.62 0.65/0.64 0.84/0.83 0.80/0.80 0.82/0.81 0.60/0.59 0.62/0.62 0.78/0.76 0.82/0.80 0.79/0.78

graphs may still contain obvious artifacts in some cases.
There is a concern that the classification may be biased
by such artifacts. Thus we compute the number of nodes,
the number of edges, density, diameter, average clustering,
and transitivity as the statistical features of each graph and
use Euclidean Distance to measure the 1-nearest-neighbor
similarity between each generated graph and real graph
sets (Yu et al., 2019). We select 20% generated graphs with
the highest similarity for the following experiments.

To evaluate the quality of generated graphs, we use maxi-
mum mean discrepancy (MMD) over these graph features
to measure the similarity between real graphs and graphs
generated by different generators. The MMD results show
that the graphs generated by different generators and real
graphs are very similar at the statistical level. The MMD
results are shown in Table 6 in Appendix A.6.

Implementation Details. We use the GCN to embed the
graphs in the end-to-end classifier and metric learning-based
model. The GCN is implemented in PyTorch (PyT). The
optimizer we used is Adam optimizer (Kingma & Ba, 2015).
Each model is trained for 200 epochs. The learning rate is
set to 0.001 and we adopt Cross-Entropy Loss as the loss
function. The ratio of the training set and testing set is 8:2.
The contrastive learning-based model is trained following
the implementation details in GraphCL (You et al., 2020).
As mentioned in Section 3.3, we generate Nps ∗ 2 paired
samples to train the siamese network in the metric learning-
based model and use Nk samples from each label to predict
the final results. Nps∗2 is the number of paired samples used
to train the siamese network. Here we conduct experiments
to fine-tune the metric learning-based model and find the
best Nps = 200, 000 and Nk = 10 which makes the model
perform the best. The corresponding results are displayed
in Appendix A.5 (Figure 5 and Figure 6).

Baseline. To better evaluate the performance of our pro-
posed models, We incorporate a new model named Feature
Classification (FC) as the baseline. FC model leverages the
graph’s statistical features as input and uses state-of-the-art
machine learning models to do the final classification. Here
we use Multilayer perceptron (MLP) and XGBoost (Chen &

Guestrin, 2016) as the classifier since they are both powerful
but effective models. The statistical features we used are the
number of nodes, the number of edges, density, diameter,
average clustering, and transitivity, which are the same as
the features we used to sample high-quality graphs.

4.2. Experiments for the “Closed World” Scenario

In this scenario, we want to explore whether real graphs and
generated graphs can be distinguished when the distribution
of all testing graphs is known. As introduced before, we
propose three methods to classify graphs. The evaluation
metrics we used in this paper are accuracy and F1-score.

Overall Results. The accuracy and F1-score of all the
binary classifiers are summarized in Table 2. In general,
our proposed models outperform the 2 FC models in all
datasets, demonstrating that the GNN-based models can
better capture the characteristics of graphs compared to us-
ing machine learning models with only statistical features.
Also, we observe that among the three methods, the metric
learning-based model performs the best in most cases, while
the contrastive learning-based model performs the least sat-
isfactorily. Moreover, the results show that in general, the
performance of Deezer, Github, and Twitch is better than
other datasets. Compared to other datasets, the graphs in
Twitch, Github, and Deezer are bigger and the three datasets
also have a richer amount of graphs. This implies that the
binary classifiers can distinguish between real graphs and
generated graphs with higher accuracy for larger datasets
with bigger graphs.

Although the contrastive learning-based model and metric
learning-based model have a similar goal, i.e. training an
encoder that can map graphs to a latent space where graphs
with the same label get close while graphs with different
labels fall apart from each other, the metric learning-based
model performs better than the contrastive learning-based
model in this scenario. Thus we can draw the conclusion
that the embeddings produced by metric learning tend to be
distinguished easily in the “Closed World” scenario.

Dataset Oblivious Study. Besides the evaluation from the
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perspective of a single dataset, we also conduct the dataset
oblivious study. In this experiment, we first randomly sam-
ple 1,000 real graphs from each dataset. Then we randomly
select 1,000 generated graphs which are evenly generated by
all the generators based on each dataset. Finally, we obtain
a mixed dataset consisting of 7,000 real graphs and 7,000
generated graphs to train and test the binary classifier. The
ratio of the training set and testing set is 8:2.

Surprisingly, a persuasive performance can be noticed even
when we don’t take the dimension of the dataset into consid-
eration. The performance indicates that the models can still
distinguish real graphs from generated graphs even when the
graphs used to train the model don’t belong to any specific
dataset. This is more meaningful in the real-world scenario
as we may not know which dataset the graphs come from.
In the mixed dataset, the end-to-end classifier performs the
best, which means when the graphs which need to be clas-
sified do not belong to one specific dataset, the end-to-end
classifier can better capture the complex dependencies of
graphs and detect generated graphs with higher accuracy.

4.3. Experiments for the “Open Generator” Scenario

The experiments above have proved that the real graphs and
generated graphs can be distinguished in the close-world
scenario. In order to further evaluate if our models can still
detect generated graphs when given unseen generators, we
choose three different generators - GraphRNN (You et al.,
2018b), SBMGNN (Mehta et al., 2019), and GraphVAE (Si-
monovsky & Komodakis, 2018) - as unseen generators to
test the utility of the proposed models. For all datasets, we
use real graphs as the positive samples and graphs generated
by unseen generators as the negative samples to test the
models.

Overall Results. The final classification results are shown
in Table 2, from which we can see that the binary clas-
sification results of all the datasets are over 0.75, which
indicates that even when the graphs are generated by un-
seen algorithms, the models can still have a relatively good
performance. This indicates that all the models can be gen-
eralized to other graph generators. Also, compared with
the “Closed World” scenario, the contrastive learning-based
model starts to show some advantages when new genera-
tors arrive. We can see a comparable performance with the
metric learning-based model, which exemplifies that the
contrastive learning-based model suits the “Open Generator”
scenario more. Similar to the previous scenario, the accura-
cies and F1-score of all the models in Deezer, Github, and
Twitch are better than other datasets, which indicates that
the models can be generalized to other datasets better for
larger datasets with bigger graphs.

Dataset Oblivious Study. Moreover, we also conduct ex-
periments for the mixed dataset. It can be noticed that the

Table 3: Distinguishing graphs generated by unseen genera-
tors.

Accuracy F1-score

AIDS 0.78 0.78
Alchemy 0.82 0.82
Deezer 0.93 0.93
DBLP 0.75 0.74
GitHub 0.95 0.95
COLLAB 0.83 0.83
Twitch 0.89 0.89
MIXED 0.64 0.64

model performance in the mixed dataset is in line with those
of other datasets. The experimental results suggest that our
models can still generalize to previously unseen generators
even when we don’t take the dimension of the dataset into
consideration.

The accuracy of the contrastive learning-based model for
the mixed dataset is even better for COLLAB and is the best
among all three models. This suggests that the contrastive
learning-based model can better generalize to other gener-
ators in datasets with a wide range of node numbers and
graph densities, i.e. mixed dataset.

Distinguishing Graphs Generated by Unseen Generators.
Apart from classifying real graphs and graphs generated by
unseen generators, we use metric learning to predict whether
two graphs generated by unseen generators are generated by
the same generator. To evaluate the performance of predict-
ing whether any two graphs generated by unseen generators
are generated by the same generator, we randomly generate
50,000 positive graph pairs and 50,000 negative graph pairs
and use metric learning to take the graph pairs as input (the
performance is shown in Table 3). It can be noticed that
the metric learning-based model can predict whether two
graphs generated by unseen generators are generated by the
same generator to some extent. Moreover, we can see that
the performance of Deezer, Github, and TWITCH is better
than other datasets, which is consistent with the results of
the “Open Generator” scenario.

However, when we use the mixed dataset to train and test
the metric learning-based model, the performance is much
worse than in other datasets. It is reasonable since we can
see from Table 2 that the metric learning-based model with
a mixed dataset performs the worst among all the datasets.
The visualization of graphs generated by the unseen genera-
tors shown in Figure 7 also supports our results, the embed-
dings of the mixed dataset can not be separated explicitly
compared to other datasets.
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4.4. Experiments for the “Open Set” Scenario

Apart from distinguishing between real graphs and graphs
generated by unseen algorithms, we also conduct exper-
iments to evaluate whether graphs generated by unseen
datasets can still be distinguished from real graphs. In this
experiment, we use graphs from AIDS, Alchemy, Deezer,
DBLP, and Github as the seen datasets to train all the mod-
els, and use COLLAB and Twitch as unseen datasets to test
the models.

For each seen dataset, we randomly select 1,000 real graphs
and 1,000 generated graphs which are evenly generated by
the seen generators. In the end, we use the final dataset with
5,000 real graphs and 5,000 generated graphs to train all the
models.

In this scenario, we want to evaluate whether the fake graphs
generated by seen generators based on unseen datasets can
be distinguished from the real graphs. Thus to test the
model, for each unseen dataset, we randomly select real
graphs and the same amount of generated graphs that are
evenly generated by the seen generators. The final testing
set contains 2,000 real graphs and 2,000 generated graphs.
The performance of all the models is summarized in Table 4.

We can see from the table that, in general, the real graphs
and generated graphs can be distinguished with an accuracy
higher than 0.78. This implies that our models have the abil-
ity to generalize to unseen datasets. Moreover, the accuracy
of the contrastive learning-based model is higher than 0.85
and the best among the three models, which suggests that
the contrastive learning-based model can generalize to the
unseen datasets better.

After comparing the performance with the “Closed World”
scenario in Section 4.2, we find that the performance drops.
It is reasonable because the graphs used to test the models
come from new datasets which are not seen in the train-
ing set, which makes the task harder than in the previous
experiment.

4.5. Experiments for the “Open World” Scenario

The fourth scenario is to evaluate whether the fake graphs
generated by unseen algorithms in unseen datasets can be
distinguished from the real graphs. To test the model, for
each unseen dataset, we randomly select real graphs and the
same amount of generated graphs that are evenly generated
by the unseen generators. The final testing set contains 2,000
real graphs and 2,000 generated graphs. The performance
of all the models is summarized in Table 4.

The scenario is called the “Open World” scenario as de-
scribed before since the datasets and generators are both
unseen in the training phase. It is the hardest task among
the four scenarios. We can see from Table 4 that the per-

Table 4: Generated graph detection in “Open Set” scenario
and “Open World” scenario.

Open Set Open World

FC(MLP) 0.57/0.54 0.64/0.62
FC(XGBoost) 0.60/0.62 0.65/0.64
End-To-End 0.82/0.82 0.76/0.75
Contrastive 0.85/0.84 0.83/0.83
Metric 0.78/0.76 0.74/0.74

formance, as expected, is lower than those in Section 4.4
and Section 4.5.

Although the performance is not as competent, the accu-
racies of all models are still higher than 0.74. This sug-
gests that the models can still distinguish real graphs and
graphs generated by unseen generators in unseen datasets to
some extent. Apart from that, the contrastive learning-based
model performs the best among all the models, which is in
line with the previous experiments.

Throughout all the experiments, we can draw a conclusion
that the metric learning-based model tends to perform bet-
ter in the “Closed World” scenario while the contrastive
learning-based model shows advantages in “Open Genera-
tor”, “Open Set” and “Open World” scenarios. The results
give us an insight that metric learning can learn better rep-
resentations of graphs with known graph distributions. On
the contrary, as a representative self-supervised method, the
contrastive learning-based model can learn representations
that are more general and can be transferred to different
graph distributions.

4.6. Visualization Analysis

From the previous experiment, we can draw the conclu-
sion that contrastive learning-based models tend to perform
better in “Open Generator”, “Open Set” and “Open World”
scenarios with the mixed dataset, we further explore the rea-
son behind it. To this end, we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) (van der Maaten & Hinton,
2008) to visualize the graphs embedded by different models.
Figure 1 shows the t-SNE results of the testing samples
used in the fourth scenario. It can be easily noticed that
the embeddings produced by the contrastive encoder can
be divided better, which may be the major reason why the
contrastive learning-based model outperforms other models
in the “Open World” Scenario.

5. Related Work
We have already covered several highly-related works (e.g.,
graph generative models and graph neural networks) in Sec-
tion 2. We discuss additional related work in a broader
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Figure 1: The visualization results of different models in “Open World” scenario.

scope below.

Generated Data Detection. Although it remains an un-
explored area in generated graph detection, there has been
some research about generated image detection in the past
few years. Rössler et al. showed that simple classifiers
can detect images created by a single category of net-
works (Rössler et al., 2019). Wang et al. demonstrated
that a simple image classifier trained on one specific CNN
generator (ProGAN (Karras et al., 2018)) is able to general-
ize well to unseen architectures (Wang et al., 2020). Ning et
al. learned the GAN fingerprints towards image attribution
and showed that even a small difference in GAN training
(e.g., the difference in initialization) can leave a distinct
fingerprint that can be detected (Yu et al., 2019). Most of
the previous studies focus on image data; as far as we know,
we are the first to investigate the generated graph detection.

Privacy and Security Issues in GNN. Rising concerns
about the privacy and security of GNNs have led to a surge
of research on graph adversarial attacks. Broadly speaking,
they can be grouped into two categories — causative attacks
and exploratory attacks. Causative attacks on GNNs add
unnoticeable adversarial perturbations to node features and
graph structures to reduce the accuracy of or intentionally
change the outcome of node classification (Bojchevski &
Günnemann, 2019; Caverlee et al., 2020; Ma et al., 2020;
Sun et al., 2020b; Wu et al., 2019; Xu et al., 2019a), link
prediction (Bojchevski & Günnemann, 2019; Lin et al.,
2020), graph classification (Dai et al., 2018; Xi et al., 2021),
etc. To conduct causative attacks, attackers must be able
to tamper with the training process of GNNs or influence
the fine-tuning process of pre-trained GNNs. Exploratory
attacks on GNNs send (carefully crafted) query data to the
target GNNs and observe their decisions on these input
data. Attackers then leverage the responses to build shadow
models to achieve different attack goals, such as link re-
identification (He et al., 2021), property inference (Zhang
et al., 2022), membership inference (Wu et al., 2020), model
stealing (Duddu et al., 2020), etc. To launch exploratory

attacks, attackers must be able to interact with the GNNs
(e.g., via publicly accessible API) at the runtime.

6. Conclusion and Future Work
In this paper, we propose a general framework for generated
graph detection. In this framework, we introduce four appli-
cation scenarios based on different training data and testing
data and design three kinds of models to accomplish ex-
periments in each scenario. The experimental results show
that all models can distinguish real graphs from generated
graphs successfully in all scenarios, which means that al-
though the generative models show great advantage and
success in many domains, the generated graphs can still
be detected by GNN-based models. Also, we notice that
the metric learning-based model tends to perform the best
in the close world scenario while the contrastive learning-
based model always shows advantages in “Open Generator”,
“Open Set” and “Open World” scenarios, which suggests
that the contrastive learning-based model can generalize to
new datasets and generators better. Our experiment about
dataset oblivious study shows that the proposed models can
still work with a persuasive performance when we use the
mixed dataset to train and test the models. This is an interest-
ing finding since the graphs in different datasets vary a lot,
hence the mixed dataset tends to have a wide range of node
numbers and densities. The results imply that the proposed
models can handle datasets with many disparate graphs. The
finding also fits more to the real-world situation, where the
graphs that need to be detected may not be from a specific
dataset. Moreover, although we only discuss the detection of
generated graphs in this paper, the framework can also be ex-
tended to other research areas, such as images, text, or audio.
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A. Appendix
A.1. The Detailed Information of Graph Neural

Networks

Graph Neural Networks (GNNs) have shown great effec-
tiveness in fusing information from both the graph topology
and node features (Zhang et al., 2020; Hamilton et al., 2017;
Kipf & Welling, 2017). In recent years, they become the
start-of-the-art technique as essential building blocks in
graph generators and graph classification algorithms.

General Definition. Most of the GNNs learn the node rep-
resentations for graph-structured data by a neighborhood
aggregation strategy, where a model iteratively updates the
representation of a node through message passing and ag-
gregating representations of its neighbors. After k iterations
of aggregation, we can get the node’s representation hv
which stores the structural information within its k-hop
neighborhood. Typically, the GNN contains multiple graph
convolutional layers. The definition of each layer is as fol-
lows:

hk
v = ϕ

(
hk−1
v , ψ

(
hk−1
v ,hk−1

u

))
,∀u ∈ N (v), (1)

where N (v) is a set of nodes adjacent to node v. hk−1
v

is the node embedding of node u after k iterations,
ψ
(
hk−1
v ,hk−1

u

)
represents the message received from the

neighbours, and ϕ(·) is an aggregation operation.

Aggregator.. Recently, researchers have proposed different
kinds of practical implementations of aggregation opera-
tions (Kipf & Welling, 2017; Hamilton et al., 2017; Chen
et al., 2018; Xu et al., 2019b), among which the Graph
Convolutional Networks (GCN) is the most representative
method which uses the symmetric normalization method to
aggregate all the information from the neighbors and shows
great success (Kipf & Welling, 2017). The aggregation
process of GCN can be defined as follows:

hk
v = ϕ

(
hk−1
u , u ∈ N (v) ∪ v

)
=

∑
u∈N (v)∪v

h
(k−1)
j /

√
dudv

(2)
where du and dv are the node degrees of node u and v,
respectively. Here ϕ(·) is a mean aggregation operator.

Graph Pooling. After obtaining the embeddings of all
nodes, we use a graph pooling operation to integrate the
embeddings of all nodes in the graph to get the embedding
of the whole graph. In our graph classification model, we
use a straightforward but efficient approach called mean
pooling that averages all the node embeddings to obtain the
graph embedding, i.e., hG = 1

|V|
∑

u∈V hu.

A.2. The Detailed Information of Graph Generators

Traditional Graph Generator. Erdös-Rényi (ER)
model (Erdös & Rényi, 1959) and Barabási-Albert (BA)
model (Albert & Barabási, 2002) are two commonly used
traditional graph generators. Given a few parameters, these
generators can be explicitly expressed by formulas. ER
model generates random graphs with a fixed number of
nodes and edges. BA model is often used to generate scale-
free graphs using a preferential attachment mechanism. That
is, a new node will be added each time, and the edges will
be randomly added to connect the new node and the existing
nodes.

Autoencoder-based Generator. The autoencoder-based
generator is a type of neural network which is used to learn
the representations of unlabeled data and reconstruct the
input graphs based on the representations. We consider
VGAE (Kipf & Welling, 2016), Graphite (Grover et al.,
2019), SBMGNN (Mehta et al., 2019), and GraphVAE (Si-
monovsky & Komodakis, 2018) in this paper. VGAE uses
a graph convolutional network (GCN) as the encoder and
the inner product as the decoder. The model can obtain the
node features and capture the overall distribution of input
graphs. Based on VGAE, Grover et al. proposed Graphite,
a latent variable generative model which also utilizes GCN
as the encoder. Unlike VGAE, Graphite adds a multi-layer
iterative neural network before the inner product to con-
struct the decoder. SBMGNN produces graphs by modeling
sparse latent variables, which makes it competitive in pre-
serving the community structure. It uses a sparse variational
autoencoder (VAE) (Kingma & Welling, 2014) to model
graphs. The decoder consists of a fast recognition model
which models the probability of an edge exists between two
nodes by a nonlinear function. GraphVAE is also an autoen-
coder based-model. It uses a feed-forward network with
edge-conditioned graph convolutions (ECC) (Simonovsky
& Komodakis, 2017) to encode the graphs into continuous
representations. The main idea of the decoder is to output
the probabilistic fully-connected graph and at last use a stan-
dard graph matching algorithm to align it to the original
graph.

Autoregressive-based Generator. To capture the complex
dependencies of all nodes and edges, autoregressive-based
generators are proposed. An autoregressive-based gener-
ator adds nodes and edges sequentially. In this paper, we
include GRAN (Liao et al., 2019) and GraphRNN (You
et al., 2018b) as the Autoregressive-based model. GRAN
generates a block of nodes and associated edges at each step.
It uses GNN with attention to utilizing the topology of the
generated part of the graph, which makes the GRAN model
the dependencies between the already generated part and the
newly generated part more effectively. GraphRNN uses two
recurrent neural networks (RNN), which are called graph-
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Real graphs
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f(·)
Real

GeneratedSampling

Figure 2: The pipeline of generated graph detection. The real graphs are from real-world datasets, and the generated
graphs are generated by different graph generators based on real graphs. The GNN-based classifier is built to classify real
graphs and generated graphs.

level RNN and edge-level RNN. The graph-level RNN is
used to maintain the state of a generated graph and generate
new nodes. The edge-level RNN is used to generate the
edges between new nodes and the already existing graph.

A.3. The Implementation Details of Contrastive
Learning-based Model

Training Contrastive Encoder. As one of the cutting-edge
unsupervised representation learning models, contrastive
learning aims at learning similar representations of the
same data under different augmentations. It is widely used
in visual representation learning (Chen et al., 2020; Wu
et al., 2018; Hénaff, 2020) and graph embedding (Zhu et al.,
2021a; You et al., 2020; Hassani & Ahmadi, 2020; Zhu
et al., 2021b). In this paper, we use GraphCL (You et al.,
2020) as the graph contrastive encoder.2

In the graph contrastive encoder, we first use the graph aug-
mentation method to get two correlated augmented views
Ĝi and Ĝj as a positive pair. We use node dropping as the
first augmentation, and randomly select one augmentation
from the augmentation pool as the second one. The augmen-
tation pool consists of node dropping, edge perturbation,
and subgraph. Then the Ĝi and Ĝj will be embedded by a
GNN-based encoder fθ. After that, a projection head g(·)
is used to map the embeddings to a different latent space to
calculate the contrastive loss. The projection head g(·) used
in contrastive learning is a multi-layer perceptron (MLP).
Then the contrastive loss function is used to maximize the
agreement between the positive pairs. Here the loss func-
tion is the normalized temperature-scaled cross-entropy loss
(NT-Xent) (Sohn, 2016; Wu et al., 2018).

When training the contrastive encoder, a mini-batch of N
graphs will be randomly sampled and processed, which

2The source code of GraphCL is in https://github.
com/Shen-Lab/GraphCL.

means that 2 ∗N augmented graphs and the corresponding
loss need to be optimized each time. We denote the aug-
mented nth graph in the mini-batch as zn,i, zn,j and use
them as the positive pairs. The negative pairs are generated
by zn,i, zn,j and other augmented graphs within the same
mini-batch except for zn,i, zn,j . Finally, the NT-Xent for
the nth graph is defined as follows:

sim (zn,i, zn,j) =
z⊤
n,izn,j

∥zn,i∥ ∥zn,j∥
(3)

Loss = − log
exp (sim (zn,i, zn,j) /τ)∑N

n′=1,n′ ̸=n exp (sim (zn,i, zn′,j) /τ)
(4)

where sim (zn,i, zn,j) means the cosine similarity of zn,i,
zn,j . τ denotes the temperature parameter. After generating
the loss for each graph in the mini-batch, the overall loss is
computed across all the positive pairs in the mini-batch.

A.4. The Implementation Details of Metric
Learning-based Model

Training Siamese Network. Figure 4 shows the workflow
of the siamese network. Two graphs Gi and Gj are fed into
the encoder fθ one by one to get the embeddings hi and hj .
In the siamese network, the paired samples are fed into the
same encoder and the weights of them are shared. Then the
L1 distance d between the two embeddings is calculated by
the following equation.

d = abs(||hi − hj | |) (5)

d is used to feed into the loss function and tune the network
to get a better embedding. The loss function we used in
this paper is called binary cross-entropy loss, which is com-
monly used in classification tasks. The equation of binary
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Figure 3: The workflow of the contrastive learning-based model. The model trains a contrastive encoder to embed
the graphs and uses a machine learning-based classifier to do the final classification. The contrastive encoder is based on
GraphCL (You et al., 2020), which uses the graph augmentation method to get two correlated augmented views as a positive
pair and embed them with a GNN-based encoder f (·) and projection head g (·). Then the contrastive loss function is used
to maximize the agreement between the positive pairs. After embedding all the graphs, we use support vector machines
(SVM) to do the final prediction.

Graph Gi

Graph Gj

L1_distance (hi,hj)
sigmoid

Shared 
Weights

hj

hi

Encoder fθ

Encoder fθ

Same class

Different classes

Figure 4: The workflow of the metric learning-based model. In this model, two graphs Gi and Gj are fed into the encoder
fθ one by one to get the embeddings hi and hj . The L1 distance between hi and hj are calculated and used to do the final
prediction.

cross-equation loss is as follows:

Loss = −(y log(p) + (1 − y) log(1 − p)) (6)

d is used to feed into the loss function and tune the net-
work to get a better embedding. The loss function we used
in this paper is called binary cross-entropy loss, which is
commonly used in classification tasks.

To train the siamese network, we sample a training set that
consists of Numps paired samples with the same label
and Numps paired samples with different labels for each
dataset.

A.5. Ablation Study

Different GNN Networks. Our end-to-end model uses
GCN as the backbone. We replace it with GIN (Xu et al.,
2019b) and GAT (Velickovic et al., 2018), and compare the
performance of different backbones. We can see from Ta-
ble 5 that in most of the time, GCN performs better than the
others, thus we choose GCN as the final backbone of the
end-to-end model in our experiment.

Metric Learning-based Model.. To achieve the best clas-
sification results of the metric learning-based model, we
evaluate the impact of different Nps and Nk on model per-
formance. Here Nps represents the number of paired sam-
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Table 5: The accuracy of different backbones in end-to-end
model.

Dataset GAT GIN GCN

AIDS 0.89 0.88 0.89
Alchemy 0.88 0.86 0.87
Deezer 0.96 0.96 0.97
DBLP 0.86 0.82 0.84
Github 0.93 0.94 0.95
COLLAB 0.84 0.82 0.85
Twitch 0.91 0.91 0.92
Mixed 0.82 0.83 0.84

ples used to train the siamese network. Nk denotes the
reference samples used to obtain the final prediction results.

We can see from Figure 5 that if we use more paired sam-
ples to train the siamese network, the metric learning-based
model tends to perform better. Due to time and resource
limitations, we finally choose to use 20,000 paired samples
to train the siamese network. Figure 6 shows that in general,
the metric learning-based model shows the best performance
when Nk = 10. Thus we use Nk = 10 in the following
experiments.

A.6. Additional Results

In the appendix, plots are illustrated for additional informa-
tion and experimental results as mentioned throughout the
paper.

MMD Results. Table 6 shows the MMD results of real
graphs and graphs generated by different generators.

The Visualization Results of Graphs Generated by Un-
seen Generators. Figure 7 shows the visualization results
of three unseen generators (GraphRNN, GRAPHVAE, and
SBMGNN) produced by the metric learning-based model.
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Figure 5: Different Nps. The impact of different numbers of paired samples on the metric learning-based model.
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Figure 6: Different Nk. The impact of different numbers of reference samples on the metric learning-based model.

Table 6: The MMD results of real graphs and graphs generated by different generators.

ER BA graphite VGAE GRAN GraghRNN GraghVAE sbmgnn

AIDS 0.0863 0.1070 0.0547 0.0324 0.0534 0.1016 0.0526 0.1884
Alchemy 0.0139 0.1167 0.0205 0.0088 0.0641 0.1493 0.0284 0.2844
Deezer 0.0356 0.1161 0.1869 0.2565 0.1168 0.0755 0.1167 0.1363
DBLP 0.0601 0.3117 0.0759 0.1168 0.4496 0.3835 0.1808 0.0238
Github 0.0249 0.2513 0.0398 0.0452 0.0315 0.1635 0.0314 0.0294
COLLAB 0.0270 0.0362 0.0092 0.0118 0.0024 0.0099 0.0021 0.0175
Twitch 0.0148 0.0336 0.0728 0.0589 0.0182 0.0663 0.0218 0.0681
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Figure 7: The visualization results of graphs generated by unseen generators.
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