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ABSTRACT
Public-Key Cryptography (PKC) is essential to ensure the
authenticity and confidentiality of communication in open
computer networks such as the Internet. While RSA is still
the most widely used public-key cryptosystem today, it can
be expected that Elliptic Curve Cryptography (ECC) will
continue to gain importance and become the de-facto stan-
dard for PKC in the emerging “Internet of Things.” ECC is
particularly attractive for use in resource-restricted devices
(e.g. wireless sensor nodes, RFID tags) due to its high level
of security per bit, which allows for shorter keys compared
to RSA. The performance of elliptic curve cryptosystems is
primarily determined by the efficiency of certain arithmetic
operations (especially multiplication and squaring) in the
underlying finite field. In the present paper, we introduce a
high-speed implementation of arithmetic in Optimal Prime
Fields (OPFs) for the ATmega128, an 8-bit processor used
in a number of sensor nodes including the MICAz mote. An
OPF is defined by a prime of the form p = u · 2k + v, where-
by u and v are small compared to 2k; in our implementation
u is a 16-bit integer and v = 1. A special property of these
primes is their low Hamming weight since only a few bits
near the MSB and LSB are one. We describe an optimized
variant of Montgomery multiplication, based on Gura et al’s
hybrid technique, that takes the low weight of such primes
into account to minimize execution time. Our implementa-
tion for the ATmega128 is able to perform a multiplication
in a 160-bit OPF in 3,542 clock cycles, which represents a
new speed record for 160-bit modular multiplication on an
8-bit processor.

1. INTRODUCTION
A Wireless Sensor Network (WSN) can be broadly defined

as a self-configuring network of autonomous sensing devices
(called motes), which are deployed in an area of interest to
cooperatively monitor a certain phenomenon or condition
(e.g. temperature) [1]. WSNs are envisioned to provide the
missing link between the physical world we live in and the
digital world of computers. In the recent past, WSNs have
attracted considerable attention and found widespread use
in a multitude of applications ranging from environmental
surveillance over medical monitoring to home automation
and object tracking [20]. A typical sensor node, such as the
MICAz mote [3], features an 8-bit processor clocked with a
frequency of between 4 and 12 MHz, a few kB or RAM, a
larger amount of ROM and/or flash memory, an RF module
compliant to the IEEE 802.15.4 (“ZigBee”) standard, two
AA batteries, and one or more sensors. Consequently, the

MICAz mote can be seen as a battery-powered miniature
computer with sensing and wireless networking capabilities
[1, 20]. However, WSNs differ from “conventional” networks
that connect commodity computers (e.g. LANs) in various
aspects; for example, WSNs are highly self-organized and
fault-tolerant, their nodes have limited energy supply and
hence restricted processing power, and the communication
among the nodes is characterized by low transmission rates
and multi-hop routing.

Security and privacy issues pose a great challenge for the
current and future adoption of WSN technology in certain
application domains such as health care, traffic control, and
disaster detection [20]. Unfortunately, WSNs are easier to
attack (and, hence, harder to protect) than a conventional
network (e.g. an Ethernet LAN) since the sensor nodes are
often deployed in unattended environments, which implies
an attacker may be able to directly access individual nodes
[1]. In this case, he can capture one or more nodes, perform
all kinds of physical attacks to extract secret keys, manipu-
late the nodes, and then inject manipulated nodes into the
network with the goal to compromise the correct operation
and/or security of the WSN [15]. Therefore, WSNs require
a sophisticated security architecture that takes these special
threat scenarios (and adversary models) into account. Two
crucial building blocks of virtually all security frameworks
for WSNs described in scientific papers are authentication
and key establishment [19]. In an “ordinary” computer net-
work, the authentication of an entity (or user) as well as the
establishment of a secret key shared between two entities
can be effectively performed using public-key cryptosystems
such as RSA, DSA, Diffie-Hellman, or their elliptic curve
variants [9]. However, most security protocols designed on
basis of computation-intensive public-key cryptography are
not straightforwardly adaptable to WSNs, mainly because
of the poor processing power of sensor nodes. For example
Liu and Ning state in [14] that public-key cryptography is
not feasible for sensor nodes; many similar statements can
be found in other early papers on WSN security.

In 2004, Gura et al [8] published a now-famous paper on
efficient implementation of public-key cryptography on the
ATmega128, an 8-bit micro-controller used in many wireless
sensor nodes, e.g. the MICAz mote [3]. By exploiting the
large number of general-purpose registers of the AVR archi-
tecture, they developed a new technique for speeding up the
multiplication of multiple-precision integers, the nowadays
widely-used hybrid method. Hybrid multiplication reduces
the number of memory accesses (ld instructions), which, in
turn, considerably decreases the overall execution time of a
full modular exponentiation or a full scalar multiplication
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on an elliptic curve. Gura et al reported an execution time
of 3106 clock cycles for a (160 × 160)-bit multiplication on
the ATmega128. They also implemented a full elliptic curve
scalar multiplication over a standardized 160, 192, and 224-
bit prime field, for which they specified an execution time
of 0.81, 1.24, and 2.19 seconds, respectively (measured at a
clock frequency of 8 MHz). Gura et al’s work had a massive
impact on research in WSN security because their results
convincingly prove that Elliptic Curve Cryptography (ECC)
[9] is feasible on resource-constrained sensor nodes. In the
recent past, a large amount of research has been devoted to
further improve the timings reported by Gura et al; notable
work includes that of Uhsadel et al [23] (who managed to
reduce the running time of a (160× 160)-bit multiplication
to 2881 clock cycles), Liu et al [16] (2865 cycles), Scott and
Szczechowiak [21] (2651 cycles with “unrolled” loops), and
Hutter et al [10] (2395 cycles). However, several of these
research activities focused solely on fast multiple-precision
multiplication and ignored all other arithmetic operations
needed in ECC, in particular modular reduction.

In this paper, we introduce a high-speed implementation
of arithmetic operations (addition, subtraction, multiplica-
tion and squaring) in Optimal Prime Fields (OPFs) for the
ATmega128 and similar AVR-based 8-bit processors. OPFs
were first described in [5] as a family of “low-weight” prime
fields that allow for efficient software implementation of all
operations requiring a modular reduction, in particular the
field-multiplication. More formally, an OPF is a finite field
defined by a prime of the form p = u · 2k + v, whereby the
two coefficients u and v are “small” (in relation to 2k) so
that they fit into one (or a few) general-purpose registers
of the target processor. In our implementation for the AT-
mega128, u is an integer with a length of at most 16 bits
(i.e. u can be held in two 8-bit registers), while v is always
1. A concrete example is p = 52542 · 2144 + 1 (i.e. u = 52542
and v = 1), which happens to be a 160-bit prime. Primes
of such form are characterized by low Hamming weight as
the binary representation of p contains only a few non-zero
bits. More precisely, when the prime p is stored in an array
of 8-bit words, only the two most significant words and the
least significant word are non-zero. All the “middle” words
of the array are zero and do not need to be processed in the
modular reduction operation, which allows one to optimize
the field arithmetic. In order to demonstrate the advantages
and capabilities of OPFs in practice, we describe dedicated
algorithms for Montgomery multiplication and squaring on
basis of Gura et al’s hybrid technique. Montgomery reduc-
tion modulo a low-weight prime of the form p = u · 2k + v is
a linear operation and, therefore, considerably faster than
the reduction modulo a general prime. Our implementation
for the ATmega128 is able to perform a multiplication in a
160-bit OPF in merely 3,542 clock cycles, which represents
a new speed record for 160-bit modular multiplication on an
8-bit processor.

2. OPTIMAL PRIME FIELDS (OPFS)
Elliptic curve cryptosystems utilize a group of points on

an elliptic curve to derive variants of “classical” DLP-based
public-key schemes such as DSA or Diffie-Hellman [9]. The
curves used in ECC are defined over a finite field, which is
typically either a prime field or a binary extension field. In
the former case, implementers often choose special primes
(e.g. generalized-Mersenne (GM) primes [18]) to reduce the

cost of the modular reduction operation [12]. However, the
implementation described in this paper is based on a novel
family of prime fields, the so-called optimal prime fields.

Optimal Prime Fields (OPFs) were originally introduced
in [5] as finite fields defined through a prime p of the form
u · 2k + v, where u and v are small coefficients that fit into
a single register of the target processor (or, in more formal
terms, 0 < u, v < 2w with w denoting the processor’s word
size). However, for reasons of efficiency, we fix v to 1 since
this allows for special optimization of the Montgomery re-
duction, as will be explained in Section 4. The ATmega128
is an 8-bit processor, and, consequently, u has to be in the
range of 0 < u < 256 according to the original definition
of OPFs [5]. Unfortunately, the number of OPFs having an
order of 160 bits (which is a typical field-order for ECC in
WSNs [13]) is relatively small when u is restricted to have
a bitlength of (at most) 8 bits so that it fits into a single
general-purpose register. In order to have a larger choice
of 160-bit OPFs, we “soften” the original condition for the
selection of u specified in [5] and allow u to be up to 16 bits
long (i.e. u occupies two registers on a ATmega128 instead
of one). An example for one of the special primes we use
in the present paper is p = 52542 · 2144 + 1, which happens
to be a 160-bit prime that looks as follows when written in
hex notation:

p = 0xCD3E000000000000000000000000000000000001

As mentioned in Section 1, OPFs are characterized by a
low Hamming weight [5]. For example, when p is stored in
an array of 8-bit words, only the two most significant words
and least significant word are non-zero; all other words in
between them are 0. The low weight of these primes allows
for very efficient implementation of the modular reduction
operation since only the three non-zero words of p need to
be processed, as will be shown in detail in the following two
sections. Well-known modular reduction methods, such as
Montgomery [17] and Barrett reduction, can be optimized
for low-weight primes so that the reduction operation has
linear complexity, similar to the generalized-Mersenne (GM)
and pseudo-Mersenne (PM) primes [9, 22]. A special advan-
tage of OPFs over GM prime fields is their flexibility; there
exist a large number of 160-bit OPFs (and also OPFs of a
length of 192, 224, and 256 bits) if we allow u to be up to
16 bits long, whereas the number of GM primes with good
arithmetic properties is rather limited. We refer to [7] for an
in-depth discussion of the advantages of OPFs.

We implemented multiplication and squaring for OPFs
of order 160, 192, 224, and 256 bits using Montgomery’s
modular reduction method in combination with Gura et al’s
hybrid technique. More precisely, we optimized the so-called
Finely Integrated Operand Scanning (FIPS) method [11, 6]
for Montgomery modular multiplication with respect to the
low weight of our OPFs so that only the three non-zero bytes
(i.e. the two MSB and the LSB) of the prime are processed
during the reduction step. An implementation of the FIPS
method for normal primes executes 2s2 + s single-precision
multiplications (i.e. mul instructions) when the operands are
s bytes long1. In the case of processing 160-bit operands on
an 8-bit processor (i.e. s = 20), this amounts to an overall

1Note that the number of single-precision multiplications is
not affected by the hybrid technique. Hybrid multiplication
reduces the total number of memory references, but not the
number of mul instructions.
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number of 820 mul instructions. However, when the FIPS
technique is optimized taking into account that s− 3 bytes
of p are zero and the LSB is 1, only s2 + 2s multiplications
have to be carried out, which results in 440 mul instructions
for 160-bit operands. A conventional multiplication of two
s-byte operands (without reduction) requires s2 mul instruc-
tions; consequently, the “overhead” of modular reduction in
an OPF is 2s mul instructions, i.e. the reduction cost scales
linearly with the operand length.

3. MULTIPLE-PRECISION ARITHMETIC
In this section, we describe a number of basic algorithms

for multiplication, squaring, modular reduction, as well as
modular multiplication for multiple-precision integers. We
first introduce some terminology and notations that will be
used throughout this paper. Multiple-precision integers are
denoted by capital italic letters, e.g. A. An n-bit multiple-
precision integer can be stored in an array of w-bit words
(digits), where w denotes the number of bits per word. It is
common practise to choose w such that it corresponds to
the word length of the target processor, which means w is
either 8 (as in our case), 16, or 32. The letter s represents
the total number of words that an n-bit multiple-precision
integer contains, i.e. s = dn/we. We use indexed lowercase
letters ai to denote the individual words of A. Hence,

A =

s−1∑
i=0

ai · 2iw with 0 ≤ ai ≤ 2w − 1. (1)

The array of w-bit words that represents a multi-precision
integer A is {as−1, as−2, . . . , a1, a0}, whereby a0 refers to the
Least Significant Word (LSW) and accordingly as−1 is the
Most Significant Word (MSW). Normally, we use A, B as
operands, N as modulus and P as final result.

3.1 Multiplication
We sketch three basic techniques for the implementation

of multiple-precision multiplication: the schoolbook method
[9], Comba’s method [2], and the hybrid method [8].

Schoolbook Method
The most straightforward way to obtain the product of two
multiple-precision integers is the schoolbook method, which is
similar to the algorithm for multiplying multi-digit numbers
taught in elementary school. The schoolbook method has a
nested-loop structure with a relatively tight inner loop (see
Algorithm 2.9 in [9]). In each iteration of the inner loop, an
operation of the form ci+j + ai · bj + u is carried out, i.e. a
word ai of operand A is multiplied by a word bj of operand
B, and two other words, namely ci+j and u, are added to
the 2w-bit product ai · bj . Each iteration of the outer loop
multiplies ai by the s words of B, starting with b0 [9]. The
schoolbook method is also called operand-scanning method
since the outer loop moves through the words of one of the
operands [11].

Comba’s Method
Comba’s method, originally introduced in [2], is also known
as product-scanning method because the outer loop moves
through the words of the product. It actually executes two
nested loops (see Algorithm 2.10 in [9]); the first computes
the lower s words of the final product, whereas the second
yields the higher s words. Both nested loops perform the

same inner-loop operation, namely a Multiply-ACcumulate
(MAC) operation of the form S + ai · bj , i.e. two words are
multiplied and the 2w-bit product is added to a cumulative
sum S. This sum will normally exceed 2w bits when the
inner loop is iterated two or more times, which means we
need three w-bit registers to store S [9]. After termination
of the inner loop, the least significant word of S is a word
of the final product and can be written to memory.

The performance of Comba’s method is often better than
that of the schoolbook technique because it executes less
memory store operations. In schoolbook multiplication, all
words of the (intermediate) product, except the LSW and
MSW, are loaded from and written back to memory several
times. On the other hand, Comba’s method writes a word
of the final product to memory only once, namely after its
complete evaluation (i.e. after termination of the inner loop)
[6]. Comba multiplication executes store instructions in the
outer loop, but not in the inner loop. However, a disadvan-
tage of Comba’s method is the bitlength of the cumulative
sum S, which makes an implementation in C or Java quite
difficult since these programming languages do not provide
a triple-precision data type.

Hybrid Method
Hybrid multiplication [8] is not really a new multiplication
technique, but rather an ingenious optimization of Comba’s
method for processors with a large number of registers. The
principal structure of the hybrid method is the same as in
Comba’s method, which means that the algorithm consists
of two nested loops. When performing an ordinary Comba
multiplication, one word of A and one word of B are loaded
from data memory and multiplied together in each iteration
of the inner loop. On the other hand, the hybrid method
loads d ≥ 2 words of each operand and performs d2 multi-
plications per inner-loop iteration, which reduces the total
number of iterations from s2 to ( s

d
)2. This, in turn, reduces

the overall number of load operations by a factor of d since
only 2d loads are carried out in each iteration. The concrete
value of d (i.e. the number of words of A and B that are
processed per iteration) is determined by the number of free
registers on the target processor; on the AVR platform it is
common practice to choose d = 4 [8].

The inner loop of the hybrid method multiplies d words
of operand A by d words of operand B (i.e. it performs a
(d× d)-word multiplication) and adds the resulting 2d-word
product to a running sum held in 2d + 1 registers. When
working on an AVR processor, a w-bit word is nothing else
than a byte, and the inner-loop operation boils down to
multiplying 4 bytes of A by 4 bytes of B. This (4× 4)-byte
multiplication and the addition of the 8-byte product to a
9-byte sum can be carried out in many different ways; the
original hybrid method of Gura et al from [8] employs the
schoolbook method for it (shown on the left of Figure 1). In
2010, Liu et al [16] came up with an alternative approach to
perform the inner-loop operation, which is depicted in the
middle of Figure 1. In their implementation, the 16 byte-
products (i.e. the products a0 · b0 to a3 · b3) are calculated
in a non-conventional order with the goal of reducing the
number of add/adc and mov/movw instructions compared to
the original inner-loop operation of Gura et al.

Our implementation of the inner-loop operation is based
on that of Liu et al, but we perform the computation of the
last four byte-products is a different order, which allows us
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Orig. hybrid method (d = 4)
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Liu’s hybrid method (d = 4)

accumulator registers accumulator registers

r3r4r5r6r7r8 r5r6r7r8

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

r0r1r2r3r4

Our hybrid method (d = 4)

accumulator registers

r5r6r7r8

Figure 1: Inner-loop operation of Gura et al’s original hybrid method (left), Liu et al’s improved version
(middle), and our implementation (right).

to save one movw instruction. As can be observed from the
right of Figure 1, we process the first 12 byte-products in
the same way as described in [16]. The last four byte-prod-
ucts (i.e. a1 · b3, a1 · b2, a2 · b3, a0 · b3) are generated and
added to the accumulator registers (r0 to r8) as follows: we
first multiply a1 by b3 and move the resulting product to
two temporary registers via the movw instruction. Then, we
calculate the product a1 · b2 and add the lower byte to the
content of register r3. The upper byte is added (with carry)
to the temporary register pair holding a1 · b3. Note that this
addition can not produce a “carry out,” i.e. this addition
can not overflow the temporary register pair. The subse-
quent product a0 · b3 is processed in the same way, i.e. the
lower byte is added to r3 and the higher-order byte to the
two temporary registers (again without overflow). After the
final multiplication of a2 by b3, the lower temp register is
added to r4; a possibly resulting carry bit is added with the
upper temp register to the product a2 · b3. The obtained
sum is then added to the accumulator registers r5 to r8. In
summary, the processing of these four byte products takes
four mul, one movw, and 13 add (or adc) instructions. The
complete inner-loop operation for d = 4 amounts to a total
of 46 add (resp. adc), 16 mul, eight ld (i.e. load), and seven
movw instructions.

3.2 Squaring
Theoretically, squaring is almost twice as fast as a normal

multiplication. When performing a schoolbook multiplica-
tion (see Algorithm 2.9 in [9]) with two operands that are
the same (i.e. A = B), then any partial product of the form
ai · bj is identical to aj · bi. In fact, many partial products
would be calculated twice when an ordinary multiplication
algorithm (e.g. the schoolbook method) is used to square
an integer. An optimized squaring algorithm takes this into
account so that each partial product is calculated only once
and then doubled (via a left-shift) if needed. However, the
partial products of the form ai · bj with i = j appear only
once and do not need to be doubled.

Since Comba’s multiplication technique is faster than the
schoolbook method, we only consider Comba squaring. We

compute all partial products ai · aj with i 6= j only once
but add them twice to the cumulative sum S, whereas the
products of the form a2

i (i.e. ai · aj with i = j) are added
normally since they do not appear twice in the computation
of the square. Therefore, we need an if-then statement to
distinguish between these two cases. This conditional state-
ment costs extra cycles, but the larger the operands get the
more instruction are saved by this optimization.

3.3 Montgomery Reduction
Modular multiplication, i.e. an operation of the form P =

A ·B mod N , is relatively slow since modular reduction is a
costly operation that would normally require a division. In
1985, Peter Montgomery introduced an efficient algorithm
for modular reduction that replaces the trial division by a
subtraction of a multiple of N and a right-shift operation
[17]. The so-called Montgomery multiplication consists of a
multiplication of two integers and a Montgomery reduction
of the product. In essence, Montgomery’s algorithm allows
one to efficiently compute the Montgomery product of two
integers, which is defined as follows:

MonPro(A,B) = A ·B ·R−1 mod N (2)

The factor R, called Montgomery radix, is typically chosen
to be a power of two, e.g. R = 2n where n denotes the size
of N in bits, so that the multiplication by R−1 is simply a
shift operation (see [17] for an in-depth description).

Koç et al present in [11] five algorithms for computation
of the Montgomery product in software. These algorithms
are classified by two criteria; the first one is whether multi-
plication and reduction are integrated or separated, and the
second criterium is whether the multiplication is based on
the schoolbook method (i.e. operand scanning) or Comba’s
method (i.e. product scanning). An example for the latter is
the Finely Integrated Product Scanning (FIPS) method (as
shown in Algorithm 1), which is basically Comba’s method
with “finely” integrated Montgomery reduction. The FIPS
method has two nested loops (similar to Comba’s method)
and performs two MAC operations in the inner loop. More
precisely, in each iteration of the inner loop, two products
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(namely aj · bi−j and pj · ni−j in Algorithm 1) are added to
a cumulative sum S. This sum is held in the three registers
t, u and v, i.e. (t, u, v) denotes a 3w-bit word. The words
of A and P are loaded in ascending order (i.e. from less to
more significant positions), while the words of B and N are
loaded in descending order.

Algorithm 1: FIPS Montgomery multiplication

Input: n-bit modulus N , 2n−1 ≤ N < 2n, two operands
A,B < N , pre-computed constant n′0 = −n−1

0 mod 2w

Output: Montgomery product P = A ·B · 2−n mod N
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v)← (t, u, v) + aj · bi−j

5: (t, u, v)← (t, u, v) + pj · ni−j

6: end for
7: (t, u, v)← (t, u, v) + ai · b0
8: pi ← v · n′0 mod 2w

9: (t, u, v)← (t, u, v) + pi · n0

10: v ← u, u← t, t← 0
11: end for
12: for i from s by 1 to 2s− 2 do
13: for j from i− s + 1 by 1 to s− 1 do
14: (t, u, v)← (t, u, v) + aj · bi−j

15: (t, u, v)← (t, u, v) + pj · ni−j

16: end for
17: pi−s ← v
18: v ← u, u← t, t← 0
19: end for
20: ps−1 ← v
21: ps ← u
22: if P ≥ N then P ← P −N end if

4. IMPLEMENTATION FOR ATMEGA128
Since we work on an ATmega128 processor, the word size

w is 8 bits (i.e. one byte) in our case. The ATmega128 has
a memory space of 64 kB and, hence, two bytes are needed
to represent an address. All implementations we describe in
the following process d = 4 bytes “at once,” i.e. four bytes
of operand A and operand B are loaded per iteration of the
inner loop. We divide each byte-array representing a multi-
precision integer into groups of four bytes, starting at the
least significant byte. These groups of bytes are referred to
using indexed uppercase letters, e.g. the i-th group of bytes
of operand A is Ai−1. An s-byte operand can be split into
k = ds/4e groups; the first (i.e. least significant) group is
A0 and consists of the four bytes a3, a2, a1, and a0.

4.1 Modular Addition and Subtraction
In order to calculate the modular sum A + B mod N , we

firstly perform the addition and then do the reduction. It is
not necessary to always completely reduce the result since
we work in a prime field. Our implementation subtracts the
modulus N from the sum until we obtain a result that has
the same bitlength as N , even if it is not fully reduced. Note
that we also accept incompletely-reduced operands, i.e. we
do not insist that A,B < N , but the bitlength of these two
operands must not exceed n, the bitlength of N .

The addition starts with the two least significant groups
(i.e. A0 and B0). In the next step, the sum A1 + B1 + c is

calculated, whereby c denotes the carry bit generated in the
first addition of 4-byte groups. After adding up the last two
groups (i.e. Ak−1 + Bk−1 + c), the addition is complete and
we have a sum that is up to n + 1 bits long. A reduction
(i.e. subtraction of N) is necessary when the bitlength of the
sum exceeds that of N , which is actually the case when the
addition has produced a “carry out.” Note that up to two
subtractions of N may be needed to get an n-bit result since
the operands A and B are not necessarily fully reduced.

The modular subtraction A−B mod N is very similar to
the modular addition, except that for the reduction up to
two additions of N have to be carried out.

4.2 Hybrid Multiplication and Squaring
As explained in Section 3.1, the hybrid method executes

two nested loops; the structure of the loops is similar as in
Algorithm 1, except that only one MAC operation is carried
out in each loop iteration. We perform this MAC operation
according to Section 3.1, i.e. one 4-byte group of A and one
4-byte group of B are multiplied together to yield an 8-byte
product, which is added to a running sum consisting of nine
bytes. However, there are two “special” cases for which we
implemented the MAC operation in a different fashion. One
is the very first iteration of the inner loop, in which A0 is
multiplied by B0. We notice that in the beginning, the value
in the accumulator (consisting of 9 registers) is zero. There-
fore, the MAC operation can be replaced by a conventional
multiplication, i.e. we move the byte products directly into
the accumulator instead of adding them to it, which saves
several add or adc instructions. Our special implementation
of A0 · B0 needs 36 add/adc and ten movw instructions on
an ATmega128. The other special case is the first iteration
of the two inner loops, i.e. the computation A0 · Bi in the
first inner loop and Aj ·Bk−1 in the second inner loop. Note
that when j is 0 or i− s + 1, the four most significant accu
registers are zero due to a previously executed shift of the
accumulator. When adding byte products to the accu, the
propagation of carries can stop at the first register whose
value is 0 instead of register r8. Our implementation of this
special MAC operation executes a total of 40 add/adc and
ten movw instructions.

Hybrid squaring also uses two nested loops to compute a
square P = A ·A. As mentioned in Section 3.2, we need an
if statement to find out whether an 8-byte product of the
form Ai ·Aj must be added once or twice to the cumulative
sum. In fact, the products of the form Ai · Ai (which are
added only once) appear only in those 4-byte groups of the
final result P that have an even index i, e.g. P0, P2, and so
on. Therefore, the condition that the if statement has to
check is simply whether the least significant bit of i is zero
or not. As in hybrid multiplication, the very first iteration
of the inner loop (in which A0 ·A0 is computed) allows for a
special optimization of the MAC operation since the accu
registers are 0. The situation is similar for the last iteration
in which Ak−1 · Ak−1 is added to a cumulative sum whose
four MSBs are zero. We “peeled off” the very first and the
very last iteration from the corresponding loops so that we
can utilize optimized MAC operations as described above
for hybrid multiplication. However, it is not easily possible
to optimize the first iteration of the inner loops of hybrid
squaring. For example, if we compute A0 ·Ai “outside” the
inner loop, then actually two iterations are taken out from
the loop, which means we need extra instructions to decide
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whether there are still multiplications to be performed in
the inner loop. These extra instructions take more cycles
than what could be saved by an optimized MAC operation
for the first iteration.

4.3 Modular Multiplication in OPFs
The standard FIPS method, shown in Algorithm 1, adds

in each iteration of the inner loop aj · bi−j and pj · ni−j to
a cumulative sum (t, u, v). Unfortunately, AVR processors
have only three pointer registers, which is does not suffice
for the four operands A, B, N , and P . Therefore, we have
to use one pointer register to point to two multi-precision
integers and use push and pop to keep one address on the
stack while executing the inner loop. This requires many
instructions that do not contribute to the final result.

Algorithm 2: OPF-FIPS Montgomery multiplication

Input: n-bit modulus N = (ns−1, 0, 0, . . . , 0, 1) represented
by an array of s words, two operands A,B < N

Output: Montgomery product P = A ·B · 2−n mod N
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i do
4: (t, u, v)← (t, u, v) + aj · bi−j

5: end for
6: if i = s−1 then (t, u, v)← (t, u, v) +p0 ·ns−1 end if
7: pi ← −v mod 2w

8: (t, u, v)← (t, u, v) + pi
9: v ← u, u← t, t← 0

10: end for
11: for i from s by 1 to 2s− 2 do
12: for j from i− s + 1 by 1 to s− 1 do
13: (t, u, v)← (t, u, v) + aj · bi−j

14: end for
15: (t, u, v)← (t, u, v) + pi−s+1 · ns−1

16: pi−s ← v
17: v ← u, u← t, t← 0
18: end for
19: ps−1 ← v
20: ps ← u
21: if P ≥ N then P ← P −N end if

Our modulus N is an “optimal prime” as introduced in
Section 2, which means that most of its bytes are just zero
except the two most significant bytes and the least signifi-
cant bit. If ni−j is zero, then the product pj · ni−j is also
zero and (t, u, v) ← (t, u, v) + pj · ni−j does not need to be
executed in the inner loop. Eliminating this operation from
the loop saves roughly 100 cycles. As our implementation
processes four bytes at a time, only N0 and Nk−1 contain
non-zero bytes. N0 can be thought as n0 in standard FIPS
(see Algorithm 1), and Nk−1 correspond to ns−1. We have
to first determine in which loop iterations n0 and ns−1 are
used as operands for a multiplication, and then modify the
algorithm to “peel off” these iterations from the loop. Since
n0 is 1 when using our low-weight primes, we do not need
to multiply pi by n0; instead, we can directly add pi to the
cumulative sum in (t, u, v). On the other hand, ns−1 is used
in both of the nested loops. In the first nested loop, ns−1 is
loaded if and only if i = s − 1 and j = 0, i.e. in the final
iteration of the outer loop. In this last iteration, p0 ·ns−1 is
computed once. In the second nested loop, i − j (which is
the index of N) becomes s − 1 in the first iteration of the

inner loop and the inner loop is executed in each iteration
of the outer loop. Therefore, the operation pi−s+1 · ns−1 is
carried out s− 1 times in the second nested loop.

Our optimized variant of the FIPS technique for OPFs is
shown in Algorithm 2. The only operation performed in the
inner loops is (t, u, v) ← (t, u, v) + aj · bi−j and, hence, no
stack operations (i.e. push, pop) are needed, which makes
our FIPS variant very efficient. Since the modulus N is one
of our special primes, we only pass the most significant two
bytes of N as parameter to the Assembly function that im-
plements the FIPS multiplication; these two bytes can be
kept in two registers of the ATmega128. Therefore, we can
use the three available pointer registers to hold the address
of A, B, and P . Even though Algorithm 2 shows a standard
(i.e. non-hybrid) version of the FIPS method for OPFs, we
actually process four bytes at once, very similar to Section
4.2. As (t, u, v)← (t, u, v) + p0 · ns−1 is only executed once
in the first nested loop, we apply “loop peeling” to perform
this operation between the two nested loops (line 6 of Algo-
rithm 2); this saves k − 1 executions of the if statement in
line 6. Furthermore, we can ignore the least significant two
bytes of Nk−1 when multiplying Pi−k+1 by Nk−1 because
these bytes are 0. A further optimization is possible due to
the fact that N0 (i.e. the least significant 4-byte group of N)
is 1, which implies N ′0 is 232 − 1. As a consequence, we can
replace the operation v · n′0 mod 2w in line 8 of Algorithm 1
by a computation of the two’s complement of v, which, in
our case, requires to compute the two’s complement of the
least significant 4-byte group of the accumulator.

We also optimized the final subtraction (line 21 in Algo-
rithm 2), taking into consideration that our modulus N is a
special prime of the form u · 2k + 1. We first subtract 1 from
P0 if the product P is longer than N (this possible excess
bit, which we call carry bit, is stored in byte ps of P ). If the
subtraction P0 − 1 does not generate a “borrow bit,” then
we directly jump to the most significant four bytes of P and
N and subtract Nk−1 from Pk−1. On the other hand, if a
borrow bit was generated (which can only happen when the
least significant four bytes of P are all zero), we perform
a normal subtraction with borrow. This subtraction begins
with P1 −N1 − 1 and ends with Pk−1 −Nk−1 − b, whereby
b (the borrow bit) either 1 or 0.

4.4 Modular Squaring in OPFs
All partial products of the form ai · aj that appear twice

in the squaring operation are computed only once and then
added twice to the accumulator. In the conventional FIPS
multiplication, the two products aj · bi−j and pj · ni−j are
processed together in the same inner loop. However, when
A = B, the products of the form pi · nj and pj · ni are still
different, which makes FIPS squaring quite complicated to
implement.

Given the “special” form of our modulus N , most of the
products pi · nj are 0 and can be ignored. The inner loops
contribute to the computation of the square A2, but not to
the reduction since the few non-zero products of the form
pj ·ni−j are processed outside the inner loop. The situations
where ns−1 and n0 are used as operands are the same as in
OPF-FIPS multiplication (Section 4.3). We only perform
(t, u, v)← (t, u, v)+p0 ·ns−1 once in the last iteration of the
first outer loop, while (t, u, v) ← (t, u, v) + pi−s+1 · ns−1 is
executed in each iteration of the second outer loop. None-
theless, we still need an if statement to decide whether the
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Instr. type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

160 bits 1092 400 200 40 202 271 2845

192 bits 1586 576 288 48 285 354 4049

224 bits 2172 784 392 56 382 443 5461

256 bits 2850 1024 512 64 493 538 7081

Table 1: Instruction counts of hybrid multiplication

Instr. type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

160 bits 1272 440 220 40 232 460 3364

192 bits 1802 624 312 48 321 579 4670

224 bits 2424 840 420 56 424 704 6184

256 bits 3138 1088 544 64 493 883 7906

Table 3: Instruction counts of hybrid Montgomery
multiplication in OPFs (without final subtraction)

Op. length Library Min. Max. Avg.

TinyECC (d = 5) 3243 3890 3568
160 bits WM-ECC 3356 3631 3534

Our work 3006 3006 3006

TinyECC (d = 4) 4649 5561 5051
192 bits

Our work 4210 4210 4210

TinyECC (d = 4) 6229 7481 6766
224 bits

Our work 5622 5622 5622

TinyECC (d = 4) 8043 9690 8715
256 bits

Our work 7242 7242 7242

Table 5: Execution time (in clock cycles) of multi-
plication for different operand lengths

Op. length Library Min. Max. Avg.

TinyECC (d = 4) 14625 15113 14929
160 bits WM-ECC 3797 4071 3985

Our work 3521 3588 3542

TinyECC (d = 4) 19408 20758 20060
192 bits

Our work 4827 4894 4851

TinyECC (d = 4) 24872 26145 25765
224 bits

Our work 6520 6588 6545

TinyECC (d = 4) 31054 32860 32258
256 bits

Our work 8063 8130 8091

Table 7: Execution time (in clock cycles) of modular
multiplication for different operand lengths

product ai · ai (which is not doubled) has to be computed
or not. The condition for the if clause in the first nested
loop is whether index i is even or not (similar as in Comba
squaring), whereas the condition for the other if clause in
the second nested loop is whether s + i is even or not (this
depends on both the loop index i and the length s of the
operands). Our implementation of OPF-squaring processes
four bytes at once (analogously to hybrid squaring) and we
also “peeled off” the very first iteration (in which A0 ·A0 is
computed) and the very last iteration (for Ak−1 · Ak−1) to
allow for optimization of the MAC operations, taking into
account that all (or some) bytes of the accumulator are zero
(see Section 4.2 for further details). The final subtraction
of N is carried out in the same way as in Section 4.3.

4.5 Experimental Results and Comparison

Instr. type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

160 bits 974 240 120 40 121 376 2271

192 bits 1400 336 168 48 168 494 3166

224 bits 1902 448 224 56 223 620 4201

256 bits 2480 576 288 64 286 754 5376

Table 2: Instruction counts of hybrid squaring

Instr. type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

160 bits 1154 280 140 40 151 589 2814

192 bits 1616 384 192 48 204 754 3822

224 bits 2154 504 252 56 265 928 4971

256 bits 2768 640 320 64 334 1110 6260

Table 4: Instruction counts of hybrid Montgomery
squaring in OPFs (without final subtraction)

Op. length Library Min. Max. Avg.

TinyECC (d = 4) 3010 3175 3092
160 bits WM-ECC 3228 3234 3234

Our work 2428 2428 2428

TinyECC (d = 4) 4198 4436 4297
192 bits

Our work 3323 3323 3323

TinyECC (d = 4) 5586 5905 5702
224 bits

Our work 4358 4358 4358

TinyECC (d = 4) 7174 7582 7307
256 bits

Our work 5533 5533 5533

Table 6: Execution time (in clock cycles) of squaring
for different operand lengths

Op. length Library Min. Max. Avg.

TinyECC (d = 4) 14646 15123 14929
160 bits WM-ECC 3669 3675 3675

Our work 2966 3032 2990

TinyECC (d = 4) 19408 20747 20060
192 bits

Our work 3974 4040 3999

TinyECC (d = 4) 24872 26134 25765
224 bits

Our work 5123 5189 5148

TinyECC (d = 4) 31054 32849 32258
256 bits

Our work 6412 6478 6438

Table 8: Execution time (in clock cycles) of modular
squaring for different operand lengths

We measured the execution time of our implementation
of hybrid multiplication and squaring, as well as OPF-FIPS
multiplication and squaring, on an ATmega128 processor. In
order to facilitate comparison with prior work, we provide
timings for four operand lengths, namely 160, 192, 224, and
256 bits. Table 1 to 4 summarize the number of add (plus
adc), mul, ld, st, and movw instructions executed by these
four operations and also specify the overall execution time
in clock cycles (excluding function-call overhead).

There exist a number of libraries for fast multi-precision
arithmetic and ECC on the AVR platform; two well-known
examples are TinyECC [13] and WM-ECC [24]. We detail
the timings for multiplication, squaring, modular multipli-
cation, and modular squaring of these libraries and our own
library in Table 5 to 8. TinyECC uses Barrett’s algorithm

465



for modular reduction and supports arbitrary primes, while
our implementation only supports Montgomery reduction
in OPFs. The operand size of WM-ECC is fixed to 160 bits
[24], but TinyECC can handle all four operand sizes. Note
that the multiplication time of TinyECC and WM-ECC is
not constant for a given operand length, but depends on the
form of the operands. For example, TinyECC features some
optimizations that allow it to achieve lower execution time
when the Hamming weight of the two operands is low than
when it is high. Table 5 to 8 summarize both the minimal
execution time (for low-weight operands) and the maximal
execution time (when all bits of the operands are 1). The
tables also list the average time needed for 100 executions
of a given operation when using pseudo-random numbers as
operands. Our implementation of of hybrid multiplication
and squaring has a constant execution time. However, the
execution time of OPF-FIPS multiplication and squaring is
not constant but depends on whether a final subtraction is
carried out or not. The difference in execution time between
these two cases is small (max. 2%). Note that all timings in
Table 5 to 8 include the full function-call overhead.

5. CONCLUSIONS
We presented a highly-optimized library for arithmetic in

Optimal Prime Fields (OPFs) on 8-bit AVR processors like
the ATmega128. Our library is fully parameterized in terms
of operand length (i.e. it can process operands of any size)
and contains all arithmetic operations needed in ECC. The
modular reduction follows Montgomery’s algorithm and is
optimized for low-weight primes of the form p = 2k + 1. We
also developed an improved variant of the MAC operation
carried out in the inner loop of the hybrid method and in-
tegrated it into the multiplication and squaring function
for OPFs. Our implementation performs a multiplication in
a 160-bit OPF in just 3,542 clock cycles on an ATmega128
processor, which sets a new speed record for 160-bit modu-
lar multiplication on 8-bit platforms. Compared to previous
work, our implementations is roughly five times faster than
the widely-used TinyECC (which needs 14,929 clock cycles
for a 160-bit modular multiplication) and 11.1% faster than
WM-ECC (which requires some 4,000 cycles). As our future
work, we intend to protect the OPF library against Simple
Power Analysis (SPA) attacks.
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