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Abstract—Biomedical data sharing is one of the key elements
fostering the advancement of biomedical research but poses
severe risks towards the privacy of individuals contributing
their data, as already demonstrated for genomic data. In
this paper, we study whether and to which extent DNA
methylation data, one of the most important epigenetic
elements regulating human health, is prone to membership
inference attacks, a critical type of attack that reveals an
individual’s participation in a given database. We design
and evaluate three different attacks exploiting published
summary statistics, among which one is based on machine
learning and another is exploiting the dependencies between
genome and methylation data. Our extensive evaluation on
six datasets containing a diverse set of tissues and diseases
collected from more than 1,300 individuals in total shows that
such membership inference attacks are effective, even when
the target’s methylation profile is not accessible. It further
shows that the machine-learning approach outperforms the
statistical attacks, and that learned models are transferable
across different datasets.

Index Terms—epigenetics, membership inference

1. Introduction

With the rapidly decreasing costs of molecular pro-
filing, the available biomedical data types are becoming
increasingly diverse and go beyond the genomes of indi-
viduals. DNA methylation is one of the most important
new types of biomedical data and is a key regulator of
gene transcription. Abnormal methylation patterns can
lead to severe diseases, such as cancer [11], [16], [56].
Moreover, DNA methylation is highly related to envi-
ronmental cues, such as pollution, exposure to stress, or
cigarette smoke [7], [51], [52], [54]. Despite being linked
with such sensitive information, DNA methylation data
are already available on various open research platforms,
e.g., the Gene Expression Omnibus (GEO) [20].

Contrary to genomic data whose privacy has been ex-
tensively studied by the security research community [15],
[33], [36], the privacy risks of epigenomic data have
not yet been well investigated. One of the most critical
attacks in the biomedical research setting is membership
inference, popularized by Homer et al. [24]. Its idea is as
follows: Given some raw data about a targeted individual,
the attacker wants to know whether this individual is a
member of a dataset (i.e., has contributed his data) by

relying solely on aggregated statistics about this dataset.
The attack on genomic data and its countermeasures have
been investigated in numerous research papers over the
last decade [26], [45], [53], [57], [59], [60].

In this paper, we aim at evaluating whether DNA
methylation databases are also vulnerable to membership
inference attacks. Because some regions of our methyla-
tion profiles are highly correlated with the genome, leak-
age of such data can indirectly expose family members’
private data. Furthermore, it is uncertain how legal frame-
works such as the US Genetic Information Nondiscrimi-
nation Act (GINA) apply to epigenomic data like DNA
methylation [14], [43]. As a consequence, anticipating
privacy risks and mitigating them with technical means
is of utmost importance. On the other hand, it is unclear
to what degree measurement noise in DNA methylation
data and naturally occurring variability serve as privacy-
protective noise. This is especially important when testing
across tissue types since methylation varies across tissues
as opposed to the genome that is the same in all kinds of
body cells.
Contributions We present three different membership in-
ference attacks against DNA methylation databases. These
attacks differ in the attacker’s knowledge (see Table 1 for
a summary). For the first attacker, we assume she knows
the methylation profile of the target and the means of
the corresponding methylation positions from the targeted
database. We rely on state-of-the-art statistical tests such
as the log-likelihood ratio test to infer membership of
the target in the database. For the second attacker, we
assume individual methylation values of other patients are
available, which enables her to learn meaningful features
to improve her attack. Given that methylation values
may vary across different tissues, we further study data
transferability and show that a machine-learning (ML)
model trained on one database can be used to perform
membership inference on another database of different
tissues or diseases. For the third attacker, we assume
the methylation profile of the target not to be available
and propose a new membership inference attack that only
relies on genomic variants that are correlated with the
methylation positions.

We conduct an extensive evaluation of our attacks on
six diverse datasets containing the methylation profiles
from different tissues, such as blood, brain, and breast
cancer, of a total of 1,320 patients. Our results consistently
demonstrate the success of membership inference attacks
over different tissues and diseases. We further observe that
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Attacker’s Statistics about Raw target data External/auxiliary data
knowledge methylation database methylation genome methylation genome + methylation

Statistical attack � � - - -
Machine-learning attack � � - � -

Genome-based attack � - � - �

TABLE 1: Overview of our different attack settings. �means the attack needs this information, and - means it does
not. When relying on methylation data, we also use training/test data from different tissues or with different diseases.

ML approaches outperform statistical attacks: While the
best performing statistical test, the LLR test, exceeds 0.9
AUC (area under the ROC curve) for one dataset only,
the machine-learning attack almost always reaches AUC
of at least 0.9. Our empirical results also show that data is
transferrable between different diseases and tissues: The
model trained on a different type of dataset from the
target dataset achieves similar performance to the model
trained on the same type of dataset. Finally, the genome-
based attack provides excellent performance with around
0.9 AUC, even though it performs slightly worse than the
methylation-based attack,

To summarize, we make the following contributions:

• We study the feasibility of membership inference
attacks against one of the most prevalent type of
epigenomic data, DNA methylation.

• We propose new ML-based attacks that are able
to learn relevant features even from DNA methy-
lation data coming from other tissues.

• We propose an indirect membership inference at-
tack that shows that DNA methylation databases
are prone to membership inference attacks even
without having access to the methylation data
of the target but only to some of her genomic
variants.

Organization In Section 2, we present the relevant
biomedical background for our attacker models in Sec-
tion 3 and the theoretical foundations of our attacks in
Section 4. In Section 5, we detail the diverse datasets used
for the evaluation of our attacks in Section 6. Finally, we
summarize related work in Section 7 before concluding
in Section 8.

2. Background

DNA methylation is one of the most important epi-
genetic modifications, affecting both the structure and
activity of the DNA molecule [27], [46]. The methylation
process consists in the addition of a molecule, namely,
a methyl group, to the C (cytosine) nucleotide. Since
DNA methylation may vary between copies of the DNA
and across different cells, its value is quantified as the
fraction of methylated nucleotides at a given genome
position. Therefore, any DNA methylation position takes
value in R[0,1]. With the current DNA methylation pro-
filing technology, we can easily get access to several
hundreds of thousands of DNA methylation positions in
the human genome (e.g., the Illumina array provides 450k
positions). We can get even more positions (up to tens
of millions) by relying on more advanced technology
such as whole-genome sequencing. Recent studies show
that environmental factors such as exposure to stress or
cigarette smoke, as well as the individual’s age, correlate

# positions value range time evolution

DNA methylation ∼ 107 R[0,1] varying

SNPs ∼ 108 {0, 1, 2} stable

TABLE 2: Key differences between DNA methylation
and genomic variants (SNPs). Note that the number (#)
of positions shows the total number of currently known
positions but that this number can be orders of magni-
tude smaller in popular profiling technology such as the
Illumina array (450k positions).

with changes in methylation values [7], [30], [31], [51],
[54]. Moreover, aberrant DNA methylation patterns are
often correlated with cancer stemming from the activation
of genes such as oncogenes or the silencing of tumor
suppressor genes [16].

Besides environmental factors, methylation regions
can also be influenced by genomic variants at some spe-
cific positions [18], [32], [49]. Single genomic positions
that vary among individuals in a population are referred
to as single nucleotide polymorphisms (SNPs). A SNP is
determined by a pair of nucleotides (among {A,C,G,T}):
one that is called major allele as it is most frequent in the
population and the other that is called the minor allele.
Therefore, a given SNP can take three values: two major
alleles, typically encoded as 0, one major allele and one
minor allele, encoded as 1, and two minor alleles, encoded
as 2. We summarize the main differences between DNA
methylation and SNPs in Table 2.

3. Threat Model

The adversary’s objective is to determine whether an
individual (referred to as a target) is a member of a group
of study that we will refer to as a pool. By leveraging such
an attack, the adversary can infer sensitive information
about her target, as pools in medical studies can be
associated with severe diseases.

To run her attack, the adversary gets access to aggre-
gated methylation data that describe the statistical proper-
ties of the considered methylation data pool. While these
aggregate data are usually published alongside biomedical
case-control studies (see for example [28], [35], [48]),
such aggregate data can nowadays also be queried from
federated systems such as i2b2 [34], SHRINE [58] or
MedCo [42]. In this work, we assume that the mean
statistics about the pool are available to the adversary
as it is the most common statistics currently available.
Additionally, we assume the adversary has access to gen-
eral methylation statistics of the reference population.
Currently, these statistics have to be estimated by the
adversary using a subset of the underlying population.
However, we expect that population-wide statistics for
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DNA methylation will become publicly available, as for
genomic data. We will refer to the subset of the reference
population as the reference group here.

In order to perform the attack, the adversary also needs
access to some raw data of the target. For our methylation-
based attack, we assume the adversary knows the target’s
DNA methylation at m positions encoded as −→x ∈ R

m
[0,1],

from similar or different tissue/disease type as the targeted
database. Full individual DNA methylation profiles are
increasingly available in public databases such as the Gene
Expression Omnibus (GEO) [20] or ArrayExpress [4].
Moreover, with the increasing adoption in medical prac-
tice, DNA methylation data will also certainly be stored on
hospital servers, potentially putting such profiles at risk.
For instance, cyber-attacks against healthcare companies
have increased by 72% from 2013 to 2014 [8].

As genomic data is currently more accessible than
methylation data, we also propose and investigate a
genome-based attack. We assume the adversary knows
(part of) the genotype of the target instead of his methyla-
tion data. By now, more than 10 million individual geno-
types have been sequenced through direct-to-consumer
genetic testing [10], such as 23andMe [2] or Ances-
tryDNA [3]. Those individuals can also share their se-
quenced genotypes online, on open platforms such as
GEDmatch [19], OpenSNP [37], or the Personal Genome
Project (PGP) [39], sometimes with their real identi-
fiers. Therefore, even without considering the genomic
databases at clinical premises, millions of genomic pro-
files are already freely available online.

4. Attacks

In this section, we present the analytical details of
our membership inference attacks. We start with the
methylation-based attack upon which we will build the
genome-based membership inference attack.

4.1. Methylation-based Attack

Assuming the adversary has access to summary statis-
tics of the pool, we analyze whether it is possible to infer
whether the target is part of it by relying on statistical or
machine-learning methods.

4.1.1. Difference of L1 Distances. Homer et al. [24] have
shown for genomic statistics that one can rely on the L1

distance to infer membership in databases based on mean
values only. We first evaluate how this method performs
when applied to DNA methylation. The attack compares,
for a methylation position j, the differences between the
target’s methylation value xj and the mean statistics of the
pool and reference group, and it determines which mean
statistics is closest to xj . Defining the mean values as μj

p

for the pool and μj
r for the reference group, we have the

following L1 distances’ difference:

D(xj) = |xj − μj
r| − |xj − μj

p| (1)

for the methylation position j. A value greater than 0
indicates that xj is more likely to belong to the pool, while
a value smaller than 0 indicates xj is more likely to belong
to the reference group. Intuitively, the L1 test exploits

the fact that the target’s methylation value xj influences
the mean of its group. Therefore, the target’s value xj is
expected to be closer to the mean value of the target’s
group than to the mean value of the other group.

Finally, we rely on the one-sided Student’s t-test on
the outcome of D(xj) for all methylation points j to test
whether the target is part of the pool or reference group.

4.1.2. Log-Likelihood Ratio (LLR) Test. Additionally,
we exploit the likelihood-ratio (LR) test, which has the
notable advantage of reaching the maximum achievable
power (true-positive rate) for a given false-positive level.
This is explained theoretically by the Neyman-Pearson
lemma, and its higher power compared to the L1 test has
been demonstrated empirically with genomic data [45].

However, the LR test poses assumptions on the data
distribution. We rely on the normal distribution to model
the distribution of methylation values, which is the con-
tinuous probability distribution that best fits the observed
methylation data.1 We evaluate in the next section whether
this model is good enough to keep LR test’s power high
with actual methylation data.
The general formula for the LR test at position j is:

LRj(x
j) =

σj
r

σj
p

e
(xj−μ

j
r)2

2(σ
j
r)2

− (xj−μ
j
p)2

2(σ
j
p)2 (2)

where σj
r is the standard deviation of the reference group

and σj
p the standard deviation of the pool at methylation

position j. By taking the logarithm and summing over
the m known methylation positions, we get the following
log-likelihood ratio (LLR) formula:

LLR(−→x ) =

m∑
j=1

(xj − μj
r)

2

2(σj
r)2

− (xj − μj
p)

2

2(σj
p)2

+ log
σj
r

σj
p

(3)

In this work, we assume the adversary gets access
to the mean values of the pool but not to its standard
deviations. A reasonable approximation of the standard
deviation can be computed from the reference population
under the assumption that the standard deviation is ap-
proximately the same for the pool.

Hence, we have σj
p ≈ σj

r := σj , and the above
expression simplifies to:

LLR(−→x ) =

m∑
j=1

(xj − μj
r)

2 − (xj − μj
p)

2

2(σj)2
(4)

Note that, following an assumption made in previous
works on membership privacy [6], [24], [45], we do not
consider dependencies that may exist between different
methylation points.

4.1.3. Machine-Learning Approach. The two previous
statistical tests assume implicitly that the distance between
mean and methylation value is equally informative for
membership inference no matter the methylation position

1. We tested for equality to the normal distribution using the
Kolmogorov-Shmirnov test and a p-value of 0.1 and observed 1

3
to 2

3
of the methylation regions being normally distributed, the value varying
between datasets. We also tested other distributions, such as the beta
distribution, but did not find anything fitting the methylation data better.
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j. This assumption may not be true: There might be
methylation positions that are sensitive to environmental
or genetic variants, leading to a higher variance and
thereby easier membership detection in the dataset.

To model a realistic attacker, we assume her to use
the data itself to detect informative methylation regions
and increase the success probability. We expect that an
exceptionally high or low distance of the target to the
pool means is more informative for membership inference.
Similar to the statistical approaches, we rely on the L1

and L2 distances, both to pool and reference means.
A division by the standard deviation additionally takes
the data variability of the position into account, which
simplifies comparison across multiple positions.

All of the aforementioned metrics have to be explored
systematically, which we do by using machine learning.
We fit a logistic regression classifier2 that learns how
to weight features obtained from different methylation
regions. We explore the metrics using the following types
of features:

1) L1 distance to pool mean, formally: |xj − μj
p|

(referred to as L1 distance feature)
2) Squared L2 distance to pool mean, formally:

(xj − μj
p)

2 (referred to as L2 distance feature)
3) L1 distance divided by the standard deviation,

formally:
|xj−μj

p|
σj (referred to as scaled L1 fea-

ture)
4) Squared L2 distance divided by the variance, for-

mally:
(xj−μj

p)
2

(σj)2 (referred to as scaled L2 feature)

5) L1 distance as used in the L1 test, formally: |xj−
μj
r| − |xj − μj

p| (referred to as L1 feature)
6) Log-likelihood ratio as used in the LLR test,

formally:
(xj−μj

r)
2−(xj−μj

p)
2

2(σj)2 (referred to as LLR feature)

To compute these features, we first obtain pool and refer-
ence means and approximate standard deviations as before
for the LLR test. For each training value trj from a
training patient, we compute the feature with the mean and
standard deviation of the respective methylation position
j. Features from different positions are combined into a
feature vector. We then sort the features of each vector
by increasing order of magnitude. This breaks the link
between the learned weight and the methylation position
j from which trj originated, but recall that our training
objective is not which position j is more informative, but
rather which distance is more informative for membership
inference.
Subsampling: To increase the number of samples for
learning while keeping the total amount of patients’ data
the attacker needs to know low, we generate more than one
feature vector from each patient by randomly sampling
s disjoint subsets of l methylation positions each. These
multiple feature vectors are treated separately during train-
ing, but at test time they are combined with majority
voting to eventually classify each patient into a single
group. Details on the number of feature vectors per patient
and length of the feature vectors are empirically evaluated
in Section 6.

2. We opted for logistic regression due to its simplicity and the
interpretability of the learned model.

We also apply subsampling to the L1 and LLR tests
to compare these directly with the ML approach, i.e, to
tell apart the effect of the different settings for machine
learning and the benefit of machine learning itself.

4.2. Genome-based Attack

In the following, we assume the attacker does not
know the target’s methylation values, but the target’s
genome instead. Genomic data is currently more avail-
able and easier to find online or via direct-to-consumer
genetic testing services. The adversary can rely on corre-
lations between the genome and methylation in specific re-
gions. After inferring the methylation values, the attacker
can mount the same attack as previously described, i.e.,
against a pool of methylation data. In the experimental
evaluation, we will investigate if and to which extent the
performance drops when genomic data is used instead of
methylation data.

We still assume the attacker knows the mean methy-
lation values of pool and reference group and estimates
of the standard deviation from the reference group. Ad-
ditionally, we assume the attacker has a set of paired
methylation and genome data to identify the pairs of
correlated methylation and genomic positions and to learn
the conditional distribution of methylation values given
the genomic values. This section shows how to extend
our statistical tests and how to implement the necessary
estimates to handle this attack scenario.

As demonstrated by Backes et al. [5], the conditional
distribution of a methylation value xj given a specific SNP
gi can be modeled with a normal distribution. Dropping
the position index i of the SNP for simplicity, we define
the probability distribution over the methylation values for
a specific SNP value g ∈ {0, 1, 2} as

fg(x
j) = p(Xj = xj | G = g) =

1√
2πσj,g

e
− (xj−μj,g)2

(σj,g)2

(5)

where μj,g and σj,g denote the mean and standard devia-
tion of fg(x

j), respectively.

Given this probability distribution, the following theo-
rem shows that the expected log-likelihood ratio test for an
individual carrying a given genotype boils down to using
μj,g in place of the target’s methylation value.

Theorem 1. Assuming σj
p ≈ σj

r := σj for all methylation
positions correlated with the genome, the LLR test based
on the individual’s genome is:

LLR(g) =

mc∑
j=1

(μj,g − μj
r)

2 − (μj,g − μj
p)

2

2(σj)2
, (6)

where mc represents the number of methylation positions
correlated with the genome.

Proof. We derive hereafter the formula for the general
case with different σj

p and σj
r . For a given methylation
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point j, we need to integrate xj over all its possible values
given g:

LLRj(g) =
1

2(σj
r)2

∫ 1

0

(xj − μj
r)

2fg(x
j)dxj

− 1

2(σj
p)2

∫ 1

0

(xj − μj
p)

2fg(x
j)dxj + log

σj
r

σj
p

∫ 1

0

fg(x
j)dxj

By setting Δc
j = μj,g − μj

p and Δr
j = μj,g − μj

r:

LLRj(g) =
1

2(σj
r)2

∫ 1

0

(xj − μj,g +Δr
j)

2fg(x
j)dxj

− 1

2(σj
p)2

∫ 1

0

(xj − μj,g +Δc
j)

2fg(x
j)dxj + log

σj
r

σj
p

=
1

2(σj
r)2

∫ 1

0

(xj − μj,g)
2fg(x

j)dxj

+
Δr

j

(σj
r)2

∫ 1

0

(xj − μj,g)fg(x
j)dxj +

(Δr
j)

2

2(σj
r)2

∫ 1

0

fg(x
j)dxj

− 1

2(σj
p)2

∫ 1

0

(xj − μj,g)
2fg(x

j)dxj

− Δc
j

(σj
p)2

∫ 1

0

(xj − μj,g)fg(x
j)dxj

− (Δc
j)

2

2(σj
p)2

∫ 1

0

fg(x
j)dxj + log

σj
r

σj
p

By using the central moments of the normal distribution,
we eventually get:

LLRj(g) =
σ2
j,g

2(σj
r)2

+
(Δr

j)
2

2(σj
r)2

− σ2
j,g

2(σj
p)2

− (Δc
j)

2

2(σj
p)2

+ log
σj
r

σj
p

If σj
p ≈ σj

r := σj , the above formula simplifies to

LLRj(g) =
σ2
j,g

2(σj
r)2

+
(Δr

j)
2

2(σj
r)2

− σ2
j,g

2(σj
p)2

− (Δc
j)

2

2(σj
p)2

=
(Δr

j)
2 − (Δc

j)
2

2(σj)2
=

(μj,g − μj
r)

2 − (μj,g − μj
p)

2

2(σj)2

We obtain the final formula by summing over all methy-
lation points mc correlated with the genome.

Similarly, for the L1 test, we use the expected methylation
value μj,g given the genotype g as the target’s methylation
value.

5. Datasets

For our evaluation, we rely on six datasets contain-
ing methylation profiles from diverse tissues of patients
carrying different diseases. In total, we use the methyla-
tion profiles of 1,320 patients. Table 3 summarizes our
datasets.

All but the last dataset were generated with the Il-
lumina 450k array that determines the DNA methylation
at 450,000 fixed positions. We refer to these datasets by
the disease the respective patients carry. Our last dataset,
the WGBS dataset, contains both the genome and the
methylation of 75 patients

where the DNA methylation profiles have been gener-
ated by whole-genome bisulfite sequencing (WGBS). This

results in a full view of DNA methylation patterns in the
whole genome of blood cells.
Preprocessing Most of the datasets have missing methy-
lation sites (positions) for specific patients or even missing
methylation sites for all the patients sharing the same
disease. We remove all methylation positions with missing
data, which provides us with 299,998 different methyla-
tion positions for the combination of brain cancers and
IBD, and about 360,000 different methylation positions
for the breast cancer dataset.

For our WGBS dataset, we focus on highly correlated
pairs of DNA methylation positions and SNPs. We follow
the approach of Backes et al. [5] and only keep the
pairs with a Spearman rank correlation coefficient larger
than 0.49. This provides us with about 300 methylation
positions and the single most correlated SNP position for
each of those.
Human Subjects and Ethical Considerations The study
on WGBS has received an approval from the responsible
institutional ethics review board. All other datasets were
publicly available in their anonymized form. All datasets
have been stored and analyzed in anonymized form with-
out access to non-anonymized data. Moreover, since we
only randomly split the patients into pool and reference
sets, the membership inference attacks do not reveal any
more information than previously known by us. This way,
we ensure that all participants were treated equally and
with respect.

6. Attack Evaluation

We start by evaluating the statistical and machine-
learning methylation-based attacks. Then, we present the
results of our genome-based attack.

6.1. Methylation-based Attack Evaluation

Our evaluation studies the following research ques-
tions:

RQ 1 Does the LLR test outperform the L1 test in the
statistics attack setting?

RQ 2 What is the effect of our subsampling approach
on the performance of the L1 and LLR tests?

RQ 3 Which feature is best in the ML attack? Does
the performance increase compared to the L1 and
LLR tests with subsampling?

RQ 4 Is it possible to train an attack model on a dataset
of a different tissue or disease than the target
dataset for the machine learning attack?

RQ 5 What is the influence of the dataset size on
the performance of the membership inference
attacks?

While RQ1 studies the statistical approach and verifies
that the Neyman-Pearson Lemma applies to our data, RQ2
and RQ3 study the foundations of the ML approach. With
RQ4 and RQ5 we explore how the ML case works in non-
ideal situations, namely, different training and test data
and larger dataset sizes.
RQ 1: Comparing the statistical L1 and LLR test, does
the LLR test outperform the L1 test? To apply the L1

and LLR tests, we first define pool and reference group.
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Abbreviation Description Tissue Type Number of Patients GSE identifier by

GBM glioblastoma brain cancer 136 GSE36278 [48]
PA pilocytic astrocytoma brain cancer 61 GSE44684 [29]

IBD CD Crohn’s disease blood 77 GSE87640 [55]
IBD UC ulcerative colitits blood 79 GSE87640 [55]

BC breast cancer breast cancer 892 not publicly available -
WGBS genome and methylation data blood 75 not publicly available -

TABLE 3: Datasets used in our experiments. THE GSE identifier refers to the accession number in the Gene Expression
Omnibus (GEO) database. The BC dataset was available on https://portal.gdc.cancer.gov in April 2017 but is not anymore.

We present a realistic attacker that cannot exploit any
disease-specific differences between the databases. For
each of our five first datasets, we first randomly sample 60
patients,3 which are then randomly split into a pool of 30
patients and a reference group of 30 patients. We assume
the attacker has means of these 30 patients available as
μj
p and μj

r respectively. Further, we sample 15 patients
from the pool and 15 from the reference group at random.
The remaining 30 patients are not used in this setup, they
serve as training set of the machine learning attack later
in this section. We repeat the random splitting five times
and present averaged results.

As discussed previously, we assume the attacker has
access to the mean of the pool (μj

p) and reference group

(μj
r) for each methylation position j. Moreover, we es-

timate σj by computing the standard deviation over the
whole considered dataset.

We simulate membership inference attacks against
each patient individually, i.e., all patients from the respec-
tive pool and reference group are attacked by applying
the L1 and LLR tests to each methylation position j and
summarize across all methylation positions for the given
patient as defined by the tests. Using multiple thresholds
in the tests, we get a receiver operating characteristic
(ROC) curve displaying the false-positive rate ( FP

FP+TN )

on the x-axis and the true-positive rate ( TP
TP+FN ) on the

y-axis. The AUC is the area under this curve. An AUC
of 0.5 indicates a performance similar to a random guess,
whereas an AUC of 0.9 or above indicates an excellent
performance. Finally, we average the results over the five
random splits. The results are shown in the first five groups
of bars in Figure 1.

We observe that the LLR test outperforms the L1

test, complying with the Neyman-Pearson Lemma. The
performance reaches > 0.7 AUC for all diseases when
the LLR test is used, and even > 0.95 AUC for PA.
Interestingly, the tissue type seems to have an influence
on the attack performance, both IBD datasets are sampled
from blood and are harder to attack compared to samples
from brain cancer tissue for the diseases GBM and PA or
breast cancer tissue for BC.

Finally, in order to evaluate a more realistic setting
where the reference population is very large, we use our
largest dataset on breast cancer (BC) patients. Instead of
sampling 30 patients as the reference group, we use all
remaining patients, i.e., 862 patients to compute μj

r. We
observe that the AUC drops by only a few 0.1 compared
to the case with a much smaller reference group and

3. Note that this is the maximum number we can consider if we want
to compare the results across all datasets as PA contains 61 patients.

Figure 1: RQ1 (statistical attack setting): AUC of the
L1 and LLR tests applied to all methylation positions,
averaged over five random splits of the data simulating
attacks against each patient in both pool and reference
groups.

conclude that the privacy risks remain valid with a very
large reference group.

Take-home message: the LLR test outperforms the
L1 test with DNA methylation data.

RQ 2: What is the effect of subsampling on the
performance on L1 and LLR test? Which values
for the hyperparameters s and l are the best? We
subsample each data vector before computing the L1 test
and the LLR test. For each patient, we randomly sample
l methylation positions s times without replacement for
various settings for s and l. At the end, we combine the
inference labels of the s vectors of the same patient with
majority voting to get a single outcome for each patient.
As before, we first randomly sample 60 patients for each
disease, which are then randomly split into 15 pool and
15 reference patients. Again, the remaining 30 patients are
not used.

Figure 2a shows the performance of the L1 (solid
lines) and LLR tests (dotted lines) for four of our dis-
ease sets, with 10 repetitions of the sampling process.
Observing no general trend of l increasing from 103 to
104, we drop l = 104 from the parameters which allows
to increase s to 100, see Figure 2b.

Comparing the AUC with the standard setup before
(Figure 1) shows that for most diseases, the performance
of the L1 test is similar or increased slightly, and the
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Figure 2: RQ2 (subsampling): Influence of the length l of the feature vectors on L1 and LLR tests performance for
four disease datasets when using (a) s = 10 vectors or (b) s = 100 vectors.

performance of the LLR test increased slightly in almost
all cases, independent of how the parameters s and l
are set. For example, in GBM the traditional LLR test
performance is below 0.85 AUC and with s=100 and l =
103 raises to more than 0.9 AUC. The difference between
the previous and the current setup is how the member-
ship information from different methylation positions j
are combined. Simply taking all of them into account
performs worse than first combining a few of them into
a binary answer and then taking the majority vote. In the
latter case, some methylation positions will therefore not
contribute to the answer. This experiment shows that not
all methylation positions are informative.

Finally, we observe that a reasonable trade-off between
l and s satisfying the constraint l · s ≤ m is bounding l
to 103 and setting s = 100.

Take-home message: Subsampling slightly increases
performance, and the hyperparameters l = 107 and s =
100 represent a reasonable trade-off.

RQ 3: Which feature is best in the machine learning
model, and can the performance be increased com-
pared to the L1 and LLR test with subsampling?
For the machine-learning attack, we use the subsampling
trade-off as found before and set l = 103 and s = 100. The
remaining 15 pool and 15 reference patients are used as
training set. After transforming each value in the training
vectors into a feature using the formulas in Section 4.1.3,
we sort the vectors’ values in ascending order. Then, the
vectors are fed into a logistic regression classifier: We
rely on the Python library sklearn [38] and leave the
regularization parameter C at its default 1.0. The classifier
learns l coefficients that indicate importance of small,
intermediate and large distances (as most of our features
are distance-based).

Figure 3 shows the absolute value of the learned
coefficients for IBD UC, plots for other diseases look
similar. The higher the absolute value of the coefficient,

Figure 3: RQ3 (features): Absolute value of learned co-
efficients on IBD UC with both scaled L1 features. We
show the five repetitions (with different data sampling) of
the experiment in different colors to check whether the
coefficient values are consistent and not due to random-
ness. X-axis between 0 and 999 represent the coefficient
values for scaled L1 to the pool mean and x-axis between
1,000 and 1,999 represent the coefficient values for scaled
L1 to the reference mean.

the more informative the distance is for the classifier. The
symmetric pattern arises due to the use of two features:
the scaled L1 distances to both pool and reference means.
There is a tendency towards higher values on the right, in-
dicating that higher distance values are more important for
the attack. Nevertheless, the lower values do not get zero
coefficients, which suggests they also contribute to the
model. Additionally, we applied sklearn’s recursive feature
elimination [21], but the resulting classifiers performed
worse in terms of AUC, supporting again the hypothesis
that all distances are necessary.

We compare the performance of different features
using the AUC of the learned model when applied to the
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Figure 4: RQ3 (features): Performance of different features evaluated on disease datasets (a) PA and (b) IBD UC.

test data. Figure 4 shows exemplarily the performances for
PA and IBD UC, the “easiest” and one of the “hardest”
disease datasets to attack. We test all the feature types
introduced in Section 4.1.3. The distance-based features
exist in two versions as distance to the pool and to
the reference mean, respectively, indicated by “p” and
“r” in the plot. We omitted the “r” version for some
features which performed similarly to their “p” versions.
Additionally, we trained on both versions of the distance
features by concatenating the respective feature vectors.
As a baseline, we rely on the L1 and LLR tests with
subsampling. We observe that some features work well,
e.g., the LLR feature and using the L1 or L2 to both pool
and reference group in their scaled form. Other features
perform poorly and result in an AUC of around 0.5, e.g.,
the L1 and L2 both with and without scaling. This is
why for those features, the black bar is barely visible in
Figure 4. Nevertheless, the statistical tests L1 and LLR
are clearly outperformed, especially for the IBD UC and
IBD CD datasets.

Take-home message: the performance can be in-
creased by using a machine-learning approach with the
LLR features or L1 or L2 to both pool and reference
groups in their scaled form.

RQ 4: Is it possible to train an attack model on a
dataset of a different tissue or disease than the target
dataset for the machine learning attack? We study
now another, more challenging attack scenario where the
attacker trains her machine learning model with pool and
reference groups extracted from one dataset and applies
this model to pool and reference groups of another dataset.
We keep the previous experimental setup, but test the
learned model on dataset with different tissue or disease.
This setup allows us to evaluate if our membership infer-
ence attack is prone to data transferability.

Figure 5 displays the resulting AUCs when learning on

the first mentioned (in the x-axis labels) dataset and testing
on the second one. Since the performance of the scaled
L1 and scaled L2 distances are similar (see Figure 4),
we show in Figure 5 only the scaled L1 feature and
the LLR feature due to space constraints. Comparing
the black and gray bars, we can observe that most cases
show a small loss of performance when the attacker learns
on patients from a different disease or tissue compared
to learning from the same one. However, the learned
models still perform well on the different disease set
and clearly outperform the statistical L1 and LLR tests.
Recall that the datasets GBM and PA are sampled from
brain tumors, while both IBD datasets are from blood
samples. According to biomedical research, part of the
methylation patterns are tissue specific. However, our
results show that our attack based on relative distance
instead of methylation positions is prone to transferability
even across different tissues.4

Take-home message: training and target datasets do
not need to be the same for a successful attack.

RQ 5: What is the influence of a larger dataset on the
performance of the machine learning model? Our larger
dataset on breast cancer allows to study the impact of
larger reference group and pool on the attack performance.
First, we focus on the reference group size, increasing it
from 30 to 800 patients, and keep the number of patients
in the pool at 30. This allows us to evaluate whether a
more realistic (i.e., larger) reference population has an
impact on the attack performance. We evaluate the impact
of increasing reference group size on machine learning
classifiers trained on the LLR feature and both scaled
L1 features, and on the statistical LLR test using 30 pa-
tients for training and testing respectively. We observe in

4. Note that it is very unlikely that these results are due to the same
patients being in the datasets because we obtained data from different
studies and different diseases.
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Figure 5: RQ4 (transferability): Transferability of learned models based on (a) both scaled L1 and (b) LLR features.

Figure 6: RQ5 (larger datasets): Performance with respect
to an increasing number of patients in the reference group
only.

Figure 6 that both statistical and ML-based tests perform
similarly under increased reference group sizes and that
reference group size does not observe any clear influence
on the attack performance. This demonstrates that privacy
risks remain true with a large reference population, and
allows us to extrapolate that membership inference would
be possible in non-closed-world settings.

Second, we increase the dataset size from 30 patients
in both pool and reference group to 100, 200, 300, and
400 patients. In all cases, we use disjoint training and test
sets of the same size which contain the same number of
pool and reference patients.

Figure 7 shows that the more patients there are in
the pool, the worse the performance of the membership
inference attack. As we see in Figure 6, reference group
size does not influence the attack success. This confirms
previous empirical results with genomic [45] and tran-
scriptomic [6] data, as well as theoretical findings [13]. We

Figure 7: RQ5 (larger datasets): Performance with respect
to an increasing number of patients in the pool and
reference groups.

further observe that the attack success decreases similarly
for both the statistical attack and the ML attacks. We
hypothesize that the performance decrease is due to the
fact that the more patients are included in the pool, the
less each patient contributes to its statistics, in our case,
the means, which makes membership inference harder.

On the upside, we can foresee that with declining costs
of molecular profiling, the size of epigenomic databases
will rapidly grow. Nevertheless, we notice that the ML
attack is quite robust to this increase, with still relatively
good performance (AUC > 0.8) with 200 patients in the
pool.

Take-home message: The attack performance is es-
pecially robust with respect to an increase in only the ref-
erence dataset size. However, when increasing both pool
and reference groups, the attack performance decreases.
We conclude that the privacy threat remains even with
larger reference population, but also with pool sizes up to
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Figure 8: ROC curves of methylation-based L1 and LLR
tests and genome-based L1 and LLR tests.

200 individuals.

6.2. Genome-based Attack Evaluation

Next, we evaluate the scenario in which the attacker
has access to the target’s genomic data instead of methy-
lation data. We use the WGBS dataset, containing methy-
lation and genome data of 75 patients. Notice that the data
was generated with a different technique (WGBS), which
targets different regions of the genome than the Illumina
450k array used for the previous datasets.

We randomly sample half of the patients as a training
set (37 patients) which we use to estimate the relationship
between genome and methylation data. The second half
(38 patients) is used as a test: Half of the patients are
chosen at random to be in the pool and the remaining half
are in the reference group. The standard deviation is esti-
mated from the training set, which we assume the attacker
has full access to. Notice that we have only m = 300
methylation positions correlated with the genome, which
is tremendously less than m = 299, 998 used for the
previous attacks. Therefore, we do not subsample from the
patients. We repeat the experiment five times with differ-
ent random splits into training and test sets. Moreover, for
each of these five splits, we also repeat the splitting into
pool and reference group five times, effectively yielding
25 randomly generated runs. As a baseline, we compute
the L1 and LLR tests under the previous assumption that
the attacker knows the target’s methylation values.

Figure 8 compares the performance of the attacks
based on methylation and genomic data. The LLR test
exploits the underlying normal distribution of methylation
values given a specific genome value. The same technique
is used for the L1 test. We observe first that both L1 and
LLR tests perform worse with access to genome instead
of methylation values, as expected. However, they still
achieve high performance, which shows that an attacker
with only access to the genome of the target can still suc-
cessfully infer her membership in methylation databases.

Surprisingly, the performance decrease is higher in the
case of the LLR test, where AUC drops from 0.94 to 0.89.
For the L1 test, the AUC decreases from 0.94 to 0.92 when
we rely on the genomic data instead of the methylation
data. One possible explanation for the LLR performance

being lower than the L1 performance in the genome attack
is as follows. The estimation of the methylation values for
the target given the genome is approximated and induces
small errors. Such noisy values have a larger negative
influence on the LLR test compared to the L1 test.

We also applied our ML techniques to the WGBS set,
but learning was not possible due to the relatively low
number of methylation values. Nevertheless, we conclude
that, despite the small drop in overall performance, mem-
bership inference is still possible with genomic data that
is currently easier to obtain than methylation data.

Take-home message: We conclude that privacy is
at risk even if the attacker has not access to the tar-
get’s methylation data and must estimate them from their
genome.

7. Related Work

In the following, we first present previous works re-
lated to membership inference attacks, then other attacks
against DNA methylation data, and finally defense mech-
anisms.
Attacks Homer et al. were the first to present a mem-
bership inference attack by relying on summary statistics
over genomic data and the L1 distance between those
and the target’s data [24]. An extension to this attack
was proposed by Wang et al. [57] using the intra-genome
correlations which allowed to rely on only a few hundreds
genomic positions. The theoretical complexity was further
studied by Zhou et al. as well as recovery attacks based
on summary statistics [60]. Moreover, Sankararaman et
al. derived an upper bound on the power of membership
inference with genomic data, and showed empirically that
the likelihood-ratio (LR) test was more powerful than the
L1 distance attack [45].

Backes et al. [6] were the first to propose a mem-
bership inference attack against another type of biomed-
ical data, namely transcriptomic data (microRNA ex-
pression). Despite the smaller dimensionality of the mi-
croRNA profiles (a few thousands points instead of mil-
lions with the genome), the attack based on L1 dis-
tance and the likelihood-ratio test proved to be successful
against disease-related databases.

Shokri et al. studied membership inference attacks
against the training datasets of machine-learning mod-
els such as neural networks [47], while Hayes et al.
studied the same attacks against generative models [23].
The authors showed that their attacks can be success-
fully performed against medical image datasets, further
demonstrating the extent of the privacy threat. Moreover,
Pyrgelis et al. [41] carried out a membership inference
attack against location data. They used statistical fea-
tures and fit several machine learning classifiers to infer
membership. Additionally, they use various differential
privacy mechanisms to protect the location data. Recently,
Salem et al. showed that membership inference against
machine-learning models was even possible with fewer
assumptions on the adversarial power than in the first
attack model [44]. They further proposed effective defense
mechanisms against such attacks and showed that they
could still provide a high level of utility for the ML model.
Besides, there exist multiple other recent works in this
field [9], [25].
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Other than membership attacks, Philibert et al. showed
that methylation data could be relied upon to infer part
of the genotype and behavioral attributes such as alcohol
consumption and smoking [40]. Besides also identifying
methylation points correlated with genomic variants, Dyke
et al. proposed high-level guidelines for methylation data
disclosure that preserves privacy [14]. However, neither
Philibert et al. nor Dyke et al. proposed concrete at-
tacks and defenses on raw or aggregated methylation
data. Backes et al. used the correlations between certain
positions of the genome and methylation data in order to
re-identify DNA methylation profiles by matching them
to their corresponding genome [5]. As opposed to Backes
et al. whose goal was to match a methylation profile
to the genome of the same person, we use here the
statistical relationships between genomic and methylation
data in our second attack type to run a membership
attack without access to the target’s raw methylation data.
Finally, Hagestedt et al. [22] designed an online service
for finding relevant research datasets of methylation data
similar to the Beacon Network [1]. For each methylation
position, the service returns a binary answer whether data
is available. Despite the coarse output format, they showed
that membership inference attacks are feasible on unpro-
tected methylation Beacons and propose a differentially
private mechanism to mitigate the privacy threat. While
the service itself can be designed in a privacy-preserving
way, exact means and standard deviations are used to
interpret the answers. Our work shows that these exact
means alone pose a significant privacy threat.

Defenses Erlich and Narayanan [15] provided a general
overview of the privacy threats to genomic data, which
partially also apply to methylation data. They also pre-
sented an overview of the defense mechanisms.

How to apply differential privacy to genomic databases
has been extensively studied. Johnson and Shmatikov
have proposed algorithms that protect the output of data
exploration (p-values and correlations, number and loca-
tion of SNPs most likely associated with a disease) with
differential privacy [26]. Uhler et al. have also proposed
to release differentially-private summary statistics (allele
frequencies, p-values, and χ2 statistics) [53]. This was
extended by Yu et al. to allow for arbitrary numbers of
case and control samples [59].

Nevertheless, finding a reasonable trade-off between
privacy and utility is not always feasible as Fredrikson et
al. pointed out in their case study of warfarin dosing [17].
They notably showed that reasonable privacy risks cannot
be attained without putting at risk the health of the patients
taking warfarin. Differential privacy mechanisms that have
been published to date for data of this type result in
high utility loss for modest privacy protection. Therefore,
Tramèr et al. [50] proposed a relaxation of differential
privacy that assumes a weaker adversary in order to reach
a better privacy-utility trade-off.

Finally, Backes et al. have applied differential privacy
to microRNA expression’s summary statistics for prevent-
ing membership inference attacks with such data [6]. Their
results confirmed the difficulty of finding a reasonable
privacy-utility trade-off, especially when the number of
participants in the database is small.

8. Conclusion and Future Work

In this paper, we have thoroughly analyzed whether
and to what extent DNA methylation databases are prone
to membership inference attacks. In particular, we have
considered two attacker models: one assuming the ad-
versary to know her victim’s methylation profile, and the
second assuming the adversary to know only her victim’s
genotype. For both settings, we have studied traditional
statistical attacks based on the L1 distance and on the
likelihood-ratio test. Additionally, we have proposed a
new machine-learning attack that is able to exploit the
fact that not all methylation data are equally informa-
tive for membership inference. In this setting, we have
further studied data transferability, i.e., to which extent
learning features from a dataset different than the targeted
dataset influences the attack results. For the genome-based
inference of membership, we have specifically designed
the LLR attack to capture the probabilistic dependencies
between the two types of data, and have identified a
sufficient statistic for this attack.

We have evaluated our attacks on six different datasets,
overall containing the DNA methylation profiles of 1,320
patients. Our empirical results consistently demonstrate
the success of membership inference attacks over different
tissues and diseases. Even though we were limited by the
small number of patients in most of the datasets, the exper-
iments with the larger breast cancer dataset suggested that
our findings may scale. We concluded that the membership
privacy of contributors to DNA methylation databases is
put at risk even if the adversary does not directly get
access to their methylation data but only their genomes.

Performing the membership inference attacks with
DNA methylation data at different points in time is a
future direction that is worth investigating. Moreover, de-
signing attacks that exploit dependencies between methy-
lation points is another interesting direction for future
work.

Given the severe privacy risks that we uncover with
our attacks, future work should study protection mecha-
nisms. One direction would be to employ a privacy mecha-
nism that allows the data publisher to balance the trade-off
between the privacy loss to the individuals resulting from
the data publication with the increased utility and benefit
to society. Differential privacy [12] is a framework for
creating and evaluating such mechanisms. The challenge
is to find a mechanism applicable to this specific case that
features both high data dimensionality and few individuals
(currently) contributing their data. In line with other appli-
cations such as MBeacon [22], we believe that there is a
clear benefit from sharing population- wide mean methy-
lation values. Mean methylation values could become as
relevant and well-studied as minor allele frequencies are
today for the genome.
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Vanessa T Vaillancout, Anne-Marie Madore, Soizik Berlivet,
Hamid-Reza Kohan-Ghadr, Sanny Moussette, and Catherine
Laprise. Sex-and age-dependent dna methylation at the 17q12-
q21 locus associated with childhood asthma. Human genetics,
132(7):811–822, 2013.

[36] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques
Fellay, Carl A Gunter, Jean-Pierre Hubaux, Bradley A Malin, and
XiaoFeng Wang. Privacy in the genomic era. ACM Computing
Surveys (CSUR), 2015, 2015.

[37] Opensnp. https://opensnp.org. Accessed: 2019-18-11.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[39] Personal genome project. http://www.personalgenomes.org. Ac-
cessed: 2017-20-07.

[40] Robert A Philibert, Nicolas Terry, Cheryl Erwin, Winter J Philibert,
Steven RH Beach, and Gene H Brody. Methylation array data
can simultaneously identify individuals and convey protected health
information: an unrecognized ethical concern. Clinical epigenetics,
6(1):28, 2014.

[41] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristo-
faro. Knock knock, who’s there? membership inference on aggre-
gate location data. arXiv preprint arXiv:1708.06145, 2017.

[42] Jean Louis Raisaro, Juan Ramón Troncoso-Pastoriza, Mickaël Mis-
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