
Can’t Steal? Cont-Steal! Contrastive Stealing Attacks
Against Image Encoders

Zeyang Sha† Xinlei He† Ning Yu‡ Michael Backes† Yang Zhang†

†CISPA Helmholtz Center for Information Security ‡Salesforce Research
{zeyang.sha, xinlei.he, director, zhang}@cispa.de, ning.yu@salesforce.com

Abstract

Self-supervised representation learning techniques have
been developing rapidly to make full use of unlabeled im-
ages. They encode images into rich features that are oblivi-
ous to downstream tasks. Behind their revolutionary repre-
sentation power, the requirements for dedicated model de-
signs and a massive amount of computation resources ex-
pose image encoders to the risks of potential model steal-
ing attacks - a cheap way to mimic the well-trained en-
coder performance while circumventing the demanding re-
quirements. Yet conventional attacks only target supervised
classifiers given their predicted labels and/or posteriors,
which leaves the vulnerability of unsupervised encoders un-
explored.

In this paper, we first instantiate the conventional steal-
ing attacks against encoders and demonstrate their severer
vulnerability compared with downstream classifiers. To bet-
ter leverage the rich representation of encoders, we fur-
ther propose Cont-Steal, a contrastive-learning-based at-
tack, and validate its improved stealing effectiveness in var-
ious experiment settings. As a takeaway, we appeal to our
community’s attention to the intellectual property protec-
tion of representation learning techniques, especially to the
defenses against encoder stealing attacks like ours. 1

1. Introduction
Recent years have witnessed the great success of apply-

ing deep learning (DL) to computer vision tasks. Different
from supervised DL models, self-supervised learning which
transforms unlabeled data samples into rich representations,
has gained more and more popularity.

Behind its powerful representation, it is non-trivial to ob-
tain a state-of-the-art image encoder. For instance, Sim-
CLR [6] uses 128 TPU v3 cores to pre-train a ResNet-

1See our code in https://github.com/zeyangsha/Cont-
Steal.

Figure 1. Model stealing attacks against classifiers (previous) v.s.
model stealing attacks against encoders (ours). Previous works
aim to steal a whole classifier using the predicted label or posteri-
ors of a target model. In our work, we aim to steal the target en-
coder using its embeddings. The target encoder (Et) is pre-trained
and fixed, as shown in the solid frame. The surrogate encoder (Es)
is trainable by the adversary, as shown in the dashed frame.

50 encoder with a batch size of 4096. Therefore, many
big companies provide cloud-based self-supervised learn-
ing encoder services for users. For instance, Cohere,2 Ope-
nAI,3 and Clarifai4 provide the embedding API of images
and texts for commercial usage. There are many works
[10,26,30] exploring security issues of encoder-based API.
Therefore, it is a very important and urgent problem.

These kinds of service leave the possibility of model
stealing attacks [5, 25, 28, 37, 44, 48, 50, 51]. In these at-
tacks, the adversary aims to steal the parameters or func-
tionalities of target models with only query access to them.
A successful model stealing attack does not only threaten

2https://cohere.ai/
3https://beta.openai.com/docs/api- reference/

embeddings/
4https://www.clarifai.com/models/general-image-

embedding/

https://github.com/zeyangsha/Cont-Steal
https://github.com/zeyangsha/Cont-Steal
https://cohere.ai/
https://beta.openai.com/docs/api-reference/embeddings/
https://beta.openai.com/docs/api-reference/embeddings/
https://www.clarifai.com/models/general-image-embedding/
https://www.clarifai.com/models/general-image-embedding/

the intellectual property of the target model, but also serves
as a stepping stone for further attacks such as adversarial ex-
amples [3, 4, 16, 38, 47, 52], backdoor attacks [7, 26, 41, 43],
and membership inference attacks [22–24,30,33,34,40,42,
45,46]. So far, model stealing attacks concentrate on the su-
pervised classifiers, i.e., the model responses are prediction
posteriors or labels for a specific downstream task. The vul-
nerability of unsupervised image encoders is unfortunately
unexplored.
Our Work. To fill this gap, we pioneer the systematic
investigation of model stealing attacks against image en-
coders. In this work, the adversary’s goal is to steal the
functionalities of the target model. See Figure 1 for an
overview and a comparison with previous works. More
specifically, we focus on encoders trained by contrastive
learning, which is one of the most cutting-edge unsuper-
vised representation learning strategies that unleash the in-
formation of unlabeled data.

We first instantiate the conventional stealing attacks
against encoders and expose their vulnerability. Given an
input image, the target encoder outputs its representation
(referred to as embedding). Similar to model stealing at-
tacks against classifiers, we consider the embedding as the
“ground truth” label to guide the training procedure of a sur-
rogate encoder on the adversary side. To measure the effec-
tiveness of stealing attacks, we train an extra linear layer for
the target and surrogate encoders towards the same down-
stream classification task. Preferably, the surrogate model
should achieve both high classification accuracy and high
agreement with the target predictions.

We evaluate our attacks on five datasets against four con-
trastive learning encoders. Our results demonstrate that
the conventional attacks are more effective against encoders
than against downstream classifiers. For instance, when we
steal the downstream classifier pre-trained by SimCLR on
CIFAR10 (with posteriors as its responses) using STL10 as
the surrogate dataset, the adversary can only achieve an ac-
curacy of 0.359. The accuracy, however, increases to 0.500
instead when we steal its encoder (with the embedding as
its response).

Despite its encouraging performance, conventional at-
tacks are not the most suitable ones against encoders. This
is because they treat each image-embedding pair individu-
ally without interacting across pairs. Different embeddings
are beneficial to each other as they can serve as anchors to
better locate the position of the other embeddings in their
space. Contrastive learning [6, 8, 17, 20, 27, 49, 53] is a
straightforward idea to achieve this goal. It is formulated
to enforce the embeddings of different augmentations of the
same images closer and those of different images further.

In a similar spirit, we propose Cont-Steal, a contrastive-
learning-based model stealing attack against the encoder.
The goal of Cont-Steal is to enforce the surrogate embed-

ding of an image close to its target embedding (defined as
a positive pair) and also push away embeddings of different
images irrespective of being generated by the target or the
surrogate encoders (defined as negative pairs).

The comprehensive evaluation shows that Cont-Steal
outperforms the conventional model stealing attacks to a
large extent. For instance, when CIFAR10 is the target
dataset, Cont-Steal achieves an accuracy of 0.714 on the
SimCLR encoder pretrained on CIFAR10 with the surro-
gate dataset and downstream dataset being STL10, while
the conventional attack only achieves 0.457 accuracy. Also,
Cont-Steal is more query-efficient and dataset-independent
(see Figure 9 for more details). This is because Cont-Steal
leverages higher-order information across samples to mimic
the functionality of the target encoder. To mitigate the at-
tacks, we evaluate different defense mechanisms including
noise, top-k, rounding, and watermark. Our evaluations
show that in most cases, these mechanisms cannot effec-
tively defend against Cont-Steal. Among them, top-k can
reduce the attack performance to the largest extent. How-
ever, it also strongly limits the target model’s utility.

As a takeaway, our attack further exposes the severe
vulnerability of pre-trained encoders. We appeal to our
community’s attention to the intellectual property protec-
tion of representation learning techniques, especially to the
defenses against encoder stealing attacks like ours.

2. Threat Model
In this work, for the encoder pre-trained with images, we

consider image classification as the downstream task. We
refer to the encoder as the target encoder. Then we treat both
the encoder and the linear layer trained for the downstream
task together as the target model. We first introduce the
adversary’s goal and then characterize different background
knowledge that the adversary might have.
Adversary’s Goal. Following previous work [25, 28, 44],
we taxonomize the adversary’s goal into two dimensions,
i.e., theft and utility. The theft adversary aims to build a sur-
rogate encoder that has similar performance on the down-
stream tasks as the target encoder. Different from the thief
adversary, the goal of the utility adversary is to construct a
surrogate encoder that behaves normally on different down-
stream tasks. In this case, the surrogate encoder not only
faithfully “copies” the behaviors of the target encoder, but
also serves as a stepping stone to conduct other attacks.
Adversary’s Background Knowledge. We categorize the
adversary’s background knowledge into two dimensions,
i.e., the knowledge of the target encoder and the distribu-
tion of the surrogate dataset.

Regarding knowledge of the target encoder, we assume
that the adversary only has black-box access to it, which
means that they can only query the target encoder with an
input image and obtain the corresponding output, i.e., the

embedding of the input image.
Regarding the surrogate dataset that is used to train the

surrogate encoder, we consider two cases. First, we as-
sume the adversary has the same training dataset as the tar-
get encoder. However, such an assumption may be hard to
achieve as such datasets are usually private and protected by
the model owner. In a more extreme case, we assume that
the adversary has totally no information about the target en-
coder’s training dataset, which means that they can only use
a different distribution dataset to conduct the model stealing
attacks. We later show that the adversary can still launch
effective model stealing attacks against the target encoder
given a surrogate dataset that is distributed differently com-
pared to the target dataset.

For the model architecture that is used to train the sur-
rogate encoder, we consider two cases. First, we assume
the adversary is aware of the target encoder’s architecture
and can train the same architecture surrogate encoder. Then
we relax our assumption that the adversary uses different
architectures to train the surrogate encoder. Our evalua-
tion shows that the choice of architecture does not have
much impact on the attack performance (see Table 3), which
makes the attack more realistic.

Note that we also compare our attacks against the en-
coders to the traditional model stealing attacks that focus
on the whole classifier (which has an encoder and a linear
layer). If the attack targets a whole classifier, we assume
the adversary may obtain the posteriors or the predicted la-
bel for an input image.

3. Model Stealing Attacks
In this section, we first describe the conventional attacks

against the encoders. Then, we propose a novel contrastive
stealing framework, Cont-Steal, to steal the encoders more
effectively.

3.1. Conventional Attacks Against Encoders

The adversary takes two steps to conduct the model steal-
ing attacks against the target encoder and one step for fur-
ther evaluation.
Obtain the Surrogate Dataset. To conduct model steal-
ing attacks, the adversary first needs to obtain a surrogate
dataset. Based on the knowledge of the target classifier’s
training dataset (target dataset), we consider two cases. If
the adversary has full knowledge of the target dataset, they
can directly leverage the target dataset itself as the surrogate
dataset. Or the adversary has no knowledge of the target
dataset, which means that they can only construct the surro-
gate dataset, which is distributed differently from the target
dataset.
Train the Surrogate Encoder. Slightly different from
the classifier, the response of the encoder is an embedding,
which is a feature vector. In this case, the adversary can still

leverage a similar loss function to optimize the surrogate
encoder, which can be defined as follows:

LMS =

N∑
k=1

l(ET (xk), ES(xk)) (1)

where ET (·)/ES(·) is the target/surrogate encoder, N is the
total number of samples on the surrogate dataset, and l(·) is
the MSE loss.
Apply the Surrogate Encoder to Downstream Tasks. To
evaluate the effectiveness of model stealing attacks against
the encoder, the adversary can leverage the same down-
stream task to both the target and surrogate encoders. Con-
cretely, the adversary trains an extra linear layer for the tar-
get and surrogate encoders, respectively. Note that we refer
to the target/surrogate encoder and the extra linear layer as
the target/surrogate classifiers. Then, the adversary quanti-
fies the attack effectiveness by measuring the performance
of the target/surrogate classifier on the downstream tasks.

3.2. Cont-Steal Attacks Against Encoders

To better leverage the rich information from the embed-
dings, we propose Cont-Steal, a contrastive learning-based
model stealing attacks against encoders, which leverages
contrastive learning to enhance the stealing performance.
Concretely, Cont-Steal aims to enforce the surrogate em-
bedding of an image to get close to its target embedding (de-
fined as a positive pair), and also push away embeddings of
different images regardless of being generated by the target
or the surrogate encoders (defined as negative pairs). There
are three steps for the adversary to conduct contrastive steal-
ing attacks against encoders and one step for further evalu-
ation.
Obtain the Surrogate Dataset. The adversary follows the
same strategy as Section 3.1 to obtain the surrogate dataset.
Data Augmentation. Our proposed Cont-Steal leverages
data augmentation to transform an input image into its two
augmented views. In this paper, we leverage RandAug-
ment [11] as the augmentation method, which is made up of
a group of advanced augmentation operations. Concretely,
we set n = 2 and m = 14 following Cubuk et al. [11] where
n denotes the number of transformations to a given sample
and m represents the magnitude of global distortion.
Train the Surrogate Encoder. Instead of querying the en-
coders with the original images, the adversary queries the
encoders with the augmented views of them. Concretely,
for an input image xi, we generate two augmented views of
it, i.e., x̃i,s and x̃i,t, where x̃i,s/x̃i,t is used to query the sur-
rogate/target encoder. We consider (x̃i,s, x̃j,t) as a positive
pair if i = j, and otherwise a negative pair.

Given a mini-batch of N samples, we generate N aug-
mented views as the input of the target encoder and another
N augmented views as the input of the surrogate encoders.

Concretely, the loss of Cont-Steal can be formulated as fol-
lows:

D+
encoder(i) = exp(sim(ES(x̃i,s), ET (x̃i,t))/τ)), (2)

D−
encoder(i) =

N∑
k=1

(exp(sim(ES(x̃i,s), ET (x̃k,t))/τ)), (3)

D−
self (i) =

N∑
k=1

1[k ̸=i](exp(sim(ES(x̃i,s), ES(x̃k,s))/τ)),

(4)

l(i) = −log
D+

encoder(i)

D−
encoder(i) +D−

self (i)
, (5)

LCont−Steal =

∑N
k=1 l(k)

N
, (6)

where ES(·) and ET (·) denotes the surrogate and target
encoder, sim(u, v) = uT v/||u||||v|| represents the cosine
similarity between u and v, and τ is parameter to control
the temperature.

As illustrated in Figure 2, the conventional attack treats
each embedding individually without interacting across
pairs. However, different embeddings are beneficial to each
other as they can serve as anchors to better locate the po-
sition of the other embeddings in their space. Cont-Steal
maximizes the similarity of embeddings generated from the
target and surrogate encoders for a positive pair (x̃i,s, x̃i,t)
(orange arrows in Figure 2). For the embedding gener-
ated from the target and surrogate encoders for any pair
(x̃i,s, x̃j,t), contrastive stealing aims to make them more
distant (green arrows in Figure 2). Besides, as pointed out
by Chen et al. [6], contrastive learning benefits larger neg-
ative samples. To achieve this goal, we also consider the
embeddings generated from the surrogate encoder for aug-
mented views of different images, i.e., (x̃i,s, x̃j,s), as neg-
ative pairs minimize their similarity (blue arrows in Fig-
ure 2). We later show that such design can enhance the
performance of contrastive stealing (see Table 5).
Apply the Surrogate Encoder to Downstream Tasks.
We follow Section 3.1 to evaluate the effectiveness of model
stealing on downstream tasks.

4. Experiments

In this section, we first describe the experimental setup
in Section 4.1. Then we show the performance of the tar-
get encoders on the downstream tasks. Next, we summa-
rize the performance of conventional attacks against classi-
fiers and encoders in Section 4.2. Lastly, we evaluate the
performance of Cont-Steal and conduct ablation studies to
demonstrate its effectiveness under different settings in Sec-
tion 4.3.

Figure 2. Conventional attack (top) vs. Cont-Steal (bottom)
against encoders. Conventional attack applies MSE loss to ap-
proximate target embeddings for each sample individually. Cont-
Steal (bottom) introduces data augmentation and interacts across
multiple samples: associating target/surrogate embeddings of the
same images closer and repulsing those of different images farther
away. The target encoder (Et) is pre-trained and fixed, as shown
in the solid frame. The surrogate encoder (Es) is trainable by the
adversary, as shown in the dashed frame.

4.1. Experimental Setup

Our encoders are pre-trained on CIFAR10 [1], and Im-
ageNet [12]. We use four different kinds of contrastive
methods: SimCLR [6], MoCo [20], BYOL [17] and Sim-
Siam [8] to train a ResNet18 [21] as our target encoders.
Our implementation is based on a PyTorch framework of
contrastive learning.5 Then, these well pre-trained encoders
will be applied to train downstream classifiers on CIFAR10
[1], STL10 [9], Fashion-MNIST [54], and SVHN [35].
In the experiments in the model stealing section, we use CI-
FAR10, STL10, Fashion-MNIST, and SVHN to conduct the
attack.

Agreement and accuracy are used as metrics to evalu-
ate the model stealing attack’s performance. The agreement
will evaluate the similarity of surrogate encoders and target
encoders in downstream tasks. The accuracy will evaluate

5https://github.com/vturrisi/solo-learn/

https://github.com/vturrisi/solo-learn/

F-M
NIST

CIFAR10
STL10

SVHN
0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y SimCLR

MoCo

BYOL

SimSiam

(a) CIFAR10
F-M

NIST

CIFAR10
STL10

SVHN
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) ImageNet100

Figure 3. The performance of target classifiers composed by tar-
get encoder and an extra linear layer. The encoders are pre-trained
on CIFAR10 (a) and ImageNet100 (b). The x-axis represents dif-
ferent downstream datasets for the target encoder and classifier.
The y-axis represents the target model’s accuracy on downstream
tasks.

the utility of surrogate models on downstream tasks. For
each metric, a larger value is more desirable. During the
stealing process, we set the batch size as 128 and the learn-
ing rate as 0.001. We show more results on the impact of
hyperparameters in Supplementary Material in Section A.2

4.2. Performance of Conventional Attacks

We first show the target encoder’s performance in vari-
ous downstream tasks. The results are summarized in Fig-
ure 3. We conduct our experiments to explore whether the
encoders are more vulnerable to model stealing attacks. We
show our results of target encoders and downstream classi-
fiers both trained on CIFAR10 in Figure 4. In all cases, the
adversary can get better attack performance by stealing en-
coders rather than classifiers. This gap becomes especially
apparent when the adversary has absolutely no knowledge
of the train data. This is because the rich information in
embeddings can better facilitate the learning process of sur-
rogate encoders. For instance, when the surrogate dataset
is CIFAR10 (the same as the target downstream dataset),
stealing SimCLR’s embeddings can achieve 0.785 agree-
ment, while stealing predicted labels can achieve 0.712
agreement. However, when the surrogate dataset is totally
different from the downstream target dataset, e.g., SVHN,
stealing embeddings from SimCLR can still achieve 0.507
agreement while the agreement of stealing predicted labels
drops to 0.192. We show more results in Supplementary
Material Section A.4 due to the page limitation.

We also find that all model stealing attacks’ accuracy and
agreement are highly correlated. As shown in Figure 5, the
agreement is highly correlated with the accuracy. This indi-
cates that besides accuracy, the agreement can also be used
as a metric to evaluate the performance of model stealing
attacks. We show the result on Figure 5. It can be obvi-
ously seen that agreement is highly related to accuracy. We
use the linear regression method to describe the relationship
between agreement and accuracy and find that the relation
function is y=0.940 * x.

4.3. Performance of Cont-Steal

As shown in Section 4.2, encoders are more vulnerable
to model stealing attacks since the embedding usually con-
tains richer information compared to the predicted label or
posteriors. We then show that our proposed Cont-Steal can
achieve better attack performance by making deeper use of
embeddings’ information.

Figure 7 shows the attack performance when the target
pre-training dataset is CIFAR10. Note that we also show
the attack performance on other settings in the appendix.
We discover that compared to conventional attacks against
encoders, Cont-Steal can consistently achieve better per-
formance. For instance, as shown in Figure 7d, when the
target encoder is MoCo trained on CIFAR10, if the adver-
sary uses STL10 to conduct model stealing attacks against
encoders, the surrogate encoder can achieve 0.841 agree-
ment in CIFAR10 downstream tasks with the Cont-Steal
but only 0.479 with conventional attacks. Another finding
is that compared to the same distribution surrogate dataset,
our Cont-Steal can better enhance the performance when
the surrogate dataset comes from a different distribution
from the pre-trained dataset. For instance, when the target
encoder is SimCLR trained on CIFAR10, Cont-Steal out-
performs conventional attack by 0.055 agreement when the
surrogate dataset is also CIFAR10, while the improvement
increases to 0.207 and 0.214 when the surrogate dataset is
STL10. We show more comparing results in Supplemen-
tary Material Section A.5. Note that our Cont-Steal also
has great performance on other recent state-of-the-art visual
models (ViT [13], MAE [19], and CLIP [39]), as we show
in Section A.6, and can have better performance than other
recent similar attacks [14, 31] shown in Section A.7.

To better understand why Cont-Steal can always achieve
better performance, we extract samples’ embeddings gener-
ated by different encoders, i.e., the target encoder, surrogate
encoder trained with the conventional attack, and surrogate
encoder trained with the Cont-Steal, and project them into
a 2-dimensional space using t-SNE. From the results sum-
marized in Figure 6, we find that Cont-Steal can effectively
mimic the pattern of the embeddings as the target encoder.
However, the conventional attack fails to capture such pat-
terns for a number of input samples, e.g., the outer circle in
Figure 8c. This further demonstrates that Cont-Steal bene-
fits from jointly considering different embeddings as they
can serve as anchors to better locate the position of the
other embeddings in their space. We also show some ab-
lation study results on Supplementary Material Section A.2
to show that with the less surrogate dataset, less training
epoch, and different model architecture, Cont-Steal can still
achieve much better results than conventional steal. Also,
we show further attacks based on the stole models on Sup-
plementary Material Section A.3 to show that Cont-Steal
can be used as a springboard for other attacks.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4. The performance of model stealing attack against target encoders and downstream classifiers both trained on CIFAR10. Target
models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), and
SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Agreement

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Label
Posterior
Representation
Cont-Steal

Figure 5. The relationship between accuracy and agreement. The
x-axis is the agreement number, and the y-axis is the accuracy
number.

(a) Target encoder (b) Cont-Steal (c) Conventional

Figure 6. The t-SNE projection of 1, 000 randomly selected sam-
ples’ embeddings from target encoder, surrogate encoder under
Cont-Steal, and surrogate encoder under the conventional attack,
respectively. Note that the target encoder is pre-trained by Sim-
CLR on CIFAR10.

Table 1. The monetary and (training) time costs for normal train-
ing and Cont-Steal attack. Cont-Steal’s monetary cost contains
two parts: query cost and training cost. Note that we ignore the
query time cost of Cont-Steal as it normally has a smaller value
than the training time cost.

Monetary Cost Time Cost

Model Normal ($) Cont-Steal ($) Normal (h) Cont-Steal (h)

SimCLR 58.68 11.83 (1.83 + 10) 20.01 0.62

MoCo 54.83 12.13 (2.13 + 10) 18.69 0.73

BYOL 61.46 12.08 (2.08 + 10) 20.96 0.71

SimSiam 57.14 12.00 (2.00 + 10) 19.46 0.68

4.4. Cost Analysis

As we mentioned before, pre-train a state-of-the-art en-
coder is time-consuming and resource-demanding. We
wonder if the model stealing attacks can steal the function-
ality of the encoder with much less cost. To this end, we
evaluate the time and monetary cost of training an encoder
from scratch or stealing a pre-trained encoder via Cont-
Steal. The monetary cost of model stealing includes query-
ing the target model and training the surrogate model. We
refer to the query price as $1 for 1,000 queries based on
AWS.6 Our experiment is conducted on 1 NVIDIA A100
whose price is $2.934 per hour based on google cloud.7

The monetary and time cost is shown in Table 1. We ob-
serve that Cont-Steal can obtain a surrogate encoder with
much less money and time cost than training the encoder
from scratch. For instance, a ResNet18 trained by SimCLR

6https://aws.amazon.com/rekognition/pricing/
7https://cloud.google.com/compute/gpus-pricing/

https://aws.amazon.com/rekognition/pricing/
https://cloud.google.com/compute/gpus-pricing/

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 7. The performance of Cont-Steal and conventional attack against target encoders trained on CIFAR10. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses CIFAR10 as the downstream task to
evaluate the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement
of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

0 0.01 0.1 0.5 1 2 10
Noise

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Target

Conventional

Cont-Steal

(a) Adding noise

512 200 50 10 1
Top-k

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Top-k

None 5 4 3 2 1
Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) Rounding

Figure 8. The performance of different defense methods. Target
encoders are trained on CIFAR10. The downstream dataset and
surrogate dataset are both STL10. The x-axis represents different
defense levels. The y-axis represents the model’s accuracy.

on CIFAR10 takes 20.01 hours and 58.68$ on 1 NVIDIA
A100 GPU, while Cont-Steal only takes 0.62 hours and
11.83$ to steal an encoder that performs similarly on down-
stream tasks. The results demonstrate that Cont-Steal is able
to construct surrogate encoders that perform similarly to the
target encoders but with much less time and monetary cost.

4.5. Defenses

In this section, we will consider different defenses
against model stealing attacks on encoders to evaluate the
robustness of our proposed attack. We divided all defenses
into three categories: perturbation-based defense [37] and
watermark-based defense [2].
Perturbation-based Defense. In this defense setting, the
defender aims to perturb the output of the target model
to limit the information the adversary can obtain. The
common practice of this kind of defense includes adding
noise [37], top-k [37], and feature rounding [48].

Adding noise means that the defender will introduce
noise value to the original output of the model. In our case,

we consider adding Gaussian noise to the embeddings gen-
erated by the target encoder. We set the mean value to 0, and
different noise levels represent different standard deviations
of the Gaussian distribution. For Top-k, the defender will
only output the first k largest number of each embedding
(and set the rest as 0). In this way, the high-dimensional
information of the image contained in embeddings can be
appropriately reduced. Regarding feature rounding, the de-
fender will truncate the values in the embedding to a spe-
cific digit. As a case study, we consider a ResNet18 encoder
pre-trained on CIFAR10 with SimCLR and take STL10 to
train its downstream classifier. The experimental results
are summarized in Figure 8. We can observe that while
adding noise and top-k can reduce the model stealing at-
tacks’ performance, it may also degrade the target model
performance to a large extent. For instance, when the noise
increases from 0 to 10, the attack performance of Cont-
Steal decreases from 0.729 to 0.410, while the target en-
coder’s performance drops from 0.734 to 0.098. On the
other hand, rounding only has a limited effect on both target
model performance and attack performance. This indicates
that perturbation-based defense cannot defend against the
encoder’s model stealing attack effectively since they can-
not reach a good trade-off between attack performance and
model utility.
Watermark-based Defense. Watermark-based defense
is also one of the most popular defense methods against
model stealing attacks [2]. Watermark provides copyright
protection by adding some specific identification to the tar-
get model. If the surrogate model is stolen from the wa-
termarked target model, then ideally, it will contain the
same watermark as well. Adi et al. [2] show that back-

Table 2. Watermark defense. Pretrain dataset and surrogate dataset
are both CIFAR10. Watermark leverages a watermark rate (wr) to
verify the ownership of target models. A higher wr denotes a better
verification performance.

Dataset Target model (acc/wr) Cont-Steal (acc/wr) Baseline (acc/wr)

CIFAR10 0.864 / 0.998 0.769 / 0.130 0.871 / 0.095

STL10 0.721 / 0.999 0.702 / 0.034 0.733 / 0.111

SVHN 0.501 / 0.999 0.535 / 0.303 0.492 / 0.103

F-MNIST 0.857 / 0.999 0.813 / 0.061 0.850 / 0.099

door technology can be used as the watermark to protect the
model. In that sense, BadEncoder [26], a backdoor mecha-
nism against the encoder, can be leveraged as a watermark-
ing technology for our target encoder as well. The defend-
ers first will train the watermarked (backdoored) encoder,
where images with a certain trigger will cause misclassi-
fication. Then, if they find the surrogate model can also
misclassify images with the same trigger, the defenders can
claim ownership of the surrogate model.

In our experiments, we leverage BadEncoder to water-
mark the encoder pre-trained on CIFAR10 by SimCLR, and
leverage different downstream datasets to perform differ-
ent tasks. We assume a strong adversary that has the same
downstream dataset as the surrogate dataset. Also, we con-
sider the baseline cases where the trigger samples are fed
into the clean model to calculate the watermark rate (wr).
As shown in Table 2), the watermark cannot be preserved as
the surrogate models constructed by Cont-Steal have simi-
lar wr as the baseline model. For instance, when the down-
stream dataset is CIFAR10, Cont-Steal builds a surrogate
model with 0.769 accuracy while only 0.130 wr, which is
close to the baseline model. This indicates that Cont-Steal
can bypass the watermarking technique as it can reach sim-
ilar utility while reducing the wr to a large extent. Note
that there is also another work to protect contrastive learn-
ing models from model stealing attacks using dataset in-
ference [15]. We show in Supplementary Material in Sec-
tion A.8 that this kind of defense can be easily bypassed by
Cont-Steal.

5. Related Work
Contrastive Learning. Contrastive learning is one of the
most popular methods to train encoders. Current works [6,
8, 17, 20, 49, 53] propose different advanced contrastive
learning algorithms. SimCLR, MoCo, BYOL, SimSiam are
currently the mainstream frameworks of contrastive learn-
ing. Thus, we concentrate on them in this paper. There are
many works on evaluating the security and privacy risks of
contrastive learning. Previous works [23, 26, 30] propose
membership inference attacks, attribution inference attacks,
and backdoor attacks on contrastive learning. All proposed
attacks show that contrastive-based models are vulnerable

to popular attacks. Therefore, the security issues of self-
supervised learning deserve more attention.

Model Stealing Attack. In model stealing, the adversary’s
goal is to steal part of the target model. Tramèr et al. [48]
proposed the first model stealing attack against black-box
machine learning API to steal its parameters. Wang et
al. [50] proposed the first hyperparameter stealing attacks
against ML models. Oh et al. [36] also tried to steal ma-
chine learning model’s architectures and hyperparameters.
Orekondy et al. [37] proposed knockoff nets, which aim at
stealing the functionality of black-box models. Krishna et
al. [28] formulated a model stealing attack against BERT-
based API. Besides, Wu et al. [51] and Shen et al. [44]
perform model stealing attacks against Graph Neural Net-
works. These works often have relatively strong assump-
tions, such as the model family is known and the victim’s
data is partly available while we conduct model stealing at-
tacks against encoders and relax the above assumption.

6. Conclusion

In this paper, we conduct the first model stealing risk
assessment towards image encoders. Our evaluation shows
that the encoder is more vulnerable to model stealing attacks
compared to the classifier. This is because the embedding
provided by the encoder contains richer information than
the posteriors or predicted labels from whole classifiers.

To better unleash the power from the embeddings, we
propose Cont-Steal, a contrastive learning-based model
stealing method against encoders. Concretely, Cont-Steal
introduces different types of negative pairs as “anchors” to
better navigate the surrogate encoder and learn the func-
tionality of the target encoder. Extensive evaluations show
that Cont-Steal consistently performs better than conven-
tional attacks against encoders. And such an advantage is
further amplified when the adversary has no information on
the target dataset, a limited amount of data, and restricted
query budgets. Our work points out that the threat of model
stealing attacks against encoders is largely underestimated,
which prompts the need for more effective intellectual prop-
erty protection of representation learning techniques.

Acknowledgments. We thank all anonymous review-
ers for their constructive comments. This work is partially
funded by the Helmholtz Association within the project
“Trustworthy Federated Data Analytics” (TFDA) (funding
number ZT-I-OO1 4) and by the European Health and Digi-
tal Executive Agency (HADEA) within the project “Under-
standing the individual host response against Hepatitis D
Virus to develop a personalized approach for the manage-
ment of hepatitis D” (D-Solve) (grant agreement number
101057917).

References
[1] https://www.cs.toronto.edu/˜kriz/

cifar.html.

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning Your Weak-
ness Into a Strength: Watermarking Deep Neural Net-
works by Backdooring. In USENIX Security Sympo-
sium (USENIX Security), pages 1615–1631. USENIX,
2018.

[3] Battista Biggio, Igino Corona, Davide Maiorca,
Blaine Nelson, Nedim Srndic, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion Attacks against Ma-
chine Learning at Test Time. In European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD),
pages 387–402. Springer, 2013.

[4] Nicholas Carlini and David Wagner. Towards Evaluat-
ing the Robustness of Neural Networks. In IEEE Sym-
posium on Security and Privacy (S&P), pages 39–57.
IEEE, 2017.

[5] Varun Chandrasekaran, Kamalika Chaudhuri, Irene
Giacomelli, Somesh Jha, and Songbai Yan. Model Ex-
traction and Active Learning. CoRR abs/1811.02054,
2018.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey E. Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. In In-
ternational Conference on Machine Learning (ICML),
pages 1597–1607. PMLR, 2020.

[7] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang.
BadNL: Backdoor Attacks Against NLP Models with
Semantic-preserving Improvements. In Annual Com-
puter Security Applications Conference (ACSAC),
pages 554–569. ACSAC, 2021.

[8] Xinlei Chen and Kaiming He. Exploring Simple
Siamese Representation Learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 15750–15758. IEEE, 2021.

[9] Adam Coates, Andrew Y. Ng, and Honglak Lee. An
Analysis of Single-Layer Networks in Unsupervised
Feature Learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages
215–223. JMLR, 2011.

[10] Tianshuo Cong, Xinlei He, and Yang Zhang. SSL-
Guard: A Watermarking Scheme for Self-supervised

Learning Pre-trained Encoders. In ACM SIGSAC Con-
ference on Computer and Communications Security
(CCS), pages 579–593. ACM, 2022.

[11] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and
Quoc Le. RandAugment: Practical Automated Data
Augmentation with a Reduced Search Space. In
Annual Conference on Neural Information Process-
ing Systems (NeurIPS), pages 18613–18624. NeurIPS,
2020.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. ImageNet: A large-scale hierarchi-
cal image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–
255. IEEE, 2009.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. An Image is Worth
16x16 Words: Transformers for Image Recognition
at Scale. In International Conference on Learning
Representations (ICLR), 2021.

[14] Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad
Kaleem, Jonas Guan, and Nicolas Papernot. On
the Difficulty of Defending Self-Supervised Learning
against Model Extraction. In International Conference
on Machine Learning (ICML). JMLR, 2022.

[15] Adam Dziedzic, Haonan Duan, Muhammad Ahmad
Kaleem, Nikita Dhawan, Jonas Guan, Yannis Cattan,
Franziska Boenisch, and Nicolas Papernot. Dataset In-
ference for Self-Supervised Models. In Annual Con-
ference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2022.

[16] Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and Harnessing Adversarial Ex-
amples. In International Conference on Learning Rep-
resentations (ICLR), 2015.

[17] Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal
Piot, Koray Kavukcuoglu, Rémi Munos, and Michal
Valko. Bootstrap Your Own Latent - A New Approach
to Self-Supervised Learning. In Annual Conference
on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2020.

[18] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kris-
ten Grauman, Tajana Rosing, and Rogério Schmidt

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Feris. SpotTune: Transfer Learning Through Adap-
tive Fine-Tuning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4805–
4814. IEEE, 2019.

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross B. Girshick. Masked Au-
toencoders Are Scalable Vision Learners. CoRR
abs/2111.06377, 2021.

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. Momentum Contrast for Unsuper-
vised Visual Representation Learning. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9726–9735. IEEE, 2020.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. IEEE, 2016.

[22] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun
Shen, and Yang Zhang. Node-Level Membership
Inference Attacks Against Graph Neural Networks.
CoRR abs/2102.05429, 2021.

[23] Xinlei He and Yang Zhang. Quantifying and Mitigat-
ing Privacy Risks of Contrastive Learning. In ACM
SIGSAC Conference on Computer and Communica-
tions Security (CCS), pages 845–863. ACM, 2021.

[24] Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina,
Neil Zhenqiang Gong, and Yinzhi Cao. Practical Blind
Membership Inference Attack via Differential Com-
parisons. In Network and Distributed System Security
Symposium (NDSS). Internet Society, 2021.

[25] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High Accu-
racy and High Fidelity Extraction of Neural Networks.
In USENIX Security Symposium (USENIX Security),
pages 1345–1362. USENIX, 2020.

[26] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong.
BadEncoder: Backdoor Attacks to Pre-trained En-
coders in Self-Supervised Learning. In IEEE Sympo-
sium on Security and Privacy (S&P). IEEE, 2022.

[27] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised Contrastive
Learning. In Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS). NeurIPS, 2020.

[28] Kalpesh Krishna, Gaurav Singh Tomar, Ankur P.
Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on Sesame Street! Model Extraction of BERT-based

APIs. In International Conference on Learning Rep-
resentations (ICLR), 2020.

[29] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial Examples in the Physical World. CoRR
abs/1607.02533, 2016.

[30] Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhen-
qiang Gong. EncoderMI: Membership Inference
against Pre-trained Encoders in Contrastive Learning.
In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2021.

[31] Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhen-
qiang Gong. StolenEncoder: Stealing Pre-trained En-
coders in Self-supervised Learning. In ACM SIGSAC
Conference on Computer and Communications Secu-
rity (CCS), pages 2115–212. ACM, 2022.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards Deep Learning Models Resistant to Adversar-
ial Attacks. In International Conference on Learning
Representations (ICLR), 2018.

[33] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine Learning with Membership Privacy using Ad-
versarial Regularization. In ACM SIGSAC Conference
on Computer and Communications Security (CCS),
pages 634–646. ACM, 2018.

[34] Milad Nasr, Reza Shokri, and Amir Houmansadr.
Comprehensive Privacy Analysis of Deep Learn-
ing: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. In IEEE
Symposium on Security and Privacy (S&P), pages
1021–1035. IEEE, 2019.

[35] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y. Ng. Reading Digits
in Natural Images with Unsupervised Feature Learn-
ing. In Annual Conference on Neural Information Pro-
cessing Systems (NIPS). NIPS, 2011.

[36] Seong Joon Oh, Max Augustin, Bernt Schiele, and
Mario Fritz. Towards Reverse-Engineering Black-
Box Neural Networks. In International Conference
on Learning Representations (ICLR), 2018.

[37] Tribhuvanesh Orekondy, Bernt Schiele, and Mario
Fritz. Knockoff Nets: Stealing Functionality of Black-
Box Models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4954–4963.
IEEE, 2019.

[38] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram

Swami. The Limitations of Deep Learning in Adver-
sarial Settings. In IEEE European Symposium on Se-
curity and Privacy (Euro S&P), pages 372–387. IEEE,
2016.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning
Transferable Visual Models From Natural Language
Supervision. In International Conference on Machine
Learning (ICML), pages 8748–8763. PMLR, 2021.

[40] Alexandre Sablayrolles, Matthijs Douze, Cordelia
Schmid, Yann Ollivier, and Hervé Jégou. White-box
vs Black-box: Bayes Optimal Strategies for Mem-
bership Inference. In International Conference on
Machine Learning (ICML), pages 5558–5567. PMLR,
2019.

[41] Ahmed Salem, Michael Backes, and Yang Zhang.
Don’t Trigger Me! A Triggerless Backdoor At-
tack Against Deep Neural Networks. CoRR
abs/2010.03282, 2020.

[42] Ahmed Salem, Yang Zhang, Mathias Humbert, Pas-
cal Berrang, Mario Fritz, and Michael Backes. ML-
Leaks: Model and Data Independent Membership In-
ference Attacks and Defenses on Machine Learning
Models. In Network and Distributed System Security
Symposium (NDSS). Internet Society, 2019.

[43] Zeyang Sha, Xinlei He, Pascal Berrang, Mathias
Humbert, and Yang Zhang. Fine-Tuning Is All
You Need to Mitigate Backdoor Attacks. CoRR
abs/2212.09067, 2022.

[44] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang.
Model Stealing Attacks Against Inductive Graph Neu-
ral Networks. In IEEE Symposium on Security and
Privacy (S&P), pages 1175–1192. IEEE, 2022.

[45] Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. Membership Inference Attacks
Against Machine Learning Models. In IEEE Sym-
posium on Security and Privacy (S&P), pages 3–18.
IEEE, 2017.

[46] Liwei Song and Prateek Mittal. Systematic Evalua-
tion of Privacy Risks of Machine Learning Models.
In USENIX Security Symposium (USENIX Security).
USENIX, 2021.

[47] Florian Tramèr, Alexey Kurakin, Nicolas Papernot,
Ian Goodfellow, Dan Boneh, and Patrick McDaniel.

Ensemble Adversarial Training: Attacks and De-
fenses. In International Conference on Learning Rep-
resentations (ICLR), 2017.

[48] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing Machine Learn-
ing Models via Prediction APIs. In USENIX Secu-
rity Symposium (USENIX Security), pages 601–618.
USENIX, 2016.

[49] Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
Representation Learning with Contrastive Predictive
Coding. CoRR abs/1807.03748, 2018.

[50] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In IEEE Sym-
posium on Security and Privacy (S&P), pages 36–52.
IEEE, 2018.

[51] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang
Yuan. Model Extraction Attacks on Graph Neu-
ral Networks: Taxonomy and Realization. CoRR
abs/2010.12751, 2020.

[52] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew
Docherty, Kai Lu, and Liming Zhu. Adversarial Ex-
amples for Graph Data: Deep Insights into Attack and
Defense. In International Joint Conferences on Ar-
tifical Intelligence (IJCAI), pages 4816–4823. IJCAI,
2019.

[53] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and
Dahua Lin. Unsupervised Feature Learning via Non-
Parametric Instance Discrimination. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 3733–3742. IEEE, 2018.

[54] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. CoRR
abs/1708.07747, 2017.

[55] Ziqing Yang, Zeyang Sha, Michael Backes, and Yang
Zhang. From Visual Prompt Learning to Zero-
Shot Transfer: Mapping Is All You Need. CoRR
abs/2303.05266, 2023.

A. Supplementary Material
A.1. Training Algorithm of Cont-Steal

Algorithm 1: The training process of Cont-Steal.

input : Surrogate training dataset Dtrain
surrogate,

target encoder Et, surrogate encoder Es

1 Initialize Es’s parameters;
2 for each epoch do
3 for each batch do
4 Sample a batch with N training data samples

x1, x2, · · · , xN from Dtrain
surrogate

5 Generate augmented data samples:
(x̃1,t, x̃1,s), (x̃2,t, x̃2,s), · · · , (x̃N,t, x̃N,s),
where x̃k,t and x̃k,s are the two augmented
views of xk

6 Feed x̃k,t to Et and x̃k to Es to calculate the
contrastive steal loss:
LCont−Steal =

∑N
k=1 l(k)

N
7 Optimize Es’s parameters with the

contrastive steal loss LCont−Steal

8 end
9 end

10 return Surrogate encoder Es

Algorithm 1 presents the training process of contrastive
stealing. In each batch, given N training samples, we first
generate 2N augmented views and feed the target encoder
and surrogate encoder with different views generated by the
same samples. Then, we optimize the surrogate encoder by
minimizing LCont−Steal.

A.2. Ablation Studies on Adversary Training Pro-
cess

Impact of Surrogate Encoder’s Architecture. Previ-
ous experiments are based on the assumption that the ad-
versary knows the target encoder’s architecture. We then
investigate whether the attack against the encoder is still ef-
fective when the surrogate encoder has different model ar-
chitectures compared to the target encoder. Concretely, we
perform Cont-Steal against the ResNet18 encoder with the
surrogate encoder’s architecture as ResNet18, ResNet34,
ResNet50, DenseNet161, and MobileNetV2, respectively.
As shown in Table 3, we can see that the architecture of
the surrogate model only has limited influence on the attack
performance. For instance, the adversary can achieve 0.839
accuracy using the same architecture as the target model,
while it can even achieve 0.840 accuracy when using a more
complex model architecture (ResNet50) on SimCLR. The
attack performance will drop a little if the adversary uses
DenseNet161 and MobileNetV2. This might be because
the architectures of DenseNet161 and MobileNetV2 have

Table 3. Cont-Steal attack performance of different surrogate ar-
chitectures. Target encoders (ResNet18) and downstream classi-
fiers are trained on CIFAR10. The surrogate dataset is also CI-
FAR10.

Framework Architectures Agreement Accuracy

SimCLR
ResNet18 0.835 0.839
ResNet34 0.837 0.842
ResNet50 0.844 0.840
DenseNet161 0.831 0.828
MobileNetV2 0.815 0.811

MoCo
ResNet18 0.857 0.849
ResNet34 0.858 0.849
ResNet50 0.867 0.856
DenseNet161 0.813 0.811
MobileNetV2 0.796 0.801

BYOL
ResNet18 0.845 0.842
ResNet34 0.850 0.847
ResNet50 0.857 0.855
DenseNet161 0.845 0.821
MobileNetV2 0.839 0.847

SimSiam
ResNet18 0.856 0.835
ResNet34 0.858 0.839
ResNet50 0.860 0.848
DenseNet161 0.791 0.783
MobileNetV2 0.812 0.832

larger differences compared to ResNet18. However, the
accuracy with DenseNet161/MobileNetV2 as the surrogate
encoder’s architecture can still achieve 0.828/0.811. This
demonstrates that the model architectures of the surrogate
encoder only have a limited impact on the attack perfor-
mance, which makes the attack a more realistic threat.
Impact of Surrogate Dataset’s Size and Surrogate
Model’s Training Epoch. We conduct ablation studies
here to better illustrate the effectiveness of Cont-Steal. Con-
cretely, we investigate whether conventional attacks and
Cont-Steal are still effective under limited surrogate dataset
size and the number of training epochs. Ideally, we con-
sider the attack that can reach similar performance but with
less surrogate dataset size and fewer training epochs as a
better attack as it requires less query and monetary costs.
As shown in Figure 9, we observe that both conventional
attacks and Cont-Steal can have better performance with a
larger surrogate dataset size and more training epochs. For
instance, Cont-Steal reaches 0.675 agreement when the sur-
rogate encoder is trained with 10% surrogate dataset for 50
epochs, while the agreement increase to 0.812 with 100%
surrogate dataset and 100 training epochs. The second ob-
servation is that Cont-Steal outperforms conventional at-
tacks even with limited data and training epochs. For in-
stance, even with only 10% surrogate dataset and 10 train-
ing epochs, the surrogate encoder built by Cont-Steal can
reach 0.562 agreement, while the conventional attack can
only achieve 0.479 agreement with the full surrogate dataset
and 100 training epochs. As we mentioned before, this is
because Cont-Steal can enforce the surrogate embedding of
an image close to its target embedding and also push away

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Surrogate dataset size

100

90

80

70

60

50

40

30

20

10

N
um

be
r o

f t
ra

in
in

g
ep

oc
hs

0.37 0.4 0.41 0.43 0.44 0.46 0.46 0.48 0.49 0.48

0.37 0.39 0.41 0.43 0.44 0.45 0.46 0.47 0.48 0.48

0.37 0.39 0.4 0.42 0.44 0.44 0.46 0.47 0.48 0.48

0.36 0.39 0.41 0.42 0.43 0.45 0.46 0.46 0.48 0.49

0.37 0.4 0.41 0.42 0.43 0.44 0.46 0.47 0.47 0.48

0.36 0.4 0.4 0.41 0.42 0.43 0.45 0.46 0.47 0.47

0.37 0.39 0.39 0.41 0.42 0.44 0.46 0.45 0.47 0.47

0.37 0.39 0.39 0.41 0.42 0.43 0.44 0.45 0.46 0.46

0.37 0.38 0.38 0.39 0.4 0.42 0.43 0.44 0.44 0.45

0.39 0.37 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ag
re

em
en

t

(a) Conventional

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Surrogate dataset size

100

90

80

70

60

50

40

30

20

10

N
um

be
r o

f t
ra

in
in

g
ep

oc
hs

0.71 0.75 0.78 0.79 0.79 0.8 0.8 0.8 0.81 0.81

0.71 0.75 0.77 0.78 0.79 0.79 0.81 0.8 0.81 0.81

0.7 0.74 0.77 0.78 0.79 0.79 0.79 0.81 0.81 0.81

0.69 0.73 0.76 0.77 0.78 0.79 0.8 0.79 0.8 0.8

0.69 0.72 0.75 0.76 0.77 0.79 0.79 0.79 0.79 0.8

0.67 0.71 0.74 0.76 0.76 0.77 0.78 0.79 0.79 0.79

0.64 0.7 0.72 0.75 0.75 0.76 0.77 0.78 0.78 0.78

0.62 0.68 0.71 0.73 0.75 0.75 0.76 0.77 0.78 0.78

0.59 0.65 0.68 0.69 0.72 0.74 0.73 0.75 0.75 0.76

0.56 0.61 0.63 0.65 0.67 0.68 0.69 0.7 0.7 0.72
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ag
re

em
en

t

(b) Cont-Steal

Figure 9. Heatmap of the agreement scores of model stealing attacks. The target model’s encoder and downstream classifier are both
ResNet18 trained by SimCLR on CIFAR10. The surrogate dataset is STL10. Surrogate dataset’s size refers to the proportion of surrogate
data we used for the whole surrogate dataset. We show the performance of 100 combinations of different training epochs and the surrogate
gate dataset’s size.

embeddings of different images irrespective of being gener-
ated by the target or the surrogate encoders (see also Table 5
for the necessity of introducing negative pairs from the sur-
rogate encoder). This makes Cont-Steal a more effective
model stealing attack against encoders.

Impact of Surrogate Dataset’s Correlation With the Tar-
get Dataset. In the meanwhile, since the adversary cannot
always have knowledge about the target dataset, the impact
of the surrogate dataset’s correlation with the target dataset
is also worth consideration. We find that Cont-Steal de-
pends less on the surrogate dataset’s distribution and can al-
ways achieve stable performance. We plot the attack agree-
ment in Figure 10 where the target encoders and down-
stream classifiers are trained on CIFAR10. We can see that
when the adversary conducts a conventional attack against
the classifier, the adversary’s knowledge of target training
data is crucial. For example, when the adversary can only
get the predicted label from the target model, he/she can
only achieve 0.182 agreement when using F-MNIST to at-
tack the model trained by SimCLR, while it can achieve
0.711 agreement when using CIFAR10 as the surrogate
dataset, which is same as target dataset. However, compared
to the predicted label or posterior as the response, embed-
ding depends less on the surrogate dataset distribution, and
Cont-Steal can better leverage the embedding information,
contributing to the less dependent on the surrogate dataset’s
distribution. For instance, when the target model is trained
by SimCLR, Cont-Steal can achieve 0.832 agreement when
the surrogate dataset is STL10, which is even better than

the best conventional attack (0.781) using the exact same
target training dataset as the surrogate dataset and embed-
ding as the response. Such observation better implies that
Cont-Steal can always achieve good performance regardless
of the surrogate dataset’s distribution and can also achieve
more generalized performance in practice.

Table 4. Impact of learning rate and batch size. The target dataset
and downstream dataset are both CIFAR10. The surrogate dataset
is STL10. Note that for different learning rates, we set the batch
size as 128. For different batch sizes, we set the learning rate as
0.001

Hyperparamter Different Settings Agreement

Learning Rate
0.001 0.813
0.002 0.801
0.003 0.805
0.004 0.819
0.005 0.809

Batch Size
16 0.827
32 0.806
64 0.800
128 0.813
256 0.775

Impact of Hyperparameters. In our experiments, we set
batch size as 128 and learning rate as 0.001. We show in
Table 4 that with reasonable batch size and learning rate,
our Cont-Steal can have stable performance.
Impact of Negative Pairs Generated From the Surrogate
Encoder. In Cont-Steal’s loss functions, besides D−

encoder,
we also consider the distance of negative pairs generated

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.71 0.37 0.19 0.17

0.74 0.39 0.21 0.17

0.79 0.5 0.51 0.49

0.85 0.83 0.7 0.69
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t
(a) SimCLR

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.71 0.35 0.2 0.16

0.76 0.41 0.24 0.18

0.79 0.48 0.49 0.48

0.87 0.84 0.7 0.69
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(b) MoCo

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.72 0.36 0.2 0.13

0.74 0.41 0.22 0.19

0.78 0.47 0.47 0.48

0.86 0.83 0.69 0.68 0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(c) BYOL

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.74 0.38 0.25 0.18

0.79 0.43 0.31 0.19

0.79 0.45 0.51 0.49

0.87 0.85 0.75 0.73
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(d) SimSiam

Figure 10. Heatmap of the agreement scores of model stealing attacks. We show the performance of 16 combinations of different informa-
tion that the target model outputs and the adversary’s knowledge of target training data. Target models are trained on CIFAR10.

from the surrogate encoder itself, i.e., D−
self . To evaluate

the necessity of D−
self , we take the target encoder trained

by BYOL on CIFAR10 and the downstream task on STL10
as an example and study the attack performance with and
without D−

self . The results are summarized in Table 5. We
find that adding D−

self greatly improves the attack perfor-
mance in both accuracy and agreement. For instance, when
the surrogate dataset is STL10, the surrogate model stolen
by Cont-Steal with D−

self achieves 0.817 agreement while
only 0.314 if without D−

self . The reason behind this is that
the negative pairs generated from the surrogate encoder can
serve as extra “anchors” to better locate the position of the
embedding, which leads to higher agreement. Such obser-
vation demonstrates that it is important to introduce D−

self

in Cont-Steal as well.

Table 5. The agreement and accuracy of different contrastive
losses. We use BYOL trained on STL10 as the target model.

Dataset Method BYOL
Agreement Accuracy

CIFAR10 w/o D−
encoder 0.242 0.242

w D−
encoder 0.844 0.843

F-MNIST w/o D−
encoder 0.215 0.217

w D−
encoder 0.647 0.641

STL10 w/o D−
encoder 0.314 0.320

w D−
encoder 0.817 0.811

SVHN w/o D−
encoder 0.176 0.175

w D−
encoder 0.655 0.650

A.3. Further Attacks Based on Cont-Steal

As we have mentioned in the introduction part, model
stealing can be used as a stepping stone for further attacks.
In this section, we select adversary sample attacks as a case
study to show the importance of model stealing for further
attacks on the target model. Normally, the adversary can not
obtain the gradient from the target model. But to conduct
adversary sample attacks, the adversary needs to obtain the
gradient in most attack scenarios. Therefore, the adversary
can construct a surrogate model to generate the adversary
sample and transfer it to the target model to perform the at-

tack. We consider three widely used mechanisms to gener-
ate adversarial examples, including Fast Gradient Sign At-
tack (FGSM) [16], Basic Iterative Methods (BIM) [29], and
Projected Gradient Descent (PGD) [32]. Our target model
is SimCLR pre-trained on CIFAR10 and the last layer clas-
sifier trained on STL10. We also use STL10 as the surrogate
dataset to conduct Cont-Steal and generate adversary sam-
ples. Experiments show that the surrogate model can gen-
erate adversary samples that are valid for the target model
(Table 6). To show the necessity of the surrogate model as a
springboard for the attack, we also conduct the baseline at-
tack, which uses another model as the springboard to attack
the target model. We choose the normal ResNet18 model
trained on SVHN as our baseline model and then apply
the adversary example to attack the target model. We ob-
serve that compared to the adversarial examples generated
from the baseline model, those adversarial examples gen-
erated from the surrogate model constructed by Cont-Steal
can better transfer to the target model. For instance, with
PGD, the adversarial examples obtained from the surrogate
model can lead to a lower classification accuracy (0.203)
on the target model than those generated from the baseline
model (0.246). This implies that the model stealing attack
can be a valid stepping stone for more effective further at-
tacks.

Table 6. The different methods to create adversary sample to attack
on surrogate model and target model. [Lower is better]

Method Surrogate model (acc) Target model (acc) Baseline (acc)

FGSM [16] 0.097 0.131 0.194

BIM [29] 0.054 0.192 0.235

PGD [32] 0.092 0.203 0.246

A.4. More Results on Conventional Attacks

Figure 11, Figure 12, and Figure 13 show the results
of the conventional attacks on target models whose en-
coders are pre-trained on CIFAR10 and downstream clas-
sifiers are trained on STL10, F-MNIST, and SVHN, respec-
tively. Figure 14, Figure 15, and Figure 16 show the results

of the conventional attacks on classifiers whose encoders
are pre-trained on ImageNet100 and downstream classifiers
are trained on STL10, F-MNIST, and SVHN, respectively.

A.5. More Results on Cont-Steal

Figure 17, Figure 18, and Figure 19 show the results of
the Cont-Steal on target models whose encoders are pre-
trained on CIFAR10 and downstream classifiers are trained
on STL10, F-MNIST, and SVHN, respectively. Figure 20,
Figure 21, Figure 22 show the results of the Cont-Steal
on target models whose encoders are pre-trained on Im-
ageNet100 and downstream classifiers are trained on CI-
FAR10, STL10, and SVHN, respectively.

A.6. Attacks Performance on Other Visual Models

Apart from four contrastive models we tried in the paper,
we also conduct our Cont-Steal on other large, state-of-the-
art models such as ViT and CLIP. We show that Cont-Steal
can perform very well on ViT, MAE, and the image encoder
of CLIP in Table 7. The results demonstrate the scalability
of Cont-Steal.

A.7. Compare With Other Existing Works

Note that we are the first work to systematically propose
model stealing attacks against image encoders. There are
also some parallel and follow-up works on this domain pro-
posed after our work. Here, we compare our works with
other existing methods. The main difference between our
work and recent works is our designed contrastive steal loss
and the usage of data augmentation. Compared to StolenEn-
coder [31], our loss focuses on the comparison of positive
and negative samples, while StolenEncoder focuses on the
combination of augmentation and non-augmentation loss.
The main difference between our work and the methods
listed in [14] is that 1) we leverage data augmentation as
part of the methods. 2) we design the loss function our-
selves to consider more negative examples compared to the
INFONCE loss. We show in Table 9 that our method works

Table 7. The performance of Cont-Steal and conventional attacks
against state-of-the-art models. Note that all of our target encoders
are pre-trained encoders available online and downstream classi-
fiers are trained on CIFAR10.

Surrogate Dataset Metric Attacks ViT MAE CLIP

Original performance Accuracy NaN 0.896 0.900 0.903

CIFAR10 Agreement Conventional 0.745 0.555 0.815
Agreement Cont-Steal 0.967 0.712 0.889

STL10 Agreement Conventional 0.553 0.451 0.550
Agreement Cont-Steal 0.942 0.624 0.905

SVHN Agreement Conventional 0.587 0.419 0.578
Agreement Cont-Steal 0.944 0.548 0.893

F-MNIST Agreement Conventional 0.602 0.395 0.465
Agreement Cont-Steal 0.696 0.501 0.598

Table 8. Dataset inference performance on Cont-Steal.

Model Dataset S(·, ET) C(·, ET)

Target Encoder CIFAR10 1.000 1.000

Surrogate Encoder SVHN 0.412 0.393

Surrogate Encoder (fine-tuning) SVHN 0.17 0.00

Independent Encoder SVHN 0.11 0.00

Table 9. The comparison of Cont-Steal and other existing works.
Both the target encoder and downstream classifier are trained on
CIFAR10. Note that our results are different from the original
paper of [14] because we test the surrogate encoder on the original
task.

CIFAR10 STL10

Agreement Accuracy Agreement Accuracy

Baseline 0.785 0.790 0.499 0.500

StolenEncoder 0.811 0.808 0.766 0.767

KL Divergence 0.213 0.203 0.178 0.162

INFONCE 0.826 0.828 0.806 0.797

Cont-Steal 0.845 0.854 0.829 0.828

better. Note that KL divergence is also a loss function used
by knowledge distillation. As knowledge distillation is a
similar task to model stealing, we also report the results of
KL divergence.

A.8. More Defenses.

We implement the dataset inference defense in [15] (see
Table 8). S(·, ET)/C(·, ET) represents the mutual infor-
mation/cosine similarity between the given model and the
target model (the higher, the more similar). Note that the
surrogate encoder will be fine-tuned for downstream tasks.
We find the fine-tuning process [18, 55] will disable the de-
fense. Normally, the open-source encoders are trained on
very large public datasets instead of limited private datasets,
which makes the defense less practical.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 11. The performance of model stealing attack against target encodes and downstream classifiers trained on CIFAR10 and STL10.
Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST),
SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 12. The performance of model stealing attack against target encodes and downstream classifiers trained on CIFAR10 and Fashon-
MNIST. Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST
(F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis
represents the agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 13. The performance of model stealing attack against target encodes and downstream classifiers trained on CIFAR10 and SVHN.
Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST),
SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 14. The performance of model stealing attack against target encodes and downstream classifiers trained on ImageNet and STL10.
Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST),
SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 15. The performance of model stealing attack against target encodes and downstream classifiers trained on ImageNet and Fashion-
MNIST. Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST
(F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis
represents the agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 16. The performance of model stealing attack against target encodes and downstream classifiers trained on ImageNet and SVHN.
Target models can output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST),
SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
agreement of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 17. The performance of Cont-Steal and conventional attack against target encoders trained on CIFAR10. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses STL10 as the downstream task to evaluate
the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 18. The performance of Cont-Steal and conventional attack against target encoders trained on CIFAR10. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses F-MNIST as the downstream task to
evaluate the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement
of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 19. The performance of Cont-Steal and conventional attack against target encoders trained on CIFAR10. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses SVHN as the downstream task to evaluate
the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 20. The performance of Cont-Steal and conventional attack against target encoders trained on ImageNet100. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses CIFAR10 as the downstream task to
evaluate the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement
of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 21. The performance of Cont-Steal and conventional attack against target encoders trained on ImageNet100. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses F-MNIST as the downstream task to
evaluate the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement
of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 22. The performance of Cont-Steal and conventional attack against target encoders trained on ImagNet100. The adversary uses
CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks. The adversary uses SVHN as the downstream task to evaluate
the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.

	. Introduction
	. Threat Model
	. Model Stealing Attacks
	. Conventional Attacks Against Encoders
	. Cont-Steal Attacks Against Encoders

	. Experiments
	. Experimental Setup
	. Performance of Conventional Attacks
	. Performance of Cont-Steal
	. Cost Analysis
	. Defenses

	. Related Work
	. Conclusion
	. Supplementary Material
	. Training Algorithm of Cont-Steal
	. Ablation Studies on Adversary Training Process
	. Further Attacks Based on Cont-Steal
	. More Results on Conventional Attacks
	. More Results on Cont-Steal
	. Attacks Performance on Other Visual Models
	. Compare With Other Existing Works
	. More Defenses.

