
Cryptographic Protocols for Enforcing
Relationship-based Access Control Policies

Jun Pang∗†, Yang Zhang†

∗Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
†Faculty of Science, Technology and Communication, University of Luxembourg

Abstract—Relationship-based access control schemes have been
studied to protect users’ privacy in online social networks. In
this paper, we propose cryptographic protocols for decentralized
social networks to enforce relationship-based access control
polices, i.e., k-common friends and k-depth. Our protocols are
mainly built on pairing-based cryptosystems. We prove their
security under the honest but curious adversary model, and
we analyze their computation and communication complexities.
Furthermore, we evaluate their efficiency through simulations on
a real social network dataset.

I. INTRODUCTION

Online social networks (OSNs) have gained a huge success
during the past decade. Nowadays, using OSNs service almost
becomes an indispensable part in people’s daily lives. A
user in OSNs can specify his profile, articulate his social
relationships, share his life moments, etc. With more and
more personal information appearing online, users’ privacy
has become an essential problem since, as in most of the
times users don’t want to share their lives with everybody.
Access control is one of the most straightforward but useful
ways to address this challenge. In recent years, industries
have adopted relationship-based access control schemes for
OSNs, for example, Facebook and LinkedIn. In such schemes,
whether a user can view another user’s information depends
on the relationship between these two users. For example,
a user in Facebook can decide which users can view his
photos, based on their social depth to himself – being his
friends, friends of friends, etc. However, social relationships
as well as interactions among people are very complicated,
they cannot be fully represented by “friends” and “friends of
friends”. For example, if two strangers share a lot of common
friends, then the chance that they trust each other is high [1].
Thus, it is more probable that they want to interact with each
other. On the other hand, if these two users only have one
friend in common, even though their relationship is “friend of
friend”, the chance for them to communicate is much lower
than the former case. Situations like this happen often but the
current access control schemes in OSNs do not support them.
Therefore, it is necessary to have more fine-grained access
control schemes.

Several fine-grained relationship-based access control po-
lices have been proposed by research communities [2], [3],
[4]. These policies are necessary as they enable users to
have more precise and strict control on who can access

their personal information or resources. On the other hand,
such policies are quite flexible and give users possibilities
to regulate access control based on relationships and the
topology of the underlying social graph. For instance, a user
can define a policy allowing the users who have at least a
number of common friend with him to review his photos.
The user can also specify a policy that only his friends
and friends of his family members can view his photos.
Despite of their expressiveness and flexibility, implementing
these policies normally requires many computing resources
which are usually the bottleneck even for big companies, like
Facebook and Google. Decentralized social networks (e.g., [5],
[6]) have been proposed in the literature as an ideal solution
to address the problem. In decentralized social networks, users
can control their own data and enforce access control polices
with their personal devices instead of putting the burden on
the central operators’ shoulder [7]. In this way, users can
get rid of the central operators and implementing fine-grained
relationship-based access control polices will then only involve
social network users. In recent years, developing cryptographic
protocols for enforcing fine-grained access control polices in
decentralized social networks has been an active research area
(see more discussions in Section II).

Contributions. In this paper, we propose cryptographic pro-
tocols to implement two fine-grained access control polices,
i.e., ‘k-common friends’ and ‘k-depth’ as proposed in [4], for
decentralized social networks. Our main contributions in this
paper are summarized as follows.
• We propose the first protocol to enforce k-common friends

policies. Our construction is based on paring-based cryp-
tosystems (PBC) and private set intersection protocols.
Security analysis shows that our protocol is secure under
the honest but curious adversary model.

• Our protocol for k-depth policies is based on PBC as
well. We have proved that our protocol is secure under the
honest but curious adversary model. Compared to existing
protocols, our protocol achieves a better security level.
Our k-depth protocol can be extended to support multi-
relationship social networks.

• For our protocols, we perform a detailed analysis of their
efficiency and conduct an empirical evaluation of their
performance with a real-life social network dataset. The
results show that our protocols are quite practical.

Organization. After presenting related work in Section II, we
introduce some preliminaries in Section III. The OSN model
as well as access control polices are presented in Section IV.
Our protocols for enforcing two relationship-based access
control policies are described in Section V and Section VI
together with corresponding security proofs, respectively. The
theoretical as well as empirical evaluation of our protocols are
presented in Section VII. Section VIII concludes the paper
with some future work.

II. RELATED WORK

Access control models. Carminati et al. [8] proposed the
first relationship-based access control model where polices are
based on three regulations including relationship type, depth
and trust value. In [3], a fine-grained model based on semantic
web tools is introduced, where they proposed ‘admin’ and
‘filtering’ polices. Fong et al. introduced an access control
scheme which supports Facebook-style social networks [4].
Specifically, they proposed a few fine-grained access control
polices including the topology-based ones that we will focus
on in this paper. In [9], [10], [11], modal (hybrid) logics are
exploited to express access control polices. Recently, Pang
and Zhang [12] extended their work by defining a new OSN
model containing users and their relationships as well as public
information. Based on this new model, they introduced a new
hybrid logic for formulating access control policies. Cheng et
al. [13] presented a social network model where resources are
also treated as nodes. With this model, access control polices,
related to not only user-to-user but also user-to-resource and
resource-to-resource relationships, are supported.

Security protocols. Besides access control models, security
protocols for enforcing access control polices in OSNs have
also been studied. Carminati et al. introduced several solu-
tions [14], [15], [16]. For instance, in [16], a homomorphic
encryption scheme is used to compute aggregated information
of the path (trust level and relationship type), which minimizes
the loss of sensitive information. In [17], Mezzour et al.
proposed an interesting solution for path discovery where
the protocol contains two stages – in the first stage, each
user floods tokens in the social network, while in the second
stage a private set intersection protocol is executed for finding
paths. Backes et al. [18] defined a security API for dis-
tributed social networks, where cryptographic techniques such
as pseudonyms, digital signatures and zero-knowledge proofs
are exploited to help user to establish and prove the existence
of friendships with others. In [19], a key management scheme
was proposed under which only users who are within a certain
distance to the owner are able to derive keys to decrypt the
encrypted resources. A comparison between our protocols and
two existing protocols is presented in Section VII.

III. PRELIMINARIES

A. Cryptographic Building Blocks

Bilinear map. Let G1 = 〈g〉 and G2 be two multiplicative
groups of the same prime order p. An efficient computable

map e : G1 × G1 → G2 is a bilinear map if the following
properties hold:

Bilinearity: ∀a, b ∈ Z∗
p, e(g

a, gb) = e(g, g)ab

Non-Degeneracy: e(g, g) is a generator of G2

Computational Diffie-Hellman (CDH) problem. This prob-
lem states that given ga, gb ∈ G1, find gab ∈ G1. CDH
assumption means that there is no probabilistic polynomial
time algorithm to solve CDH problem in G1.

A variant of CDH problem is called Reversion Compu-
tational Diffie-Hellman (RCDH) problem: given ga, gc, find
gc/a. In [20], the authors proved that RCDH problem is
equivalent to CDH problem.

Due to the existence of bilinear map e, Decisional Diffie-
Hellman (DDH) problem, i.e., given ga, gb, gc ∈ G1, decide
whether gab = gc or not, can be efficiently solved in G1

while CDH problem remains hard. G1 is also referred as a
Gap Diffie-Hellman (GDH) group.
Bilinear Diffie-Hellman (BDH) problem. It can be consid-
ered as a CDH problem in G2. It states that, given ga, gb, gc ∈
G1, find e(g, g)abc ∈ G2. Again, BDH assumption indicates
that there is no probabilistic polynomial time algorithm that
can solve BDH problem in G2.
BLS signature. Boneh et al. [21] proposed a short signature
scheme based on GDH groups. An approximately 160-bit
BLS signature can achieve a similar security level of a 320-
bit DSA signature. The BLS signature scheme contains three
algorithms, i.e., KeyGen, Sign and Verify, and hash function
H : {0, 1}∗ → G1 is a random oracle [22].
KeyGen. Each party chooses a random value x from Z∗

p

(denoted by x
r←− Z∗

p) as its private key; the corresponding
public key is gx ∈ G1.
Sign. To sign a message m, the signer hashes m into G1, i.e.,
H(m), and computes H(m)x.
Verify. Given gx, H(m)x and m, the verifier computes H(m)
and checks if e(H(m)x, g) = e(H(m), gx) holds.
Private set intersection. A private set intersection (PSI)
protocol allows two parties to find the intersection of their
input sets without leaking extra information (e.g., see [23],
[24], [25]). A cardinality PSI protocol only allows two parties
to learn the size of the intersection of their sets. In our work,
we exploit a cardinality PSI protocol which is secure against
the honest but curious adversary (which we will introduce
later) and treat it as a black box.

B. Adversary Model
In this paper, we focus on the honest but curious adversary

model and its detailed formal definitions can be found in [26].
Under this model, all users follow the specified protocol. An
adversary tries to get some additional knowledge by inspecting
the protocol transcripts that he gets after the protocol exe-
cution. To illustrate the security of our proposed protocols
under this model, we show that a party cannot get any extra
information with the protocol transcripts as well as the outputs.
Note that we assume communication channels among parties
are authenticated, i.e., impersonating attacks are not possible.

IV. ONLINE SOCIAL NETWORKS

A. Social Network Model
We model a social network as a social graph G = (U , E)

where each user ui ∈ U is represented as a single node and
social relationships among them are represented in the form of
edges (E). Without ambiguity, we directly use ui to represent
ui’s identity. We first only consider friend relationships, i.e.,
friendships, in our model. It is not difficult to extend the
proposed protocols for multi-relationships. E is defined as a
subset of U × U , i.e., when two users ui and uj establish a
friendship, an edge between them is added into G. The set
ui.fri contains all ui’s friends. When ui and uj are friends,
we have uj ∈ ui.fri and ui ∈ uj .fri . A path from one user to
another in G is represented by a sequence of users on this path,
the number of edges on this path is defined as its depth. For
example, a path from ui to uj with u` as the middle node is
denoted by [ui, u`, uj] and it is a 2-depth path. Here, ui is also
referred as the originator of the path. Moreover, two paths are
reverse for each other if they have same users but in reverse
sequences, e.g., [uj , u`, ui] is a reverse path of [ui, u`, uj].

Besides social information, each user is equipped with some
algebraic knowledge. The two previously mentioned groups
G1 = 〈g〉 and G2 of the same prime order p together with
a bilinear map e : G1 × G1 → G2 and a random hash
function H : {0, 1}∗ → G1 are publicly known to everyone.
A key management authority assigns each user ui a key
pair (pki, ski) where the secret key is ski

r←− Z∗
p and its

corresponding public key is pki = gski . When ui and uj
become friends, ui generates a signature τji = H(fri , uj)

ski

for uj as a friendship certificate. At the same time, uj also
issues ui a friendship certificate τij = H(fri , ui)

skj . The
reason to put the identity of the user inside the certificate
is to prevent users to transfer their friendship certificates to
others. Each user maintains all these certificates as well as the
corresponding users’ identities who have issued them.

B. Access Control in Social Networks
In OSNs, a user defines an access control policy to regulate

who can view or perform other actions on a certain resource
that he has. We refer this user as the owner (represented by
uo) and the user who wants to access the resources as the
requester (ur). We regulate the access control policy on a
certain resource is only defined by its owner, i.e., collaborative
access control schemes such as [27], [28], [29], [30] are
considered out of the scope of our paper. When ur wants to
access a certain resource, such as a photo or a status, he first
sends uo a request. The owner then extracts the access control
policy on that resource and sends it back to ur . Next, uo and
ur run the protocol related to the policy. In the end, if the result
of the protocol shows that ur satisfies the policy’s regulation,
then uo grants the access of the resource to ur . As mentioned
in Sect. I, we focus on two access control policies proposed
in [4]. We first give their formal definitions as follows.
k-common friends. This policy regulates that the qualified
requester should have at least k common friends with the
owner, formally |uo .fri ∩ ur .fri | ≥ k.

k-depth. This policy specifies that uo is linked with ur
through a k-depth path.

In the following two sections, we present a protocol for each
of the two policies and prove its security under the honest but
curious adversary.

V. k-COMMON FRIENDS

A. Protocol Description

Our solution for k-common friends exploits the encoding
scheme proposed in [24] and a cardinality PSI protocol.

In the beginning, ur and uo exchange random values with
each other, ur sends Rr = grr to uo and uo replies with
Ro = gro to ur , where rr , ro

r←− Z∗
p. Next, both parties encode

their friendship certificates using Algorithm 1.

Algorithm 1 ui’s friendship encoding scheme for uj .
Input: ri, Rj

Output: Eij containing ui’s encodings related to uj
1: Eij ← ∅
2: for all u` ∈ ui.fri do
3: Eij ← Eij ∪ {e(τi`, Rj) · e(H(fri , uj), pk`)

ri}
4: end for
5: return Eij

For example, suppose ua ∈ uo .fri ∩ ur .fri , uo encodes the
certificate τoa = H(fri , uo)

ska into the following:

e(τoa, Rr) · e(H(fri , ur), pka)
ro . (I)

On the other hand, ur encodes τra = H(fri , ur)
ska into

e(τra, Ro) · e(H(fri , uo), pka)
rr . (II)

Each encoding contains two components. The first component
of (I) is equal to the second component of (II) due to bilinearity
of the map e, i.e.,

e(τoa, Rr) = e(H(fri , uo)
ska , grr)

= e(H(fri , uo), pka)
rr .

The same with the second component of (I) and the first one of
(II). Therefore, encodings (I) and (II) are identical. Actually,
the second component of one encoding is an anticipation of
the first component of the other one [24]. As long as uo and
ur have the proper friendship certificates issued by a common
friend, their encodings related to this friend are identical which
means they have a common element related to this common
friend.

In the end, uo and ur perform a cardinality PSI protocol on
these encodings and get the number of their common friends.
Note that both uo and ur can choose not to encode their
friendships that are considered sensitive for set intersection
operations.

All the encodings are based on the friendship certificates
which are already part of uo and ur ’s knowledge after they
establish connections with other users. Therefore, uo and ur ’s
friends do not need to participate in the process, i.e., the
protocol can be executed when they are offline. This is an
appealing feature for most situations, as it allows the protocol

uo

u1 u2 uk�1

ur

Path certification

Path certification

Path discovery

Fig. 1. The two stages of k-depth protocol.

exclusively based on uo and ur ’s local interaction and without
the help of intermediate users.

B. Security Analysis

The goal of the protocol we want to achieve is that uo (ur)
cannot learn who are friends of ur (uo). Note that, since uo
and ur ’s friends don’t participate in the protocol, they cannot
cause any privacy threat.

In this protocol, except for the PSI operation, uo and
ur only perform local computations (with their friendship
certificates), i.e., they don’t communicate with each other.
Therefore, neither of them will get extra information from
that stage. As the cardinality PSI protocol we exploit is secure
against the honest but curious adversary model, our protocol
is secure under this model as well.

VI. k-DEPTH

A. Protocol Description

The protocol for 2-depth policy can be implemented as a
1-common friend protocol. When the depth is bigger than 2,
since neither uo nor ur has information about users beyond
their friends, collaboration of intermediate users (neither the
owner nor the requester) are needed. In the previous protocol,
only uo and ur need to be online, common friends are
discovered through friendship certificates that uo and ur have.
We apply this idea to obtain our k-depth protocol.

Our protocol contains two stages, namely ((k−1)-depth)
path certification and (k-depth) path discovery. As we can see
from the two dashed boxes in Figure 1, in the path certification
stage, uo and ur ask intermediate users to certify (k−1)-depth
paths starting from them, respectively. In the path discovery
stage, if a (k−1)-depth path originated by uo shares a (k−2)-
depth (reversed) path with a (k−1)-depth path originated from
ur (see the central solid box in Figure 1), then these two
paths can compose a k-depth path between uo and ur . In
our protocol, encodings of these two (k−1)-depth paths are
identical. After performing a cardinality PSI protocol, a k-
depth path can be discovered (if such k-depth paths exist for
uo and ur).

Besides a key pair, each user ui is also affiliated with a set
of depth stamps, i.e., si = {s

j
i | s

j
i

r←− Z∗
p and j > 0}, and it

is only known to the user himself. Here, sji is the depth stamp
for ui at depth j, called ui’s j-depth stamp. We regulate that
each user’s 0-depth stamp is equal to 1.

1) Path certification: In this stage, uo (ur) first invites
his friends to join the process by sending them messages.
A message m is defined as a tuple (i, η, cnt , dep). Here, the
randomly chosen i represents identity of the message; η is the
path certificate which is equal to H(uo) for uo (H(ur) for
ur) at the moment; cnt starting from 1 represents the count
value; dep=k−1 is the length of the path. Note that everyone
in the path certification stage can choose who to contact next.

Upon receiving a message with cnt 6= dep from one of
his friends, if an intermediate user agrees to join the path
certification process, then he follows Algorithm 2.

Algorithm 2 uj’s message generation scheme
1: receive: mx = (ix, ηx, cnt , dep) from ui
2: for all u` ∈ uj .fri − {ui} do
3: choose a random identity iy
4: store the link between (ix, ui) and iy
5: ηy ← η

scntj
x

6: cnt ← cnt + 1
7: my ← (iy, ηy, cnt , dep)
8: send: my to u`
9: end for

The user first remembers the links between the identity of
the received message and identities of new messages that he
is going to send out. Next, he generates a new path certificate
by raising the old one to the power of his cnt-depth stamp.
As the depth stamp is only known to the user, this operation
indicates that the user agrees to certify the path. Moreover,
by using his cnt-depth stamp, the user’s position information
on the path is directly stored into the certificate. For example,
if cnt is equal to 2, then using the user’s 2-depth stamp for
the new path certificate shows that he is the second one on
this path. This is a crucial operation in our protocol. Without
it, the result in the path discovery stage may be incorrect, we
will show an example later.

If a user receives a message with cnt = dep, then he is
aware that he is the last one on the (k−1)-depth path. Next,
he sends a reverse message back to the friend who sent him the
message. The reverse message rm is also denoted by a tuple
(i, η, σ, cnt) where i is the same as identity of the message
he received; η is the (k−1)-depth path’s certificate which will
stay the same in the following processes; σ represents the path
stamp and it is equal to gs

1
a at the moment if the user is ua;

cnt is reset to 2.

Algorithm 3 uj’s reverse message generation scheme
1: receive: rmy = (iy, ηy, σy, cnt) from u`
2: find (ix, ui) linked with iy
3: ηx ← ηy

4: σx ← σ
scntj
y

5: cnt ← cnt + 1
6: rmx ← (ix, ηx, σx, cnt)
7: send: rmx to ui

When a user gets a reverse message from his friend, he

performs the operations as specified in Algorithm 3. Since
he has stored the connection between messages’ identities, he
is able to forward the new reverse message back to the user
who sent him the corresponding message previously (step 2
in Algorithm 3). Identity information guarantees that a reverse
message’s forwarding path is the reverse path of the one on
which the corresponding path certificate is established. Each
intermediate user also builds the path stamp by raising the old
one to the power of the his cnt-depth stamp. Similarly, the
sequence of intermediate users are stored into the path stamp.
Note that if a user uses his i-depth stamp to build a path’s
certificate, then he computes the path’s stamp with his (k−i)-
depth stamp. Essentially, establishment of a (k−1)-depth path’s
stamp simulates the building process of another (k−1)-depth
path’s certificate where these two paths together compose a
k-depth path.

In the end, several (k−1)-depth path’s certificates and stamps
are sent back to uo and ur .

2) Path discovery: In this stage, uo and ur follow a similar
procedure of 1-common friends protocol. First, they exchange
two random numbers Ro = gro and Rr = grr while keeping
ro and rr secret. Then, as the policy is k-depth, they both
encode all the (k− 1)-depth paths’ certificates and stamps
obtained from the last stage following Algorithm 4.

Algorithm 4 ui’s k-depth encoding scheme for uj
Input: ri, Rj

Output: Eij containing ui’s encodings related to uj
1: Eij ← ∅
2: for all (ηx, σx) from the path certification stage do
3: Eij ← Eij ∪ {e(ηx, Rj) · e(H(uj), σx)

ri}
4: end for
5: return Eij

For two (k−1)-depth paths starting from uo and ur , respec-
tively, if they can compose a k-depth path, then exponent of
one’s stamp is equal to the other one’s certificate. Therefore,
encodings on certificates and stamps of these two paths will be
identical. In the end, a cardinality PSI protocol is performed
on these encodings to find out the k-depth path.

3) An example: We present an example to show how our
k-depth protocol works: the network topology is depicted in
Figure 2 and the policy is 3-depth.

uo

ua

ub

uc

ur

Fig. 2. An example of social network topology.

Path certification stage. In the beginning, uo sends m1 =
(i1, H(uo), 1, 2) to ua and m2=(i2, H(uo), 1, 2) to ub. Upon
receiving m1, ua chooses a random message identity i3 and
remembers the link between (i1, uo) and i3. Since cnt = 1
in m1, he computes a new path certificate as H(uo)

s1a . Then,

ua sends m3 = (i3, H(uo)
s1a , 2, 2) to ub, i.e., his only friend

except uo . Meanwhile, ub performs similar operations and
sends m4=(i4, H(uo)

s1b , 2, 2) to ua, m5=(i5, H(uo)
s1b , 2, 2)

to uc and m6=(i6, H(uo)
s1b , 2, 2) to ur .

When ub receives m3 and finds out cnt = dep, he knows
that he is the last one on the 2-depth path. Since cnt is equal
to 2, he computes H(uo)

s1as
2
b and sends a reverse message

rm3 = (i3, H(uo)
s1as

2
b , gs

1
b , 2) back to ua. Note that i3 in

rm3 is identical to the identity of m3. Similarly, ub gets
rm4 = (i4, H(uo)

s1b s
2
a , gs

1
a , 2), rm5 = (i5, H(uo)

s1b s
2
c , gs

1
c , 2)

and rm6=(i6, H(uo)
s1b s

2
r , gs

1
r , 2) from ua, uc and ur .

Next, when ua receives rm3, he finds out that the identity
of the message linked with i3 is (i1, uo). Since cnt is
equal to 2, ua computes gs

1
b s

2
a as a new path stamp and

sends (i1, H(uo)
s1as

2
b , gs

1
b s

2
a , 3) to uo . On the other hand,

ub sends uo three reverse messages that have the same
identity but with different contents – (i2, H(uo)

s1b s
2
a , gs

1
as

2
b , 3),

(i2, H(uo)
s1b s

2
c , gs

1
c s

2
b , 3) and (i2, H(uo)

s1b s
2
r , gs

1
r s

2
b , 3) to uo .

In the end, uo gets four pairs of path certificate and stamp
related to four different 2-depth paths starting from him, i.e.,

(H(uo)
s1as

2
b , gs

1
b s

2
a) for path [uo , ua, ub],

(H(uo)
s1b s

2
a , gs

1
as

2
b) for path [uo , ub, ua],

(H(uo)
s1b s

2
c , gs

1
c s

2
b) for path [uo , ub, uc],

(H(uo)
s1b s

2
r , gs

1
r s

2
b) for path [uo , ub, ur].

On the other direction, ur gets

(H(ur)
s1b s

2
a , gs

1
as

2
b) for path [ur , ub, ua],

(H(ur)
s1b s

2
c , gs

1
c s

2
b) for path [ur , ub, uc],

(H(ur)
s1b s

2
o , gs

1
o s

2
b) for path [ur , ub, uo].

Path discovery stage. In this stage, uo encodes all 2-depth
paths’ certificate and stamp into

e(H(uo)
s1as

2
b , Rr) · e(H(ur), g

s1b s
2
a)ro ; (1)

e(H(uo)
s1b s

2
a , Rr) · e(H(ur), g

s1as
2
b)ro ; (2)

e(H(uo)
s1b s

2
c , Rr) · e(H(ur), g

s1c s
2
b)ro ; (3)

e(H(uo)
s1b s

2
r , Rr) · e(H(ur), g

s1r s
2
b)ro . (4)

On the other hand, ur encodes the information he gets into

e(H(ur)
s1b s

2
a , Ro) · e(H(uo), g

s1as
2
b)rr ; (5)

e(H(ur)
s1b s

2
c , Ro) · e(H(uo), g

s1c s
2
b)rr ; (6)

e(H(ur)
s1b s

2
o , Ro) · e(H(uo), g

s1o s
2
b)rr . (7)

It is clear that encoding (1) is equal to encoding (5). Paths
[uo , ua, ub] and [ur , ub, ua] compose a 3-depth path between
uo and ur (see Figure 2). After the PSI operation, uo and ur
are aware that there exists one 3-depth path between them.

4) Discussion: We extend the main idea of k-common
friends protocol to implement k-depth protocol, the two stages
of our k-depth protocol do not have to be executed sequen-
tially. Path certification stage can be a routine performed by
users in the OSN once in a while, e.g., once per month.
When ur wants to access uo’s resource, both of them directly
execute the path discovery stage, i.e., only uo and ur need
to be online in our k-depth protocol. As the path certification
process is a usual routine, uo and ur cannot agree on some

nonce, (k− 1)-depth paths’ certificates should be based on
common knowledge of users. In our protocol, we use the hash
value of user’s identity, i.e., H(uo) and H(ur). Separation of
the two stages also results in efficient communication, i.e., the
first stage can be executed when the traffic in OSNs is low,
and it also provides better privacy which we explain next.

B. Security Analysis

There are three parties involving in the protocol including
uo , ur and users in the middle. For uo and ur , the security
goal of our protocol is that we only want them to know
whether there is a k−depth path between them. Extra knowl-
edge such as who are on the path shouldn’t be learned by them.
For a user on the path, the security goal of our protocol is that
he should only know that he is involving in a path certification
stage, he shouldn’t know anything more than his friend who
sends him the message and the friends he will contact next.
Path certification. In this stage, what each user gets (from
messages and reverse messages) are identities, count value,
depth, path certificates and stamps. We analyze what infor-
mation they may leak one by one. For each information,
we consider the case under a single as well as multiple
(k−1)-depth paths’ certification processes. To give a clear
explanation, we use k users’ positions on a (k−1)-depth path
to represent them. The user on the ith position is denoted by
ui (0 ≤ i ≤ k−1) and uo is at position 0.

Identity. As identities of messages are chosen randomly, they
won’t leak any information in both single and multiple paths’
certification processes.

Count value and depth. In a (k−1)-depth path’s certification
process, a user gets his position on the path from cnt and the
depth of the path from dep. Moreover, when he receives a
reverse message from ui+1, he knows that ui+1 is involved in
a (k−i)-depth path. We argue that these information are not
privacy sensitive, as a user can always guess one of his friend
has another friend or a friend of friend.

However, cnt and dep may result in information leakage
under several paths’ certification processes originated from the
same user. A user first sends a message to one of his friends
with cnt and dep, later he will know how many (dep−cnt)-
depth paths this friend originates by counting the number of
reverse messages that he gets from this friend. Especially,
when cnt=dep−1, he knows how many friends this friend has.
This partial structure information can be sensitive in certain
cases. To prevent this, each user should send some dummy
reverse messages back which produces a noisy version of his
social structure.

Path certificates and stamps. Sensitive information in certifi-
cates and stamps includes uo’s identity, intermediate users’
depth keys and their connections. In a single (k−1)-depth path
certification, what ui gets are a partial path certificate produced
by the first ith users on the path, i.e., H(uo)

∏i−1
j=0 sjj , the (k−1)-

depth path’s certificate, i.e., H(uo)
∏k−1

j=0 sjj , and a (partial) path
stamp, i.e., g

∏k−1
j=i+1 sk−j

j , generated by his successors (from ui+1
to uk−1) on the path.

With H(uo)
∏k−1

j=0 sjj , if the user is able to get g
∏k−1

j=0 sjj from
another certification process, then by verifying

e(H(uo)
∏i−1

j=0 sjj , g) = e(H(uo), g
∏i−1

j=0 sjj),

he knows who is the owner (through H(uo)). Similarly,
H(uo)

∏i−1
j=0 sjj may also leak uo’s identity with the relative

partial path stamp. In Figure 2, ub gets H(o)s
1
a from path

[uo , ua, ub]’s certification and gs
1
a from [uo , ub, ua]’s certifi-

cation. If ub computes parings of these information with the
above equation, he will know that the message sent from ua is
originated by uo . To prevent this information leakage, uo can
send H(uo)

x instead of H(uo) to u1 in the beginning where
x

r←− Z∗
p is only known to himself and uo generates different

x for his different friends. In this way, even an intermediate
user gets the corresponding (partial) path stamp, as he knows
nothing about x, the above equation won’t work. Note that
before the path discovery stage, uo needs to recover the path
certificate with x−1.

From g
∏k−1

j=i+1 sk−j
j in the reverse message sent by ui+1, due

to the hardness of discrete logarithm problem in G1, ui cannot
discover

∏k−1
j=i+1 s

k−j
j . Note that users who happen to be the last

one on (k−1)-depth paths will expose their “public” 1-depth
stamps when they start to forward the reverse messages and
these public 1-depth stamps can be treated as their identities.
For example, uk−1 gets gs

1
k−1 which he can use to identify uk−1.

However, as a path stamp is computed by users with stamps
of different depths, “public” 1-depth stamps will not leak their
issuers’ identities. For example, suppose that uk−3 already
knows gs

1
k−1 is from uk−1 through another path certification

process. When he gets gs
1
k−1s

2
k−2 from uk−2, as he doesn’t have

gs
2
k−2 , he cannot know that uk−1 is the last one on the (k−1)-

depth path (through pairing), i.e., uk−1 and uk−2 are friends.
Moreover, suppose that uk−2 even knows that gs

1
k−1s

2
k−2 is built

by uk−2 and uk−1, he cannot get uk−2’s 2-depth stamp s2k−2
from gs

1
k−1s

2
k−2 and gs

1
k−1 due to the RCDH assumption in G1.

Now, suppose that ui and ui+x (i+x ≤ k−1) are friends,
i.e., a circle appears in the path. When ui joins the process
and sends a message to ui+1, ui+1 then contacts ui+2, so on
and so forth. Later, ui+x sends a message to ui. Since ui has
no information about his successors’ depth keys, he doesn’t
know that the message he receives from ui+x is based on the
message he sends to ui+1 before. Therefore, ui doesn’t know
that ui+1 and ui+x are linked through a (x−1)-depth path.

However, with several path’s certification processes, sen-
sitive information can be disclosed through certificates and
stamps. Suppose uo’s two friends are linked by a (k− 2)-
depth path, i.e., uo is in a k-depth circle. Later, when he gets
path certificates and stamps on two (k−1)-depth paths which
can compose the circle from these two friends, as the circle is
also a k-depth path, by performing bilinear map, he can get
whether these two friends are connected by a (k−2)-depth
path. In the example above, uo is linked with [uo , ua, ub] and
[uo , ub, ua], by paring path certificates and stamps on these
two paths, he has e(H(uo)

s1as
2
b , gs

1
b s

2
a) = e(H(uo)

s1b s
2
a , gs

1
as

2
b)

which indicates that ua and ub are friends. We propose a

simple solution for this leakage. Now, the protocol regulates
that when a user receives a message with dep=2 and cnt=1,
he only sends new messages to his friends who haven’t sent
him a message with dep = 2 and cnt = 2 yet. In Figure 2,
after ua and ub receive messages from uo , suppose that ua
first sends m3=(i3, H(o)s

1
a , 2, 2) to ub. Later, when ub wants

to send new messages to his friends, as he finds out that ua
already sent him m3 with dep=2 and cnt=2, he only sends
new messages to uc and ur . In the end, uo won’t know that ua
and ub are connected. However, since there is no information
in a message about the originator of the path, our solution
reduces chances for finding paths. For example, the message
sent from ua to ub may come from another user than uo .
Also, our solution only supports 2-depth path certification for
3-depth policy. Although the information that a user knows
his two friends are linked with a 5-depth path is not that
valuable, protecting two users’ private links under 3 depths
is still necessary. We leave the general protection scheme as
a future work.
Path discovery. In this stage, only uo and ur participate
the protocol. First, as the two stages are independent, no
intermediate users knows who is the owner or requester.
Moreover, intermediate users do not know if there will be a
run of the path discovery stage. Second, as the cardinality PSI
protocol is secure against honest but curious adversaries, uo
and ur only get whether a qualified path exists or not, nothing
more. Especially, uo also doesn’t know which friend of his is
on the k-depth path. The same holds for ur .

C. Multi-relationship k-depth Protocol

Our k-depth protocol can be extended to support multi-
relationships. We first introduce the multi-relationship social
network model. Let the setR contain all the relationship types.
Only symmetric relationships, such as friend and colleague,
are considered. The social network is defined as a graph
G = (U , E), where E now is denoted as a subset of U×R×U ,
i.e., each edge is labeled with a relationship type. A k-
depth access control policy regulates that uo is linked with
ur through a k-depth path where each edge has a certain
relationship type. All k relationship types (from uo to ur) can
be represented as a k-tuple (rp1, rp2, . . . , rpk) where rpi ∈ R
(1 ≤ i ≤ k). Note that these k relationships do not have to be
distinct from each other.

Our multi-relationship k-depth protocol also contains two
stages. The path discovery stage remain the same while there
are two differences related to the path certification stages.
First, a relationship chain is added in each message and its
function is to inform intermediate users which social links
to contact next. A relationship chain generated by uo is
defined as 〈rp1, . . . , rpk-1〉 which contains the first (k-1)-
th relationship types specified in the policy with the same
sequence. Moreover, the first relationship in a chain is defined
as the tail of the chain. On the other direction, the relationship
chain generated by ur is in a reverse order, i.e., 〈rpk, . . . , rp2〉.
When a user receives a message, he will delete the tail from
the chain and send new messages to his social links who are

TABLE I
COMPARISON OF k-DEPTH PROTOCOLS.

[17] [16] Our work
Intermediate user offline X X

Multi-relationships X
Computation cost Hash Hash Paring

Communication steps k k k − 1
Honest but curious model Partially Partially X

in the new tail of the chain with him. The second difference
is that we have to integrate the relationship type into paths’
certificates and stamps. Instead of one set, each user should
have different sets of depth stamps for different relationship
types. When a user receives a message, he uses his cnt-depth
stamp from the stamp set related to the tail of the chain to
compute the new certificate. The same procedure applies for
computing the path stamp. Note that the relationship type a
user integrates into a path’s certificate (stamp) is always the
one that he is in with the user who sent him the message
(reverse message). This guarantees that encodings related to
two (k−1)-depth paths that can compose a k-depth path in
discovery stage are identical.

D. Comparison with Existing Schemes

We compare our k-depth protocol with the schemes pro-
posed in [17], [16] (see Table I). The solution in [17] and
our protocol contain two independent stages, only uo and ur
need to be online when finding the path. On the other hand, the
protocol proposed in [16] requires all the intermediate users
to be online. Different from ours, the two protocols [17], [16]
do not support multi-relationships.

Messages passing among users in their schemes are based
on hash functions, this is more efficient than the bilinear map.
On the other hand, our protocol consumes one step of commu-
nications less when finding the paths (each user certifies (k−1)-
depth paths, instead of k-depth) than theirs which save a large
number of operations. More precisely, suppose that each user
has in average n friends, to find a (k−1)-depth path, totally
2(k−1)nk−1 times user-to-user communications are consumed
(see Sect. VII), while the number is knk in both works.
Moreover, as each communication step needs computations,
a large number of computations (mainly exponentiations) are
saved in our protocol as well.

Since their tokens are built through a publicly known hash
function, sensitive information can be leaked. For example,
as mentioned in [17], a user can know whether a token he
receives is based on another token sent by him previously.
This indicates his corresponding two friends are linked. The
same threat happens to the scheme in [16]. However, this
information leakage can be prevented in our protocol as we
explained in the security analysis.

VII. PERFORMANCE ANALYSIS

In this section, we first give a formal efficiency analysis of
our protocols, then present empirical results on the protocols
through a Facebook dataset [31].

TABLE II
THEORETICAL PERFORMANCE ANALYSIS.

Computation k-common fri. k-depth
Paring 4n 4nk−1

Hash G1:2n G1:2nk−1

Multiplication G2:2n G2:2nk−1

Exponentiation G2:2n G1:2(k−1)nk−1 G2:2nk−1

PSI O(n log logn) O(nk−1 log lognk−1)

Communication k-common fri. k-depth
User-to-user 2 2(k−1)nk−1

PSI O(n) O(nk−1)

A. Theoretical Efficiency Analysis

For each of our protocols, we analyze its computation and
communication complexities (see Table II). We assume that
each user’s average number of friends is n. As friendship
establishments are normal routines, we do not consider them
as part of our protocols. Moreover, for k-common friends and
k-depth protocols, we exploit the PSI scheme proposed in [32]
to give a general complexity for our protocols.

1) Computation Cost: k-common friends. Computations
are performed in both encoding stage and PSI protocol. To
encode a friendship certificate, uo (ur) needs to perform two
pairing computations (each encoding contains two compo-
nents), one hash function operation in G1, one exponentiation
and one multiplication in G2. Since there are totally 2n friends
for uo and ur , 4n times of parings, 2n hashes in G1, 2n
exponentiations and 2n multiplications in G2 are needed.
Inputs for PSI operations are 2n encodings, computation
related to set intersection can be finished in O(n log log n)
time [32].

k-depth. Since the two stages of our protocol are independent,
for the path certification stage, we only consider computation
and communication consumption of a single user. In this
stage, computations are mainly exponentiations in G1 for path
certificates and stamps. For a (k−1)-depth path staring from
uo , as k−1 users compute the path certificate and stamp by
exponentiation, totally 2(k− 1) exponentiations are needed,
i.e., k−1 for path certificate and k−1 for path stamp. For the
whole stage, uo can get maximal nk−1 pairs of path certificate
and stamp. Therefore, the computation cost for a single user
is 2(k−1)nk−1 exponentiations.

For the path discovery stage, there are maximal 2nk−1 path
certificates need to be encoded for both uo and ur , still each
encoding needs two parings, one hash in G1, one exponenti-
ation and one multiplication in G2. Therefore, totally 4nk−1

paring operations, 2nk−1 hashes in G1, 2nk−1 exponentiations
and 2nk−1 multiplications in G2 are needed. Again, with 2nk−1

path certificates as inputs, by adopting the PSI protocol in [32],
computation complexity for finding common encodings is
O(nk−1 log log nk−1).

2) Communication Cost: k-common friends. Communica-
tions are needed in two operations. The first one is exchanging
two random values in the beginning, where two user-to-
user communications are needed. The second communication
consuming operation is related to the PSI protocol. As the PSI

TABLE III
DATASET SUMMARY.

Number of nodes 63,731
Number of edges 1,634,180
Average degree 25.6

Average clustering coefficient 0.253
Number of connected components 144

Number of triangles 3,501,542

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Number of Friends (Log−Log plot)

N
u

m
b

e
r

o
f

U
s
e

rs

Fig. 3. Node distribution of the dataset.

protocol has constant rounds and its inputs are 2n encodings,
it needs O(n) user-to-user communications.

k-depth. As mentioned before, a user can get maximal nk−1

pairs of path certificate and stamp in path certification stage.
Each pair requires 2(k−1) user-to-user communications. To-
tally 2(k−1)nk−1 communications are needed. Path discovery
stage is similar to k-common friends protocol, its communi-
cation complexity is O(nk−1).

B. Empirical Efficiency Analysis

Dataset. We use the Facebook dataset collected by the authors
of [31] to perform our experiments, the dataset is summarized
in Table III. In Figure 3, we plot the number of users as a
function of users’ number of friends, as we can see, users’
friends number, i.e., degree in social graph, follows a power-
law distribution. Most of users have a small number of friends
(around half of users have less than 10 friends) while only a
few users have a large number of connections. This indicates
that most of users won’t need to perform a huge amount of
computations when running our protocols.

Experiment setup. Our experiments were conducted on a
64-bit Linux system with an Intel Core i7 1.80GHz×4 and
8GB RAM. We implement our protocols using the MIRACL
Cryptographic SDK [33]. We choose Barreto-Naehrig Curve
(security level AES-128) as the pairing curve. Since there are
many existing PSI protocols and implementations, we can
adopt any of them. For example, the scheme in [25] can
perform set intersection operations on two million-element
sets within 41 seconds. Therefore, we only focus on the
performance of our protocol before the execution of PSI,
where pairing operations dominate the computation cost. In
our experiments, performing a pairing takes around 6 ms.

We randomly sampled 2,000 users from the dataset for k-
common friends, 3-depth protocol and 4-depth, respectively.
As the average path length between any two users (from more

TABLE IV
SAMPLE USERS’ FEATURE SUMMARY.

k-common 3-depth 4-depth 4-depth (100)
Total 49,665 4,398,980 511,424,020 27,163,893

Average 24.8 2,199.5 255,710.0 271,640.9
S.D. 40.7 5,067.2 613,000.1 733,250.8
Max. 570 92,748 7,213,810 4,514,853

than 1 billion users of Facebook) is 4.7 [34], 5-depth protocol
is neither necessary nor likely to be performed. Therefore,
we only evaluated k-depth protocol with k = 3, 4. Moreover,
in reality the 3-depth protocol is exploited more often than
the 4-depth protocol. The number of friends as well as the
number of 2-depth and 3-depth paths for the sampled users are
summarized in Table IV. Note that we only chose 100 users
to perform 4-depth protocol for the purpose of illustration.
These 100 users features are summarized in the last column
of Table IV: its mean and standard deviation value are not that
different from the sample of 2,000 users for 4-depth protocol.
We notice that all the sample data have large std. value, this
is due to the power law distribution of users’ friends number,
see Figure 3.

Evaluation results. The experiment results are presented in
Table V. For k-common friends, the average time for encoding
all friendship certificates is 0.135 second while the worst case
(the user who has 570 friends, see Table IV) takes only 3
seconds. Due to the power law distribution of friends number,
almost half of users (48.1%) can finish their protocol in less
than 0.05 second, more than 94% users can finish in 0.5
second. For 3-depth protocols, the average running time is
around 16 seconds. More than half of the 3-depth protocols
(1,121/2,000) can finish within 5 seconds. The average running
time of the 4-depth protocols is about 33.6 minutes. In fact,
34 users (out of 100) can finish their protocol in 60 seconds;
nearly half of them (47/100) can finish in less than 3 minutes;
and about 70% of the users can finish in less than 10 minutes.
As described in Section VI, path certification can be treated
as a normal routine, thus it doesn’t have to be counted as
part of k-depth protocol. Moreover, a user can choose not to
join a k-depth protocol, or not to send messages to all his
friends, meaning that the computations needed in practice can
be further reduced. Another way to improve the performance
of the k-depth protocols is to use more efficient paring
implementation, such as the inline assembly code of MIRACL.

Discussion on k-depth protocols. As discussed in Section VI,
although we use expensive pairing operations, our k-depth
protocol’s performance is still comparable with the protocol
proposed in [17] which mainly uses hash functions. First,
our k-depth protocol uses one less step for communications,
thus a big amount of computation overhead can be saved.
As presented in Table IV, the total number of 3-depth paths
(for the 4-depth protocol) for the sample users is 100 times
larger than the number for 2-depth paths (for the 3-depth
protocol). Therefore, the scheme in [17] needs to perform at
least 100 times more operations, i.e., hash functions as well
as communications than ours. Second, in the path certification

TABLE V
TIME CONSUMPTION SUMMARY (SEC).

k-common friends
Average 0.135 S.D. 0.222 Worst case 3.078

Time ≤ 0.01 (0.01, 0.05] (0.05, 0.1] (0.1, 0.5] > 0.5
% users 13.65 34.45 14.90 31.65 5.35

3-depth
Average 16.263 S.D. 37.447 Worst case 684.401

Time ≤ 1 (1, 5] (5, 10] (10, 20] > 20
% users 30.95 25.10 11.95 11.50 20.50

4-depth
Average 2,015.185 S.D. 5,372.101 Worst case 32,833.750

Time ≤ 60 (60, 180] (180, 600] (600, 1200] > 1200
% users 34.00 13.00 23.00 7.00 23.00

stage, intermediate users can choose not to join in our protocol.
Hence, the user will get a subset of all the 3-depth paths in
the end.

In details, users in the first protocol of [17] need to build
an “imaginary” hash tree, and the number of descendants of
each node is the number of maximal degree of a user in the
social network. This will be a huge tree with a lot of redundant
nodes. In the dataset that we use, the maximal node degree
is 1,098, meaning that the tree a user needs to build for a 3-
depth protocol will have |u.fri | × 1098 × 1098 nodes, while
in our experiments each user only needs to perform around
2,200 times pairing products on average. For example, for a
user with only 25 friends, to perform 25× 1098× 1098 times
SHA-256 function in MIRACL, it needs around 29 seconds
while in our scheme the computation only needs 16 seconds.
In the extended scheme of [17], the user can build a more
accurate hash tree. However, this extended scheme is only
designed for discovering 3-depth paths.

VIII. CONCLUSION

In this paper, we addressed the challenge on how to enforce
relationship-based access control policies on decentralized
social networks. To this end, we have provided privacy-
preserving protocols for two types of access control policies,
i.e., k-common friends and k-depth. While the protocol for
k-common friends is new, our k-depth protocol has better
communication complexity and security than the existing
solutions. Through experiments on a Facebook dataset, we
illustrate that our protocols are efficient in practice.

There are a few research directions for the future. Firstly,
it is interesting for us to re-evaluate the performance of our
protocols with some more recent social network dataset than
the current dataset [31] used in this paper. Secondly, we want
to make our k-depth protocol secure under the malicious
adversary model [26] and design protocols for other policies
such as ‘clique’ and ‘celebrity’ [4]. It is also important for us
to investigate whether it is possible to extend our protocols to
cope with friendship revocation by incorporating some ideas,
for example, from [35], [36].

ACKNOWLEDGMENT

We would like to thank Qiang Tang for his insightful
comments.

REFERENCES

[1] P. W. Holland and S. Leinhardt, “Transitivity in structural models of
small groups.” Comparative Group Studies, 1971.

[2] C. E. Gates, “Access control requirements for Web 2.0 security and
privacy,” in Proc. IEEE Workshop on Web2.0 Security and Privacy
(W2SP), 2007.

[3] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thurais-
ingham, “A semantic web based framework for social network access
control,” in Proc. 14th ACM Symposium on Access Control Models and
Technologies (SACMAT). ACM, 2009, pp. 177–186.

[4] P. W. L. Fong, M. M. Anwar, and Z. Zhao, “A privacy preservation model
for Facebook-style social network systems,” in Proc. 14th European
Symposium on Research in Computer Security (ESORICS), ser. LNCS,
vol. 5789. Springer, 2009, pp. 303–320.

[5] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K. Teh,
R. Chu, B. Dodson, and M. S. Lam, “PrPl: A decentralized social
networking infrastructure,” in Proc. 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond. ACM, 2010, pp.
1–8.

[6] L. A. Cutillo, R. Molva, and M. Önen, “Safebook: A distributed privacy
preserving online social network,” in Proc. 12th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks.
IEEE CS, 2011, pp. 1–3.

[7] C.-m. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-
Lee, “Decentralization: The future of online social networking,” in W3C
Workshop on the Future of Social Networking Position Papers, vol. 2,
2009, pp. 2–7.

[8] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control
in web-based social networks,” ACM Transactions on Information &
System Security, vol. 13, no. 1, p. Article No. 6, 2009.

[9] P. W. L. Fong and I. Siahaan, “Relationship-based access control policies
and their policy languages,” in Proc. 16th ACM Symposium on Access
Control Models and Technologies (SACMAT). ACM, 2011, pp. 51–60.

[10] P. W. L. Fong, “Relationship-based access control: protection model and
policy language,” in Proc. 1st ACM Conference on Data and Application
Security and Privacy (CODASPY). ACM, 2011, pp. 191–202.

[11] G. Bruns, P. W. L. Fong, I. Siahaan, and M. Huth, “Relationship-based
access control: its expression and enforcement through hybrid logic,”
in Proc. 2nd ACM Conference on Data and Application Security and
Privacy (CODASPY). ACM, 2012, pp. 117–124.

[12] J. Pang and Y. Zhang, “A new access control scheme for Facebook-style
social networks,” in Proc. 9th Conference on Availability, Reliability and
Security (ARES). IEEE CS, 2014, pp. 1–10.

[13] Y. Cheng, J. Park, and R. S. Sandhu, “Relationship-based access control
for online social networks: beyond user-to-user relationships,” in Proc.
4th IEEE Conference on Information Privacy, Security, Risk and Trust
(PASSAT). IEEE CS, 2012, pp. 646–655.

[14] B. Carminati and E. Ferrari, “Privacy-aware collaborative access control
in web-based social networks,” in Proc. 22nd IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSEC), ser. LNCS,
vol. 5094. Springer, 2008, pp. 81–96.

[15] ——, “Enforcing relationships privacy through collaborative access
control in web-based social networks,” in Proc. 5th Conference on
Collaborative Computing (CollaborateCom). IEEE CS, 2009, pp. 1–8.

[16] M. Xue, B. Carminati, and E. Ferrari, “P3D - privacy-preserving path
discovery in decentralized online social networks,” in Proc. 35th IEEE
Computer Software and Applications Conference (COMPSAC). IEEE
CS, 2011, pp. 48–57.

[17] G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos, “Privacy-
preserving relationship path discovery in social networks,” in Proc. 8th
Conference on Cryptology and Network Security (CANS), ser. LNCS,
vol. 5888. Springer, 2009, pp. 189–208.

[18] M. Backes, M. Maffei, and K. Pecina, “A security API for distributed
social networks,” in Proc. 18th Annual Network & Distributed System
Security Symposium (NDSS). Internet Society, 2011, pp. 35–51.

[19] K. B. Frikken and P. Srinivas, “Key allocation schemes for private social
networks,” in Proc. 8th ACM Workshop on Privacy in the Electronic
Society (WPES). ACM, 2009, pp. 11–20.

[20] X. Chen, F. Zhang, and K. Kim, “A new ID-based group signa-
ture scheme from bilinear pairings,” in IACR ePrint Archive: Report
2003/116, 2003.

[21] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Proc. 7th Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), ser. LNCS, vol.
2248. Springer, 2001, pp. 514–532.

[22] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm
for designing efficient protocols,” in Proc. 1st ACM Conference on
Computer and Communications Security (CCS). ACM, 1993, pp. 62–
73.

[23] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Proc. 23rd Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), ser. LNCS,
vol. 3027. Springer, 2004, pp. 1–19.

[24] E. Stefanov, E. Shi, and D. Song, “Policy-enhanced private set inter-
section: sharing information while enforcing privacy policies,” in Proc.
15th Conference on Practice and Theory in Public Key Cryptography
(PKC), ser. LNCS, vol. 7293. Springer, 2012, pp. 413–430.

[25] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: an efficient and scalable protocol,” in Proc. 20th ACM Conference
on Computer and Communications Security (CCS). ACM, 2013, pp.
789–800.

[26] O. Goldreich, The Foundations of Cryptography - Volume 2. Cambridge
University Press, 2004.

[27] A. C. Squicciarini, M. Shehab, and F. Paci, “Collective privacy man-
agement in social networks,” in Proc. 18th Conference on World Wide
Web (WWW). ACM, 2009, pp. 521–530.

[28] Y. Sun, C. Zhang, J. Pang, B. Alcalde, and S. Mauw, “A trust-augmented
voting scheme for collaborative privacy management,” in Proc. 6th
Workshop on Security and Trust Management (STM), ser. LNCS, vol.
6710. Springer, 2011, pp. 132–146.

[29] ——, “A trust-augmented voting scheme for collaborative privacy man-
agement,” Journal of Computer Security, vol. 20, no. 4, pp. 437–459,
2012.

[30] H. Hu, G.-J. Ahn, and J. Jorgensen, “Multiparty access control for
online social networks: model and mechanisms,” IEEE Transactions on
Knowledge and Data Engineering, vol. 10, no. 6, pp. 341–354, 2013.

[31] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proc. 2nd ACM SIGCOMM
Workshop on Social Networks (WOSN). ACM, 2009, pp. 37–42.

[32] C. Hazay and K. Nissim, “Efficient set operations in the presence of
malicious adversaries,” in Proc. 13th Conference on Practice and Theory
in Public Key Cryptography (PKC), ser. LNCS, vol. 6056. Springer,
2010, pp. 312–331.

[33] “Miracl crypto library,” http://www.certivox.com/miracl/.
[34] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of

the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.
[35] S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access

control in social networks with efficient revocation,” in Proc. 6th ACM
Symposium on Information, Computer and Communications Security
(ASIACCS). ACM, 2011, pp. 411–415.

[36] S. Preibusch and A. R. Beresford, “Establishing distributed hidden
friendship relations,” in Proc. 17th Workshop on Security Protocols
(SPW), ser. LNCS, vol. 7028. Springer, 2013, pp. 321–334.

http://www.certivox.com/miracl/

	Introduction
	Related Work
	Preliminaries
	Cryptographic Building Blocks
	Adversary Model

	Online Social Networks
	Social Network Model
	Access Control in Social Networks

	k-common friends
	Protocol Description
	Security Analysis

	k-depth
	Protocol Description
	Path certification
	Path discovery
	An example
	Discussion

	Security Analysis
	Multi-relationship k-depth Protocol
	Comparison with Existing Schemes

	Performance Analysis
	Theoretical Efficiency Analysis
	Computation Cost
	Communication Cost

	Empirical Efficiency Analysis

	Conclusion
	References

