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ABSTRACT
With the prevalence of location-based social networks (LBSNs),

automated semantic annotation for places plays a critical role in

many LBSN-related applications. Although a line of research con-

tinues to enhance labeling accuracy, there is still a lot of room for

improvement. The crucial problem is to find a high-quality represen-

tation for each place. In previous works, the representation is usu-

ally derived directly from observed patterns of places or indirectly

from calculated proximity amongst places or their combination.

In this paper, we also exploit the combination to represent places

but present a novel semi-supervised learning framework based

on graph embedding, called Predictive Place Embedding (PPE). For
place proximity, PPE first learns user embeddings from a user-tag

bipartite graph by minimizing supervised loss in order to preserve

the similarity of users visiting analogous places. User similarity is

then transformed into place proximity by optimizing each place

embedding as the centroid of the vectors of its check-in users. Our

underlying idea is that a place can be considered as a representative

of all its visitors. For observed patterns, a place-temporal bipartite

graph is used to further adjust place embeddings by reducing un-

supervised loss. Extensive experiments on real large LBSNs show

that PPE outperforms state-of-the-art methods significantly.
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1 INTRODUCTION
With the rapid development of location acquisition and wireless

communication technologies, a number of location-based social
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networks (LBSNs) have released on the Web recently, including

Foursquare, Instagram, Facebook Places and Whrrl, where users

can check in at places, e.g., stores, restaurants, bars, and share their

related experiences in the real world [8].

LBSN has gainedmuch attention from researchers [11] since they

seamlessly integrate the virtual and physical environments. One

challenge with LBSNs is to automatically annotate semantic tags

for places without any labels. It is the basis of many LBSN-related

applications, e.g., effective retrieval and recommendation of POIs.

Previous works [11] show that approximate 30% places in Whrrl

and Foursquare datasets lack any meaningful textual descriptions.

An intuitive way to predict semantic tags for places includes

two steps. The first step is to extract (or select) features from basic

attributes of users and places, such as demographic information

and check-in time; the second step is to classify places based on

extracted features with a classifier, e.g., SVM and logistical regres-

sion. However, feature extraction plays a more important role than

classifier selection in this scenario since it is extremely difficult to

find high-quality representation for differentiating all tags.

In previous analogousworks, the representation is usually learned

either directly from observed patterns of places and users [1, 2, 12]

or from calculated relatedness amongst places (or their combina-

tion) [11].Although the learned representations work well to some

extent, they are usually only good at distinguishing a part of tags,

meanwhile the learning process could be very inefficient. For in-

stance, the feature learning method in [1] needs to train a forest

of boosted decision trees containing 100 decision trees to select

effective features, and the representation of [11] merely works on

recognizing few tags in the Instagram dataset.

Currently, with the introduction of graph embedding with deep

learning [5–7, 10], novel representation has now become possible.

With graph embedding, each vertex in a graph can be represented

by a vector and the number of its dimension is specified by a user. In

general, the vector of each vertex is learned from its local structure,

e.g., who its neighbors are and how strong their connections are.

Similar to earlier embedding techniques, graph embedding with

deep learning also evolved from unsupervised learning model [5, 6]

to semi-supervised learning model [7, 10].

Inspired by [7, 10], we propose a novel semi-supervised learning

framework for place semantic annotations, called Predictive Place
Embedding (PPE). PPE attempts to make use of both labeled and
unlabeled data to learn a low-dimension place vector that reflects
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Figure 1: Overview of our PPE method. L = Ls + λ · Lu
is the loss function of our method. Ls /Lu is the super-
vised/unsupervised loss function for generating/adjusting
user/place embeddings, Lt are the loss functions for trans-
forming user embeddings to place embeddings.

the proximity and the observed patterns of places simultaneously.

Therefore, we propose to sequentially optimize two training ob-

jective functions: one is a supervised loss over a labeled user-tag
bipartite graph for keeping the similarity of users, and the other

is an unsupervised loss over an unlabeled place-temporal bipartite
graph for conforming to a temporal pattern of places (i.e., the distri-

butions of check-in time of places in 24-hour scale). Note that the

first optimization is to preserve the similarity of users and hence

we need to transform it into the proximity of places before the un-

supervised learning. Intuitively, a place can be viewed as a typical

“user" who represent all its check-in users. For instance, a research

institute usually represents a group of scientists or researchers.

Thus, it is reasonable to use the learned vectors of check-in users to

generate the corresponding place vector. There are different ways

to learn place vectors based on user vectors, here we simply opti-

mize each place vector by minimizing the total Euclidean distance

from the place vector to the rest of all visited user vectors.

Figure 1 describes the framework of PPE. A user-tag bipartite

graph is generated from all check-in records first, then it is used

to learn a low-dimension vector for each user by minimizing the

supervised loss. With user vectors, the initial embedding of each

place (with/without tag) is represented by the weighted average of

the vectors of visited users, and it minimizes the total Euclidean

distance among the place vector and its user vectors. With the

initial place vectors, a place-temporal bipartite graph is exploited

to further adjust place vectors by reducing the unsupervised loss.

Finally, based on adjusted place vectors with tags, an SVM classifier

for all tags is trained to predict the tags of unlabeled places.

In summary, we make the following contributions in this paper.

• We propose a novel semi-supervised learning framework

for automated semantic annotation in LBSNs, which is a

crucial prerequisite for many related applications.

• Empirical study shows that our PPE outperforms two state-

of-the-art methods on large-scale datasets.

• We discover for the first time that the data distribution has

an effect on the performance of representation methods.

2 RELATEDWORK
There exists a line of research [1–3, 11, 12] addressing semantic

annotation for places in LBSN or analogous contexts. The challenge

is to find discriminative features for predicting the tags of places.

In general, existing representation approaches fall into three

categories: manual feature selection, feature selection and feature

extraction with machine learning techniques. For manual selection,

most features are taken from various observed patterns of places,

such as the duration of a visit and the neighbors of each place. In [1],

the authors manually select 69 features to classify the categories of

places based on two diary datasets, and their follow-up research

work [2] selects additional features from the sequence of each indi-

vidual’s visits. For feature selection, researchers take advantage of

machine learning algorithms to learn a subset of promising features

from a lot of candidate features. In [12], the Relief feature selection

method and L1-regularized logistic regression are used to select 50

to 2000 most relevant features from 6k to 30k candidate features.

For feature extraction, new features are learned from observed pat-

terns. In [11], the authors provide a state-of-the-art representation

method (called SAP) that utilizes collective classification techniques

to generate a set of new features showing the probabilities of each

place classified to a certain category.

Our PPE is mostly related to approaches on learning features

based on graph embedding with deep learning techniques.For unsu-

pervised learning model [5, 6], any given graph used for embedding

does not contain any label information. The purpose of this model

is to capture the context of each vertex. For supervised learning

model [7, 10], there are more than one graphs used for embedding

and at least one of the graphs contains label information.

3 MODEL FRAMEWORK
The loss function of our framework can be expressed as L = Ls +

λ · Lu , where Ls (Lu ) is the supervised (unsupervised) loss of

predicting the context of each user (place) in a user-tag (place-

temporal) bipartite graph, and λ is a constant weighting factor that

is used to control the impact of Lu on the total loss L. In the rest of

this section, we will introduce notations, Ls and Lu sequentially.

3.1 Notations
Given two setsU and P containing all the users and places, a user of

U and a place of P are denoted by u and p, respectively. We assume

that each user at least visits (checks in) one place and the total

number of unique places visited by users is | P |. On the other hand,

each place is at least visited by one user and the total number of

unique users visiting places in P is |U |. Meanwhile, we use T to

represent the set of all semantic tags and t to denote a tag in T . We

assume that each place has at most one tag. In view of tags, the

set P is divided into two subsets P ′ and ¯P ′, i.e., the places in P ′ are
labeled with one semantic tag while the places in

¯P ′ are not. With

the above notations, we proceed with the following two definitions:

Definition 1 (User-Tag Graph). A user-tag graph, denoted as
Gut = (U ′ ∪ T ,Eut ), is a bipartite graph where U ′ is a subset of
all users (U ′ ⊆ U ). Eut is the set of edges between the users and the
tags. The weight wik between a user ui (1 ≤ i ≤ |U ′ |) and a tag tk
(1 ≤ k ≤ |T |) is defined aswik =

∑
(p :t=tk ) npi where npi is the total

number of user ui visiting place p annotated with the tag tk .



Definition 2 (Place-TemporalGraph). Aplace-temporal graph,
denoted as Gph = (P ∪ H ,Eph ), is a bipartite graph where H =
{1, 2, ..., 24} represents the 24 hours of a day. The weightw jh between
a place pj (1 ≤ i ≤ |P |) and an hour h ∈ H is simply defined as the
total number of times that users visit place pj at hour h.

Note that 1) each user/tag vertex should have at least one edge in

a user-tag graph; and 2) if there exist users only visiting the places

without tags, then they will not appear in any user-tag graph as

user vertex and it is the reason why we haveU ′ ⊆ U .

3.2 User embedding
For a user-tag graph, the conditional probability of a user vertex

ui ∈ U
′
given by a tag vertex tk ∈ T is defined as:

p (ui |tk ) =
exp(u⃗i

T
· u⃗k )∑ |U ′ |

i′=1
exp(u⃗i′

T
· u⃗k )

(1)

where u⃗i and u⃗k represent the vectors for vertex ui and vertex tk ,
respectively. The denominator is the sum of the product of the

vector of each vertex in U ′ and the vector of tk . Actually, Eq 1

defines a conditional distribution p (·|tk ) over all vertices in U ′;
meanwhile, its empirical distribution p̂ (·|tk ) can be obtained from

the user-tag graph, i.e. p̂ (ui |tk ) =
wik∑|U ′ |

i′=1

wi′k
. In order to keep the

two distributions of all tag vertices as close as possible, we attempt

to minimize the supervised loss function shown below:

Ls =
∑
tk ∈T

λk · KL(p̂ (·|tk ) | |p (·|tk )) (2)

where KL(·| |·) is the KL-divergence between two distributions and

KL(p̂ (·|tk ) | |p (·|tk )) =
∑ |U ′ |
i=1

p̂ (ui |tk ) log
p̂ (ui |tk )
p (ui |tk )

, which is used to

measure the distance of two distributions. The factor λk reflects

the importance of vertex tk in the bipartite graph and here we set

λk =
∑ |U ′ |
i=1

wik .

After putting the definition of KL divergence into Eq 2 and re-

moving all constants, we have

Ls = −
∑

(i,k )∈Eut

wik · logp (ui |tk ). (3)

The optimization of Eq 3 can be achieved by systematically learning

all u⃗i and u⃗k , and the learning method used is Stochastic Gradient

Descent (SGD) with negative sampling and edge sampling. Both

sampling techniques successfully overcome the deficiency of SGD

and significantly improve the convergence rate of all vectors [6].

Notice that each learned user embedding u⃗i preserves the in-
formation of the probability distribution p (ui |·) and user vertices

with similar distributions over T are similar to each other. p (ui |·)
shows the probabilities of a user ui visiting places with different

tags and reflects the visitinд pattern of a user. For example, Tom

totally visited two kinds of places (i.e., Office and Bar) and for each

kind the occurrence probabilities are 80% and 20%, respectively.

Here we use the distribution p (ui |·) to discriminate users and it

means that u⃗i is the extracted feature of each user ui .

3.3 Place embedding
In the literature [1, 2, 12], researchers illustrate that the information

of users, such as demographic information and user-trace records,

can be extracted as part of features to distinguish semantic tags of

places. Here we further develop this idea and exploit user embed-

dings to directly generate place embeddings. The underlying idea

is that two places can be distinguished by the behaviors of their

visitors, following the intuition that the visiting patterns of users

who often visit, for example, bars and users who frequently check

in libraries could be very different.

Given a check-in set of a place pj as s = {u
1,u2, ...,un } with

ui ∈ U ′, pj ∈ P , our objective is to minimize the following loss

function to find an optimal vector for pj ,

Lt =

n∑
i=1

l (u⃗i , p⃗j ) =
n∑
i=1

d∑
e=1

1

2

(x ie − y
j
e )

2
(4)

where the loss function l (·, ·) between a user embedding u⃗i =

(x i
1
, . . . ,x id ) and a place embedding p⃗j = (y

j
1
, . . . ,y

j
d ) is specified

as least square optimization, and d is the number of the dimension

of the vector of each user/place vector.

In order to find p⃗j that minimizes Eq 4, for Lt , we get its de-

rivative with respect to p⃗j and simultaneously let it be 0, then we

obtain a closed form solution as follows:

yej =

∑n
i=1

xei
n

, (1 ≤ e ≤ d ) (5)

i.e., p⃗ is the weighted average of the vectors of its users.

3.4 Embedding adjustment
Now, the initial place embeddings are obtained from user embed-

dings based on their similarities. Actually, except user features,

some observed patterns of places are usually used to describe places

in previous works, e.g., the total number of check-ins. Here we fol-

low this idea and exploit the distribution of check-in time in 24-hour

scale to adjust all initial place embeddings. The information of the

distributions of all places is preserved in a place-temporal graph as

defined in Section 3.1.

Our unsupervised loss function based on a place-temporal graph

is defined as follows:

Lu = −
∑

(i,h)∈Eih

wih · logp (pj |h). (6)

Here we omit the derivation of Eq 6 since it has a similar derivation

with Eq 3. From the point of view of Eq 6, if two places pi and pj
have similar temporal distributions, the optimization process will

pull their embeddings close to each other.

4 EXPERIMENTS
In this section, we describe our datasets and present the experimen-

tal results to demonstrate PPE’s performance.

4.1 Dataset description
We have carried out a set of experiments on three large real LBSN

datasets, i.e., two original datasets from Instagram [4] and one from

Foursquare [9]. The two datasets of Instagram contain the check-in

information of New York and London, respectively. The Foursquare

dataset records the check-in situation of New York as well. Each

place in the three datasets has at most one tag. The statistics of the

datasets are shown in Table 1.



Table 1: The statistics of the three datasets.

Properties New York London New York

(Instagram) (Instagram) (Foursqaure)

#Check-ins 855,493 2,788,527 227,428

#Users 49,738 39,994 1,083

#Places 27,940 22,817 38,333

#Tags 381 381 400

In the datasets, many places are not "active" enough, in the sense

that they only have at most 10 check-in records. Thus, we need

to remove all such "inactive" places from each dataset as a pre-

processing step. Moreover, for comparison purpose, 1) we group

all 381 tags of Instagram datasets into 10 superclasses; 2) we build

three new sub-datasets from original Instagram and Foursquare

datasets, which only contain places with top-20 tags ranked by the

number of check-ins.

4.2 Experimental results and analysis
In this paper, we compare our PPE framework with the SAP [11]

and LINE [6] models. Here we adopt LINE model to train a place-

user bipartite graph and directly obtain place embeddings. For PPE

and LINE, the number of the dimension for user and place vectors

is set as 200 and the number of iteration for optimization is 100

million. The prediction is performed with the SVM classifier and

based on 10-fold cross-validation. For measurement, the standard

micro-averaged and macro-averaged F1 are used to evaluate all

experimental results.

Table 2 shows the prediction results on three sub-datasets of

Instagram and Foursquare with 10 superclasses and top-20 classes

respectively. From the table, we draw the following observations:

(1) Our PPE outperforms the other two models significantly;

(2) The LINE model is stably better than the SAP model;

(3) The results of our PPE on the Foursquare datasets is worse

than its results on the Instagram datasets.

For Observations 1 and 2, our PPE is around 30% better than the

LINE model since the label (tag) information is learned into place

embeddings by a user-tag bipartite graph. Meanwhile, the LINE

model outperforms the SAP model due to the use of deep learning.

From Table 1, we can see that, in the Foursquare dataset, 1,083

users can cover 38,333 places, however in the Instagram dataset,

49,738 users only cover 27,940 places. It means that the distribution

p (ui |·) in Foursquare and Instagram datasets are very different. The

distribution from the Foursquare dataset should be much more

even than the distribution from Instagram datasets. Hence, any two

distributions p (ui |·) and p (uj |·) in Foursquare are much closer to

each other than the same context in the Instagram datasets, This

gives rise to the fact that user and place embeddings become less

discriminative, explaining Observation 3.

5 CONCLUSION
We have presented a semi-supervised learning framework to gener-

ate discriminative low-dimension embeddings for places in LBSNs.

For semantic annotation, our framework outperforms the two state-

of-the-art representation learning models with SVM. The success of

Table 2: The prediction results. (The upper part is for the two
Instagram sub-datasets with 10 superclasses, the lower is for
all sub-datasets with 20 top classes;ut , pt and pu are user-tag,
place-temporal, place-user graphs; for PPE(ut+pt), λ = 0.02.)

Model New York London New York

Instagram Instagram Foursqaure

Micro Macro Micro Macro Micro Macro

PPE(ut) 54.6 39.3 52.3 40.0 N/A N/A

PPE(ut+pt) 57.0 41.6 53.8 40.5 N/A N/A

LINE(pu) 37.1 20.7 49.3 33.5 N/A N/A

SAP 29.2 12.0 29.3 4.5 N/A N/A

PPE(ut) 48.7 41.0 55.7 38.9 38.3 32.3

PPE(ut+pt) 49.1 38.0 57.6 39.8 28.5 14.9

LINE(pu) 28.2 12.5 35.9 14.4 22.5 13.0

SAP 17.7 6.2 27.0 2.1 15.2 6.2

our framework is due not only to the foundation of deep learning

and the introduction of label information into place embeddings,

but also the intriguing idea of representing places by user behaviors.
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