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ABSTRACT
The text-to-image generation model has attracted significant inter-

est from both academic and industrial communities. These models

can generate the images based on the given prompt descriptions.

Their potent capabilities, while beneficial, also present risks. Pre-

vious efforts relied on the approach of training binary classifiers

to detect the generated fake images, which is inefficient, lacking

in generalizability, and non-robust. In this paper, we propose the

novel zero-shot detection method, called ZeroFake, to distinguish

fake images apart from real ones by utilizing a perturbation-based

DDIM inversion technique. ZeroFake is inspired by the findings that

fake images are more robust than real images during the process of

DDIM inversion and reconstruction. Specifically, for a given image,

ZeroFake first generates noise with DDIM inversion guided by ad-

versary prompts. Then, ZeroFake reconstructs the image from the

generated noise. Subsequently, it compares the reconstructed image

with the original image to determine whether it is fake or real. By

exploiting the differential response of fake and real images to the

adversary prompts during the inversion and reconstruction process,

our model offers a more robust and efficient method to detect fake

images without the extensive data and training costs. Extensive

results demonstrate that the proposed ZeroFake can achieve great

performance in fake image detection, fake artwork detection, and

fake edited image detection. We further illustrate the robustness of

the proposed ZeroFake by showcasing its resilience against poten-

tial adversary attacks. We hope that our solution can better assist

the community in achieving the arrival of a more efficient and fair

AGI.
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Our code is available at https://github.com/TrustAIRLab/ZeroFake.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690297

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy.

KEYWORDS
Text-To-Image Models; Deepfake Detection; Image Editing

ACM Reference Format:
Zeyang Sha, Yicong Tan, Mingjie Li, Michael Backes, and Yang Zhang. 2024.

ZeroFake: Zero-Shot Detection of Fake Images Generated and Edited by

Text-to-Image Generation Models. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3658644.3690297

1 INTRODUCTION
Text-to-image generation models [34, 36, 37, 49, 51] have recently

marked a significant milestone. These kinds of models can gen-

erate authentic images according to the description of the given

prompts. An increasing number of platforms, like Midjourney [1],

are utilizing text-to-image generation models to enable users to

create or alter images according to their specific intentions. These

advancements have revolutionized the digital art and creative in-

dustries, enabling artists and designers to explore new realms of

creativity and innovation with unprecedented ease and flexibility.

Additionally, they open up possibilities for personalized content

creation, allowing individuals to bring their unique visions to life

with just a prompt.

However, these powerful models can also be leveraged by the

adversary to generate fake images, which can potentially be propa-

gated to spread misinformation, incurring ethical concerns, causing

identity theft, and so on. For instance, even though Dutch politician

Frans Timmermans is traveling on an ordinary plane, text-to-image

generation models can create the fake, misleading images that Frans

Timmermans is sitting in a luxurious private jet, which may be used

to influence the results of the election. Moreover, the text-to-image

generation models are also used to generate the AI porn of Taylor

Swift, which is widely spread. Such incidents highlight a broader

trend where these fake images pose increasing threats to both social

harmony and individual privacy.
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Figure 1: An illustration of ZeroFake. Fake images sharemore
common features with the reconstructed images under the
DDIM inversion than real images.

Previous works have already paid a lot of attention to how to

detect these fake images. Normally, these works treat the task as a

binary classification problem. Wang et al. [43] just trained a classi-

fier to detect fake images generated by GAN. The performance is

great due to the poor capability of traditional GAN models. Based

on that, more works [5, 12, 29, 43, 50, 53] try to figure out how

to enhance the performance of the binary classifier from the per-

spective of datasets [43, 50], training process [12, 53], model archi-

tecture [5, 29], and so on. Among these works, DeFake [38] is the

first work to detect text-to-image-based fake images. It leverages

the prompt and image together to train a hybrid detector. During

the inference phase, given the images, DeFake first generates the

prompts using BLIP. Then, the detector can distinguish whether

the given images are fake or real by feeding both images and the

generated prompts. Besides DeFake, DIRE [44] is another state-of-

the-art detection method proposed against diffusion models. It also

needs to train a binary classifier to detect fake images. However,

these training-based methods need a large number of fake images

to train a classifier, which is impractical in domains like artwork

or cartoons, where the number of real images is limited. Moreover,

binary classifiers are vulnerable to potential adversary example

attacks. The adversary can easily create fake images with noise to

mislead detectors into making wrong judgments.

1.1 Our Contribution
In this paper, to address the problems faced by current detection

methods, we introduce ZeroFake, a novel zero-shot method for de-

tecting fake images. Before ZeroFake, previous papers [6, 42, 44] on

image editing showed that real images are hard to reconstruct via

DDIM inversion and lead to worse performance on editing real im-

ages compared with the generated images. Tov et al. [41] proposed

a possible reason called “distortion-editability tradeoff,” where in-

put prompts can influence a lot. ZeroFake leverages the unique

behaviors of real and fake images during the DDIM inversion [15]

and reconstruction processes. The core intuition behind ZeroFake is

that fake images, due to their synthetic nature, are inherently more

robust to perturbations introduced by adversary prompts during

the DDIM inversion process than real images. Consequently, when

these images are subjected to noise addition and subsequent noise

reduction under the guidance of an adversary prompt, they tend

to retain more of their original characteristics compared to real

images. We show the overview of ZeroFake in Figure 1.

Methodology. Based on the above intuition, we propose ZeroFake

to distinguish fake images apart from real ones. The process begins

by feeding a given image into the BLIP model [19] to generate a

reversed prompt. ZeroFake then constructs an adversary prompt

by altering the reversed prompt with words from an adversarial

text list, such as "big tree" or "small dog." Specifically, the first

noun of the reversed prompt is replaced with these adversarial

texts to produce multiple adversary prompts. ZeroFake evaluates

these adversary prompts by calculating the cosine distance from

the original reversed prompt, selecting the most divergent prompt

as the final adversary prompt. This adversary prompt then guides

the DDIM inversion process, which aims to perturb the original

image. The perturbation is achieved by incrementally adding noise

generated by a UNet that has been pre-trained on diffusion models.

After the inversion, the estimated initial noise, which is supposed

to contain features of the original images, is obtained. Then, guided

by the embeddings from the adversary prompt again, the estimated

initial noise is methodically reconstructed back to its original form,

which can be considered as the reconstructed image. In the end,

ZeroFake compares the similarity between the reconstructed image

and the initial given image to determine the image’s authenticity.

Fake Image Detection. We conduct experiments using two bench-

mark datasets, MSCOCO [26] and Flickr [48], selecting 500 prompt-

image pairs randomly due to computational constraints. We gen-

erated fake images using five state-of-the-art models, including

Stable Diffusion [36], SDXL [25], XLBase [2], DALL·E 2 [33], and

GLIDE [32]. The extensive results show that our proposed ZeroFake

performs exceptionally well across all scenarios. For example, when

detecting fake images generated by Stable Diffusion on MSCOCO,

DIRE and DeFake can achieve 0.590 and 0.853 accuracy, while our

proposed zero-shot ZeroFake can achieve 0.952 accuracy. These

results confirm that fake images are more robust to the perturbation

of the adversary prompts than real images.

Fake Artwork Detection. In the realm of digital art, distinguish-

ing genuine creations from AI-generated fakes is also critical, es-

pecially as text-to-image generation models increasingly win art

competitions. Moreover, artworks are considered harder to detect

than fake images for traditional detection methods because human-

based paintings and machine-based paintings are more similar to

each other than common fake photos. Therefore, instead of only

focusing on the authentic prompt-image datasets, we also test the

performance of ZeroFake on the collected artworks. Our ZeroFake

model was tested across various artwork types, including cartoons

and oil paintings, demonstrates remarkable efficacy in identify-

ing fake artworks. The tests were conducted on a curated set of

120 image-prompt pairs derived from diverse artistic styles, ensur-

ing broad validation. The results underscore ZeroFake’s superior

performance compared to conventional models like DIRE and De-

Fake, which falter particularly in the nuanced domain of artwork

authenticity.

Image Editing Detection. Besides detecting fake images that

are totally generated by text-to-image generation models, it is also
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critical to detect the images that are edited by text-to-image gen-

eration models. In this paper, we regard the edited images as the

fake images. Therefore, ZeroFake is assessed using a custom dataset

designed to mimic realistic editing scenarios in political and so-

cial contexts. This dataset includes examples of text-driven edits

that substantially edit the appearance and context of images by

three state-of-the-art image editing methods, including prompt-

to-prompt [44], Ledit [42], and Instruct Pixel [6]. We show that

ZeroFake also performs well in image editing detection. For in-

stance, when the real images are edited by prompt-to-prompt, one

of the state-of-the-art image editing methods, ZeroFake can achieve

0.966 accuracy, while DeFake can only achieve 0.533. Our findings

reveal that ZeroFake outperforms existing methods, effectively dis-

cerning between edited and original images, thereby demonstrating

robustness against sophisticated image manipulation techniques.

Robustness. Moreover, the main drawback of the previous meth-

ods lies in the fact that they are all binary classifiers, which are

proven vulnerable to potential image transformations. We test Ze-

roFake against various types of image transformations, including

blurring, sharpening, gaussian noise, and adversary example at-

tacks [14, 16], which are designed to alter image properties to mis-

lead detection algorithms subtly. Our results confirm that ZeroFake

maintains high accuracy and reliability in detecting fake images,

artworks, and edited images even when subjected to these sophisti-

cated attacks. For instance, even if the added noise is 0.01, which

is large enough to be noticed by human eyes, ZeroFake can still

achieve 0.891 accuracy. This demonstrates that ZeroFake not only

outperforms traditional detection methods in standard scenarios

but also holds strong potential in adversary environments, ensuring

its practical applicability in real-world settings where robustness

against evasion techniques is paramount.

Implications. In conclusion, we present a novel approach to ad-

dressing the challenges posed by fake images generated by text-

to-image generation models. The performance of our proposed

ZeroFake method in detecting fake images and accurately attribut-

ing them to their originating models is promising. These findings

indicate that our approach could be crucial in counteracting the

risks associated with these fake images. To advance research in

this domain, we plan to make our source code publicly available,

thereby supporting the broader academic community in exploring

and enhancing the efficacy of fake image detection.

2 PRELIMINARIES
2.1 Text-to-Image Generation Models
Text-to-image generationmodels try to reverse the diffusion process

starting from a random noise vector 𝑥𝑡 to an output image 𝑥0
through a denoising process based on the textual prompt P, which
is related to the given prompt representing users’ requirements.

During generation progress, the image is gradually denoised with

the predicted noise via noise estimator 𝜖𝜃 in the diffusion models,

which is trained based on the following objective to predict the

artificial noise in different steps in Equation 1.

min

𝜃
𝐸𝑥0,𝜖∼N(0,𝐼 ),𝑡∼Uniform(1,𝑇 ) ∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡, emb)∥2 (1)

where emb = 𝜓 (𝑃) here denotes the embedding of the text condi-

tion and 𝑥𝑡 is a noised sample generated by adding 𝑡 stemp noise to

the sampled images 𝑥0. After training, the diffusion model can gen-

erate images 𝑥0 by de-noising a random sampled 𝑥𝑇 with its noise

predictor 𝜖𝜃 . Besides operating directly on the pixel space, the diffu-

sion model can also be applied to the latent space. In this scenario,

𝑧0 is a latent embedding encoded from an image encoder 𝐸 with

𝑧0 = 𝐸 (𝑥0), where 𝑥0 is a sample of the real image. After obtaining

generated latent code 𝑧0 via the diffusion model, users can also

convert to a real image with an image decoder 𝐸 with 𝑥0 = 𝐷 (𝑧0),
where 𝑥0 is a sample of real images. Due to the efficiency and flex-

ibility of this kind of diffusion model, most text-to-image models

like Stable-Diffusion use this kind of diffusion model, which is also

called the Latent Diffusion Model. Thus, we mainly consider this

kind of diffusion model in our paper.

A primary obstacle in text-guided generation lies in enhancing

the influence of the provided text. Addressing this, Song et al. [39]

introduced a novel approach known as classifier-free guidance. This

technique involves unconditional prediction, which is subsequently

combined with conditioned prediction to amplify its impact. For-

mally, let ∅ = 𝜓 (“′′) represent the embedding of an empty text and

denote𝑤 as the guidance scale parameter. Then, the classifier-free

guidance prediction is formulated in Equation 2.

𝜖𝜃 (𝑧𝑡 , 𝑡, emb,∅) = 𝑤 · 𝜖𝜃 (𝑧𝑡 , 𝑡, emb) + (1 −𝑤) · 𝜖𝜃 (𝑧𝑡 , 𝑡,∅) (2)

where𝑤 is a constant scalar representing the strength of the classifier-

free guidance. DDIM process is the opposite direction of the gener-

ation process, which aims to add noise to the original images. The

process can be formulated in Equation 3.

𝑧𝑡 =

√︂
𝛼𝑡

𝛼𝑡−1
𝑧𝑡−1 +

√
𝛼𝑡

(√︂
1

𝛼𝑡
− 1 −

√︂
1

𝛼𝑡−1
− 1

)
· 𝜖𝜃 (𝑧𝑡 , 𝑡, emb),

(3)

However, the challenge is that 𝜖𝜃 (𝑧𝑡 , 𝑡, emb) is impossible to obtain.

We will explain it later in Section 4.

2.2 Fake Image Detection
Several fake image detection methods have been proposed previ-

ously for text-to-image generation models. As we have mentioned

in the introduction phase, all of the previous methods are developed

based on training a binary classifier. To the best of our knowledge,

there are two state-of-the-art detection methods that can be re-

garded as the baseline in our paper.

• DeFake [38] Instead of just training a classifier on the im-

ages, DeFake was proposed to train the classifier on the com-

bination of images and the prompts. Note that the prompts

are generated by the BLIPmodel, as mentioned in the DeFake

paper. DeFake argues that the involvement of the prompt

can help the classifier better identify the fake images since

fake images are always closer to the prompt than real im-

ages. However, it takes too much computational resources to

train the classifier. We also show later that DeFake has poor

performance in domains like artwork and image editing.

• DIRE [44] DIRE is another fake image detection method

that also needs to train a binary classifier. DIRE first adds

the noise to the given images and then reconstructs the
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images from the noise. Then, the reconstructed images, to-

gether with the original images, are fed into the classifier

for detection. However, the prompt will not be considered

in the whole detection process. In this paper, we show that

the proposed DIRE cannot work well in the text-to-image

generation models. Our ZeroFake approach utilizes prompt

guidance during the DDIM reversion process, demonstrat-

ing significantly improved performance over DIRE without

requiring any training.

3 THREAT MODEL
To better demonstrate how the proposed ZeroFake works, we in-

troduce the threat model of our proposed detection process in this

section.

3.1 Detector’s Goals
• Distinguishing Fake Images Apart From Real Images.
The primary goal of our proposed ZeroFake is to distinguish

fake images generated by text-to-image generation models

apart from real images. Note that in this paper, we refer to

the images that are generated or edited by text-to-image

generation models as fake images. Therefore, the detector is

supposed to be able to recognize not only generated images

but also modified images. Moreover, instead of detecting

authentic images, our detector should also be able to distin-

guish fake artworks from real artworks.

• Agnostic to Models and Datasets. The rapid development

of text-to-image generation models highlights the challenge

of developing a comprehensive detector due to the impracti-

cality of including all models and the high resource consump-

tion involved. Thus, it’s vital to determine if a detector, based

on a few models, can generalize across unknown models.

Additionally, without knowing the exact prompts used for

generating fake images, our detector must also effectively

identify fakes from diverse prompt-image datasets.

• Low/Zero Training Cost. Nowadays, most of the current

fake image detection frameworks rely on a large amount

of training data to achieve great performance. However, as

the text-to-image generation model continues to update, the

detector also needs to continuously update training data,

which will cost a lot of waste of computational resources.

Therefore, in this paper, we aim to propose a training-free

detection method, which can be considered zero cost while

achieving super great detection performance.

• Robustness to Potential Attacks. As we have mentioned

before, one major drawback of the binary classifiers is that

they are all vulnerable to potential adversary example at-

tacks. Therefore, in this paper, we aim to develop a robust

detector that would not be disturbed by any form of mali-

cious noise.

3.2 Detector’s Capabilities
In this paper, we assume that the detector has access to one text-to-

image generation model, which is a reasonable assumption as most

text-to-image generation models are open-source models. Note that

we conduct experiments to show that one text-to-image genera-

tion model can be used to detect other fake images generated by

unknown and totally different models. We also assume the detector

does not know the original prompts that generate the fake images.

Therefore, in the first stage of our detection, we need to generate

the prompt. We will detail the process of detection in Section 4.

4 ZEROFAKE
In this section, we introduce the detailed pipeline for our proposed

ZeroFake. We start by introducing the overview of how ZeroFake

works. Then, we introduce three critical parts of ZeroFake to de-

scribe the proposed mechanism in detail.

Algorithm 1 Overview Pipeline of ZeroFake.

Ensure: Given image, 𝑥 ; Threshold, 𝜏

Require: Verification result, 𝑦 (Real or Fake)

1: 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝑃𝑟𝑜𝑚𝑝𝑡 ← Reverse(𝑥)
2: 𝐴𝑑𝑣𝑆𝑒𝑡𝑠 ← [“tree”, “dog”, “cat”, . . .]
3: for𝑤𝑜𝑟𝑑 in 𝐴𝑑𝑣𝑆𝑒𝑡𝑠 do
4: 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝑃𝑟𝑜𝑚𝑝𝑡 ← RepFirstNoun(𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝑃𝑟𝑜𝑚𝑝𝑡,𝑤𝑜𝑟𝑑)
5: end for
6: 𝐿𝑒𝑎𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟 ← FindLeastSimilar(𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝑃𝑟𝑜𝑚𝑝𝑡,𝐴𝑑𝑣𝑆𝑒𝑡𝑠)
7: 𝐼𝑚𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑡 ← DDIM(𝑥, 𝐿𝑒𝑎𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟 )
8: 𝑥 ′ ← Forward(𝐼𝑚𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑡, 𝐿𝑒𝑎𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟 )
9: 𝑆𝑖𝑚 ← Similarity(𝑥 ′, 𝑥)
10: if 𝑆𝑖𝑚 ≤ 𝜏 then
11: 𝑦 ← 0

12: else
13: 𝑦 ← 1

14: end if

4.1 Overview
In general, the fake image detection problem typically revolves

around identifying differences between real and fake images. Previ-

ousmethods have typically relied on training classifiers to implicitly

discern these visual distinctions. However, such approaches are

often impractical due to the high costs associated with data collec-

tion and model training, particularly given the rapid evolution of

diffusion models, where visual differences can vary significantly

across different generative models.

In contrast to classifier-based approaches, we propose a novel

method that capitalizes on a fundamental trait of text-to-image

generation models to differentiate between fake and real images.

Specifically, we observe an obvious disparity in the stability of

final generated images when starting from initial states obtained

via DDIM inversion on fake versus real images. We show some

examples in Figure 2 and Figure 3.

According to the above findings, the basic idea of the proposed

ZeroFake is that fake images are more robust than real images dur-

ing the DDIM inversion process. Specifically, we find that when

adding some perturbation, fake images are easier to reconstruct

than real images. To leverage the difference above, we adopt the fol-

lowing steps to conduct the fake image detection. We first conduct

the DDIM inversion under the guidance of our adversary prompts.
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(a) Real (b) Reconstructed Real

Figure 2: Real image V.S. reconstructed real image.

(a) Fake (b) Reconstructed Fake

Figure 3: Fake image V.S. reconstructed fake image.

After the DDIM inversion, we can get the Gaussian noise that is sup-

posed to be able to generate the original images. Then, we leverage

the de-noise process to de-noise the Gaussian noise to reconstruct

the images. We then compute the similarity between the recon-

structed images and the original images. If the similarity is smaller

than the predefined threshold, then we classify the given images

as real or fake images. We draw the overall pipeline in Figure 4.

We also show the pseudo code to better demonstrate the process of

ZeroFake in Algorithm 1.

4.2 Prompt Generation
As illustrated above, we leverage the robustness difference between

fake and real images’ inversion under perturbed prompts to distin-

guish fake images apart from real ones. Therefore, we first need to

obtain the prompt for each given image, as we only take images for

the classification. To achieve that goal, we adopt the BLIP model,

one of the state-of-the-art image captioning models that can gen-

erate a proper description P𝑜𝑟𝑎𝑐𝑙𝑒 of the given image, denoted in

Equation 4.

P
oracle

= BLIP(x). (4)

In this paper, we refer to the output of BLIP as the reverse prompt.

Then, we use the reversed prompts as oracle prompts to obtain

the adversary ones using our one-word replacement method in

the following steps. Firstly, we change the first noun words in the

reversed prompt with an alternative noun set N = {𝑛1, 𝑛2, . . . , 𝑛𝑘 }

consisting of many unrelated noun terms 𝑛𝑖 like dog, tree, car, etc.

We manually craft this adversary noun list. We show how we con-

struct the adversary noun list and why the list can be considered

high quality in Section A.1. Since noun words usually contribute a

lot to the whole meaning of sentences, such a method can easily

perturb the meaning of the prompts. Then, we can obtain an alter-

native prompt set S containing different adversary prompts. The

process is denoted in Equation 5:

P
perturbed,𝑖 = ReplaceNoun(P

oracle
, 𝑛𝑖 ), (5)

where 𝑛𝑖 belongs to N = {𝑛1, 𝑛2, . . . , 𝑛𝑘 }, which is an alternative

noun set.

For example, suppose the reversed prompt is “A motorcycle

parked in the parking space next to another motorcycle”. In that

case, the alternative prompt set S will contain “A tree parked in a

parking space next to another motorcycle”, “A dog parked in a park-

ing space next to another motorcycle” and others formed by the first

noun replacement methods. Then we compute the cosine similarity

of the perturbation prompts P
perturbed,𝑖 with the reversed prompt

P
oracle

and find the least similar one, which can be considered as

the most effective perturbation prompts. The process is formulated

in Equation 6 and Equation 7:

similarity𝑖 = CosineSimilarity(P
oracle

,P
perturbed,𝑖 ) (6)

P
effective

= argmin

Pperturbed,𝑖
similarity𝑖 (7)

4.3 DDIM Inversion and Reconstruction
After obtaining the adversary prompts corresponding to the given

images, in this stage, we conduct the DDIM inversion, leveraging

both the original images and the derived adversary prompts. DDIM

inversion inherently involves the strategic incorporation of noise

into the images, followed by a systematic denoising procedure

to recover the original images. Specifically, we first need to feed

the given image to a pre-trained Variational Autoencoder (VAE)

encoder, thereby yielding the initial latent representation of the

image, denoted in Equation 8:

𝑧0 = VAE_Encoder(x) (8)

Also, we need to get the prompt embedding, which will serve as

guidance when we conduct the add-noise and de-noise process in

Equation 9.

𝑒𝑚𝑏 = TEXT_Encoder(P
effective

) (9)

After getting 𝑧0 and 𝑒𝑚𝑏, we need to add the noise to the initial

latent representation of the image, employing the DDIM inversion.

According to DDIM’s sampling procedure, the exact procedure is

mathematically represented in Equation 10:

𝑧𝑡 =

√︂
𝛼𝑡

𝛼𝑡−1
𝑧𝑡−1 +

√
𝛼𝑡

(√︂
1

𝛼𝑡
− 1 −

√︂
1

𝛼𝑡−1
− 1

)
· 𝜖𝜃 (𝑧𝑡 , 𝑡, emb),

(10)

where:

• 𝑧𝑡 symbolizes the de-noised latent state at time step 𝑡 .
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Figure 4: An illustration of fake image detection. Specifically,
ZeroFake first generates the adversary prompt via prompt
reversion and selection. Then, ZeroFake conducts the DDIM
inversion and reconstruction on the given images to obtain
the reconstructed images. ZeroFake finally computes the
similarity between the given image and the reconstructed
image to determine whether it is a fake or real image.

• 𝛼𝑡 and 𝛼𝑡+1 signify the noise scales at consecutive time steps

𝑡 and 𝑡 + 1, respectively. These parameters are integral to the

variance schedule that dictates the progressive modulation of

noise throughout the diffusion steps, maintaining a delicate

balance between noise and original data fidelity.

• 𝜖𝜃 (𝑧𝑡 , 𝑡, emb) denotes the UNet, tasked with estimating the

noise component.

However, we cannot get 𝑧𝑡 in practice to estimate the noise in

Equation 10. Thus, we use 𝑧𝑡−1 to estimate the noise 𝜖 in practice

shown in Equation 11,

𝑧𝑡 ≈
√︂

𝛼𝑡

𝛼𝑡−1
𝑧𝑡−1+

√
𝛼𝑡

(√︂
1

𝛼𝑡
− 1 −

√︂
1

𝛼𝑡−1
− 1

)
·𝜖𝜃 (𝑧𝑡−1, 𝑡−1, emb).

(11)

Integrating 𝑧0 into the step-by-step process we’ve described and

moved through a set of 𝑇 time steps helps us slowly polish the

hidden features of the image. By repeating this process, which

ends at 𝑧𝑡 , we finally get the approximate original noise, which

can be used to generate the given images. In this paper, we set

forward step t as 999. However, the process is not accurate since the

strict inversion requires estimating noise at step ’t’, but the actual

inversion can only use noise from step ’t-1’, whereas the restoration

process uses noise from step ’t’. Also, the guidance of the given

prompt, which is 𝑒𝑚𝑏, will disturb the direction of the noise-adding

process. Therefore, there is a gap between the original noise latent

and the reversed noise latent. Moreover, based on our findings, the

perturbation of the prompts is stronger in real images than in fake

images, which will contribute to the fact that the reversed noise

latent of fake images is closer than the original noise latent. This

leads to the reconstructed images being more similar to the original

images.

The reconstruction process is the reverse function of the DDIM

inversion process, which can be formulated in Equation 12.

𝑧𝑡−1 =
√︂

𝛼𝑡−1
𝛼𝑡

𝑧𝑡 −
√
𝛼𝑡−1

(√︂
1

𝛼𝑡
− 1 −

√︂
1

𝛼𝑡−1
− 1

)
·𝜖𝜃 (𝑧𝑡 , 𝑡, emb)

(12)

However, as we have stated before, the process will also introduce

bias as the initial noise 𝑧0 is not the approximated one. Moreover,

the adversary prompt embedding also disturbs the process in this

phase. Therefore, after the de-noise process, we will get the new

initial latent code 𝑧𝑇
0
. In practice, we reconstruct the image in 20

steps.

Then, we input the new initial latent code to the VAE-Decoder

and get the new reconstructed image as Equation 13:

𝑥 ′ = VAE_Decoder(𝑧𝑇
0
) (13)

4.4 Fake Image Detection
The process of Fake image detection is quite simple. The above steps

can help us get the reversed image based on the given images. We

find that the real images are less robust to the prompt perturbations,

which means that the reversed real images may share less similarity

of original real images than fake images. Therefore, in this step, we

will compute the SSIM [45] similarity between the reversed images

and the original images in Equation 14.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = SSIM(𝑥, 𝑥 ′) (14)

SSIM is a metric used to measure the similarity between two im-

ages. SSIM considers the visual impact of three characteristics of

an image: luminance, contrast, and structure. By comparing these

elements between a reference image and a test image, SSIM quan-

tifies their perceptual differences, offering a value between 0 and

1, where 1 indicates perfect similarity. If the SSIM is smaller than

the predefined threshold, then we can conclude that the given im-

ages are real; otherwise, they are fake. To decide the threshold, we

first need to generate 100 fake images together with real images.

Then, we leverage SVM to find the best threshold based on the 200

samples. We test the threshold in other unseen samples.

5 FAKE IMAGE DETECTION
5.1 Experimental Setup
Text-to-Image Generation Models. Nowadays, text-to-image

generation models have attracted an increasing amount of attention.

Typically, these models use a text prompt along with random noise

as inputs. The process involves denoising the image while aligning

it with the guidance provided by the text prompt, ensuring the

final image corresponds accurately to the given prompt. In this

work, we focus on the following four state-of-the-art text-to-image

generation models, which are considered the most powerful models

in hugging faces,

• Stable Diffusion 1.4 [36]. Stable Diffusion is a latent text-

to-image generation model noted for its capability of gen-

erating photo-realistic given textual prompts. It optimizes
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the image generation process by conducting the diffusion

process in the latent space with a conditioning mechanism

that enables data from other modalities to control the synthe-

sis process, improving the training efficiency and achieving

competitive performance across a range of image synthesis

tasks.

• SDXL-Lightning [25]. SDXL-Lightning is a state-of-the-art
one-step/few-step text-to-image generation model, which is

trained through a progressive, adversarial diffusion distilla-

tion approach. It can produce high-quality images in 2, 4, or

8 steps. The number of steps is set to 2 in our text-to-image

generation.

• Stable-diffusion-xl-base [2]. In the case of Stable-diffusion-
xl-base, the two-stage pipeline is adopted. First, the noisy

latent of the desired output size is produced from the base

model, and then the specialized high-resolution refiner with

the technique SDEdit [30] is applied to generate the output

fake images of size 1024x1024. The number of steps and high

noise fraction are set to 40 and 0.8, respectively.

• DALL·E 2 [33]. DALL·E-2 is a text-to-image generation

model developed by OpenAI that generates images given tex-

tual prompts. It utilizes a two-stage model for text-to-image

generation, initially employing a Diffusion prior model to

generate image embeddings from CLIP text embeddings, fol-

lowed by a classifier-free guidance diffusion decoder that

inverts these image embeddings back into images, demon-

strating the capability of synthesizing complex and realis-

tic images with text conditions. For DALL·E 2, we obtain

1024×1024 images by making requests from the OpenAI API.

• GLIDE [32]. GLIDE, a text-to-image generation model de-

veloped by OpenAI, is accessible via its GitHub page
2
. This

model has been trained on a curated dataset consisting of

hundreds of millions of prompt-image pairs. Furthermore,

GLIDE exhibits limitations in processing prompts involving

"person" topics, as images of this nature were excluded from

its training dataset to address ethical considerations.

Note that based on the description, Stable Diffusion and Stable-

diffusion-xl-base are totally different model structures trained on

different datasets. Therefore, they can be regarded as different gen-

eration models. Also, the DALL·E 2 we used in this paper is the

official DALL·E 2 model from Open AI. Therefore, we just query

the API and get the fake images.

Datasets. In this paper, we take advantage of the following bench-

mark datasets as the evaluation datasets. Both of them are prompt-

image pair datasets.

• MSCOCO [26]. The MSCOCO dataset, developed by Mi-

crosoft, stands as a comprehensive resource for object de-

tection, segmentation, key-point detection, and image cap-

tioning tasks. This large-scale dataset consists of 328,000

images, facilitating a range of visual tasks by providing a

wide variety of annotated data, i.e., prompts.

• Flickr30k [48]. The Flickr30k dataset comprises 31,000 im-

ages sourced from Flickr, each accompanied by five reference

sentences crafted by human annotators. This collection offers

images alongside detailed textual descriptions, supporting

2
https://github.com/openai/glide-text2im

Table 1: The text-to-image generation models, datasets, and
the number/size of fake images we consider in this work.

Model Dataset Images Image Size

Stable Diffusion

MSCOCO 500 512×512
Flickr30k 500 512×512

SDXL-Lighting

MSCOCO 500 512×512
Flickr30k 500 512×512

XLBase

MSCOCO 500 1024×1024
Flickr30k 500 1024×1024

GLIDE

MSCOCO 500 256×256
Flickr30k 500 256×256

DALL·E 2

MSCOCO 500 1024×1024
Flickr30k 500 1024×1024

a wide range of visual tasks, including image retrieval, im-

age captioning, image-to-text generation, and multi-modal

understanding.

• AGFD-20K [3]. Besides MSCOCO and Flickr30k, we also

consider the face dataset AGFD-20k in the evaluation part

to show the generalization of the proposed ZeroFake. Note

that AGFD-20k only contains the fake face images generated

by Stable Diffusion. Therefore, for the real images, we lever-

age CeleBA [28]. Together with AGFD-20k and CeleBA, we

construct our real fake face image pairs.

Based on the text-to-image generation models and datasets, we

generate fake images for the experiments in this paper. We sum-

marize the fake images we used in Table 1. Note that in fake image

detection settings, we set the threshold as 0.78.

5.2 Results
We show our results in Figure 5. First of all, we can observe that the

previous DIRE fails to consistently perform across various scenar-

ios. For instance, when detecting fake images generated by Stable

Diffusion on the prompts from MSCOCO, DIRE can only achieve

0.590 accuracy, which is close to the random guess. This shortfall

is attributed to the superior capabilities of modern text-to-image

generation models over traditional diffusion models, highlighting

DIRE’s limitations in adapting to high-quality generative outputs.

Consequently, DIRE’s performance issues underscore its lack of

generality, especially against state-of-the-art text-to-image models

capable of producing highly authentic images. Therefore, based on

the results of DIRE, we can conclude that instead of just adding

noise and conducting the denoise process, the DDIM inversion,

together with the prompt guidance we considered in this paper, has

significant effects on the performance of fake image detection.

Furthermore, we can see from the figure that while DeFake

outperforms DIRE, it still cannot achieve as good a performance

as ZeroFake. For instance, DeFake can detect 0.852 percent of fake

images generated by SDXL on the prompts from Flickr30k apart

from real images. Note that the DeFake we used in this paper is also

only trained on 400 fake-real image pairs on SD. We finetune the

CLIP to train the DeFake according to the instructions in the DeFake

https://github.com/openai/glide-text2im
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Figure 5: The performance of ZeroFake V.S. DeFake and DIRE.

(a) Real Face (b) Reconstructed Real Face

Figure 6: Real face V.S. reconstructed real face.

paper. The performance of DeFake argues that the prompt does

have a significant influence when conducting fake image detection.

However, how to leverage prompts to maximize the performance

of fake image detection was still unexplored.

The proposed ZeroFake can achieve better performance than the

previous DeFake and DIRE. For instance, when detecting fake im-

ages generated by Stable Diffusion on the prompts from MSCOCO,

our proposed ZeroFake can achieve 0.957 accuracy, 0.948 recall,

0.965 precision, and 0.956 F1 score, which demonstrates that the

proposed methods can easily detect fake images apart from real

ones. Moreover, the proposed ZeroFake can also achieve great gen-

erability, as shown in the results. For instance, even if we do not

know the exact architecture of DALL·E 2, our ZeroFake can still

achieve great performance. As we have shown in Figure 2 and Fig-

ure 3, it can be seen that with the adversary prompt guidance, the

real images can be reconstructed into totally different images, while

the fake images can always keep the original features.

(a) Fake (b) Reconstructed Fake Face

Figure 7: Fake face V.S. reconstructed fake face.

We also show that the proposed ZeroFake can have great per-

formance not only in complex scene datasets but also in single

scene datasets like AGFD-20k, a fake face dataset. Specifically, the

proposed ZeroFake can achieve 0.894 accuracy when detecting fake

face images and real face images. We show some examples of the

reconstructed fake and real images in Figure 6 and Figure 7. It can

be seen from the figure that even if the fake image only contains

a single object, such as a human face, there is still a very obvious

gap between the real and fake images during the reconstruction

process.

6 FAKE ARTWORK DETECTION
Beyond traditional fake image detection, one of the primary ap-

plications of these text-to-image generation models is in the field

of artwork. For instance, BBC reported that some fake artworks

generated by text-to-image generation models had won first place

in an art competition, disappointing lots of participating artworks.

However, as we have tested, both DIRE and DeFake cannot achieve
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Figure 8: The collected artwork examples.

great performance on the artworks. In this section, we will show

that our proposed ZeroFake can perform well when dealing with

fake artwork. We will start the section by introducing the process

of collecting artwork. Then, we will show the results of ZeroFake.

6.1 Artwork Collection
We collected 120 prompt-image pairs of artwork from the artwork’s

online web pages and galleries. As the original artworks do not have

prompts, we derive them from the titles or descriptions provided

for the artwork together with the art style of the artworks. We

show two examples in Figure 8. We collect artworks covering a

wide range of artistic expressions, including Cartoons, Chinese

Paintings, Oil Paintings, Quick Sketches, Sketches, and Watercolor

Paintings. Note that to ensure the collected artworks are not used

in the training phase of text-to-image generation models, we test

the similarity between the generated fake images and real images

according to [47]. All artworks used in this section are not contained

in the training dataset of the models. Note that in fake artwork

detection settings, we set the threshold as 0.75, which is chosen

from 40 real fake image pairs.

6.2 Results
We show the results of the detection performance in Figure 9. It

can be concluded from the figure that the proposed ZeroFake can

achieve much better performance than the previous DIRE and De-

Fake. For instance, When detecting fake Chinese Paintings, Zero-

Fake can achieve 0.881 accuracy while DIRE and DeFake can only

achieve 0.410 and 0.690, which can be regarded as a random guess.

To better demonstrate the effectiveness of the proposed ZeroFake,

we also show some examples of real and fake artworks in Figure 10.

It can be easily observed that the reversed fake image obviously

shares more common features than the real image. This observa-

tion again demonstrates that prompt-guided image reversion can

help us better distinguish fake images from real images. Besides

the above observations, we can also conclude from the results that

different types of artworks have different detection performances.

For instance, Chinese painting can achieve 0.881 accuracy, while

quick sketches can achieve 0.973 accuracy. We assume it is because

of the different abilities of the UNet that we use in different art

styles. However, even though there exist gaps between different

types of artworks, our proposed ZeroFake can always have the best

performance. Therefore, we can conclude that ZeroFake is better

at finding the difference between real artworks and fake artworks.

7 IMAGE EDITING DETECTION
Despite the detection of fake artwork, one of the most important

and broad applications of text-to-image generation models is real

image editing. For instance, a politician can be edited into any ad-

versary’s desired appearance. This kind of edition can cause serious

social damage, like affecting the voting situation, misleading public

perceptions, and fueling misinformation campaigns. Therefore, it

is also very important to distinguish edited images apart from real

images. However, previous works have not considered edited im-

ages to be fake images. In this paper, we demonstrate that previous

state-of-the-art methods cannot work well in the image editing

domain, while ZeroFake can easily detect edited images apart from

real ones. We will start by introducing the experimental setup of

the image editing detection. Then, we will introduce our results.

7.1 Experimental Setup
Image Editing. Image editing entails the alteration of images

through additional inputs such as text prompts, masks, or reference

images. This process allows for adjustments in characteristics such

as color and style, as well as the addition or removal of elements to

achieve the desired visual outcome. In our study, we consider the

following three state-of-the-art image editing techniques within

text-to-image generation models.

• Prompt-to-Prompt (p2p) [44]. Prompt-to-Prompt is a text-

only, cross-attention-based image editing method designed

to maintain the structure of the input image while altering

attributes as specified by the revised prompt. The key idea

behind p2p is that the spatial layout and geometry of an

image depend on cross-attention maps, which are formed

between image pixel features and prompt tokens. Therefore,

p2p injects cross-attention elements derived from the origi-

nal prompt P into a new cross-attention map generated with

the modified prompt P*.

• Ledit [42]. Unlike the p2p approach, which utilizes seman-

tic information from cross-attention maps between image

pixel features and prompt tokens, Ledit performs image-

editing while maintaining the original image structure and

content by incorporating the idea of semantic guidance with

the Denoising Diffusion Probabilistic Models(DDPM) [15]

inversion process. DDPM utilizes a series of white Gaussian

noise samples to reconstruct an image. Those noise maps

could be considered latent codes that contain structure and

content information. Leveraging this principle, Ledit comple-

ments the iterative denoising process for the edited image by

incorporating the original image’s noise maps obtained from

DDPM inversion, thereby preserving the image structures

irrelevant to edit concepts.

• InstructPix2Pixl (Pixel) [6]. InstructPix2Pix proposed a

method for image editing based on human instructions by
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Figure 9: The performance of ZeroFake on Artworks.
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Figure 10: The example of the real and fake artworks from different types and their corresponding reconstructed images.

training a conditional diffusion model on a specially con-

structed dataset of image pairs with corresponding source

captions and instructions. Unlike Prompt-to-prompt and Led-

its, InstructPix2Pix facilitates editing directly in the forward

pass without necessitating per-example finetuning or inver-

sion, thus significantly accelerating the editing process.

Edited Images. As there is no existing benchmark dataset for

image editing, we collect 15 images and write the corresponding

editing prompts. We show the collected images together with the

editing prompts in Table 2. We first find that current image editing

methods have proved to be very unstable. However, as the edited

images are all generated and selected by our human efforts, the

edited images we used in this paper all perfectly capture the fea-

tures of the prompt guidance, which can be considered to pose

some challenge to the detection methods. However, as we show in

Section 7.3, the proposed ZeroFake can still achieve great perfor-

mance while the DIRE and DeFake failed. Note that in edited image

detection settings, we set the threshold as 0.78, which is chosen

from 30 real fake image pairs.
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Figure 11: The performance of ZeroFake on edited images.

7.2 The Performance of Image Editing
Before we introduce the performance of our proposed ZeroFake

on edited images, we first show the performance of the image

editing methods we used in this paper. As there are no benchmark

metrics for image editing, we have edited some examples here to

show the performance of our adapted methods. Our results are

shown in Figure 11. It can be seen that image editing methods

can normally perform well on real images. For instance, P2P can

faithfully turn the goldfish into a shark. However, in some cases, the

considered methods may fail. For instance, when asked to turn the

cat to the front, only P2P works, while other methods change the

cat to another cat. We find that whether good or bad performance

of the considered three methods on certain images, our proposed

ZeroFake can always easily distinguish fake images, which are the

edited images here, apart from real ones. We will show the results

in the next section.

7.3 The Performance of ZeroFake
We show the results of our proposed ZeroFake in Figure 11. We

can see from the figure that ZeroFake can still achieve the best

performance compared to DeFake and DIRE. For instance, when

detecting the fake images edited by p2p, ZeroFake can achieve

0.866 accuracy, while DIRE and DeFake can only achieve 0.467

and 0.533. To better demonstrate the effectiveness of the proposed

ZeroFake, we show several examples in Table 2. It can be concluded

that ZeroFake can always achieve great performance regardless

of the performance of image editing methods. For instance, even

if the Ledit cannot effectively turn the cat towards the camera,

ZeroFake can still precisely reconstruct the edited image while the

reconstruction of real images fails. Therefore, it can be concluded

that the proposed ZeroFake can perform not only on the generated

fake images but also on the edited images. This great performance

enables ZeroFake to have a boarder application in the field of fake

image detection.

8 ROBUSTNESS EVALUATION
We show the excellent performance of the proposed ZeroFake on

fake images, fake artworks, and edited images above. One major

advantage of ZeroFake is that it is robust enough to detect any

potential attacks on images. In this section, we will introduce the

robustness evaluation of the ZeroFake and previous detection meth-

ods. We consider several different perturbations on the fake images

to evaluate the robustness of the proposed ZeroFake, including blur-

ring, gaussian noise, sharpening, and adversary example attacks.

Note that for adversary example attacks, as ZeroFake is the first

work that leverages the prompt-guided DDIM inversion to conduct

the fake image detection, there are no existing adversary example

attacks against it. Therefore, we adapt the transfer attacks for FGSM

and BIM.

8.1 Image Transformations
We consider three traditional image transformations in this sec-

tion including blurring, sharpening, and gaussian noise. We also

consider two state-of-the-art adversary attacks in this section, in-

cluding FGSM and BIM.

Blurring. Blurring is a common image processing technique used

to reduce noise and detail in an image. This is typically achieved by

averaging the pixels within a local neighborhood, which results in

a smooth, less detailed version of the original image. Blurring can

help to obscure small imperfections and details, making it useful

for various applications in image processing and computer vision.

Sharpening. Sharpening is an image processing technique used

to enhance the edges and fine details within an image. This process

increases the contrast between different regions, making features

more distinct and the overall image crisper. In this paper, we set

the factor for sharpening as 2.

Gaussian Noise. Gaussian noise involves adding random noise

with a Gaussian distribution to an image. This type of noise has a

probability density function equal to that of the normal distribution,

which is characterized by its mean and variance. In this paper, we

generate Gaussian noise with a mean of 0 and a variance of 2.

FGSM [14]. The fast gradient sign method (FGSM) is one of

the most representative attacks in the adversary example domain.

FGSM can be formulated in Equation 15.

𝑥 ′ = 𝑥 + 𝜖 · sign(∇𝑥 𝐽 (𝜃, 𝑥,𝑦)) (15)

𝑥 is the input, 𝑦 is the true label of 𝑥 , 𝜃 is our detector’s parame-

ters, and 𝐽 (𝜃, 𝑥,𝑦) is its cost function. The main idea of FGSM is

to maximize the loss for the given model by adding a small and

scaled version of the sign of the gradient to the original image. For

our proposed ZeroFake, as no classifier was used in the detection

process, no gradient can be calculated to generate the noise. There-

fore, we adapt the transfer attacks based on FGSM. Specifically, we

compute the adversary noise based on the binary fake detectors’

gradients. Then the noise will be transferred to the fake images to
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Table 2: The example of the real and edited images by different state-of-the-art methods and their corresponding reconstructed
images.

Classes Original Image Edited

Prompt

P2P Ledit Instruct Pixel

Images A Shark swims

in the water.

Reversed Images

Images The dog is wear-

ing glasses.

Reversed Images

Images The cat moved

towards me.

Reversed Images

test whether the proposed ZeroFake can detect them. BIM takes a

similar process.

BIM [16]. The basic iterative method (BIM) is another popular

adversary example attack, which is actually an extension of FGSM.

Instead of computing the gradient in one epoch, BIM uses multiple

interactions with smaller step sizes to generate the adversarial noise,

which can be formulated in Equation 16:

𝑥 (0) = 𝑥, 𝑥 ′(𝑡+1) = 𝑥 ′(𝑡 ) + 𝛼 · sign(∇𝑥 ′ 𝐽 (𝜃, 𝑥 ′(𝑡 ) , 𝑦)) (16)

To transfer the attack to the proposed ZeroFake, we take the same

actions as FGSM.

8.2 Results
We show the results in Table 3. We can see from the figure that both

the detector-based method and the proposed ZeroFake demonstrate

satisfying robust performance against traditional perturbations like

blurring, sharpening, and Gaussian noise. For instance, ZeroFake
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Table 3: The results of robustness evaluation against possible image transformations.

Method Blurring Sharpening Gaussian Noise

FGSM BIM

Noise Detection Noise Detection

DeFake 0.778 0.897 0.783

0.001 0.763 0.001 0.612

0.005 0.691 0.005 0.574

0.01 0.517 0.01 0.490

ZeroFake 0.903 0.957 0.894

0.001 0.938 0.001 0.915

0.005 0.912 0.005 0.908

0.01 0.891 0.01 0.903

under sharpening can still achieve 0.957 accuracy when detect-

ing fake images. It can also be concluded from the table that the

detector-based method is vulnerable to potential adversary example

attacks. For instance, when the noise is 0,005, the performance of

DeFake will be reduced to 0.691 when faced with FGSM attacks,

which is close to a random guess. It demonstrates that the adversary

just needs to add small perturbations to the images to confuse the

detectors. However, the proposed ZeroFake has proven to be very

robust against potential adversary attacks. ZeroFake can maintain

good performance against state-of-the-art attacks. For instance,

even if the nose is 0.01, ZeroFake can still achieve 0.891 accuracy

when detecting fake images against FGSM attacks. Note that the

considered FGSM and BIM are both state-of-the-art adversary ex-

ample attacks nowadays. These results demonstrate that ZeroFake

is not easily confused by the adversary, and thus can contribute to

a more stable detection performance. Such a robust performance

can be attributed to the implicit method used for sampling, as the

implicit methods usually show stable and robust performance on

different tasks [21–23].

9 RELATEDWORK
9.1 Text-to-Image Generation
Text-to-image generation models convert text prompts into corre-

sponding visual representations. Foundational works by Reed et

al. [35] and Zhang et al. [52] built on GAN principles introduced by

Goodfellow et al. [13]. These systems integrate a prompt embedding

with a latent vector. This enables GANs to create images that visu-

ally interpret the text prompts. The pioneering studies have inspired

a wide range of researchers [4, 10, 11, 17, 17, 18, 24, 27, 31, 40, 46, 51]

to explore text-to-image generation further. Despite significant con-

tributions, using GANs sometimes results in suboptimal image

generation outcomes [34, 36]. This has spurred the search for more

reliable technologies. However, the quality of images generated by

GAN is not satisfying.

Recently, text-to-image generation has seenmajor advancements

with the emergence of diffusion models. These models begin with

a representation of random noise. They iteratively refine this noise

into a detailed and clear image guided by the text prompt. Leading

models in this domain include DALL·E [34], Stable Diffusion [36],

Imagen [37], GLIDE [32], and DALL·E 2 [33]. Diffusion-based mod-

els are now considered state-of-the-art. They demonstrate superior

performance in generating high-quality images compared to pre-

vious GAN-based methods. The remarkable capabilities of these

models are the focus of our current research in text-to-image gen-

eration technologies. Moreover, text-to-image generation models

can also be used to edit part of images instead of just generating

whole fake images [6, 42, 44]. This technology leverages the UNet

to control the edition. In this paper, we show that previous training-

based methods cannot achieve great detection performance due to

the fact that these edited images are not considered in the training

set. However, our proposed ZeroFake can have great performance

in both fake images and edited images.

9.2 Fake Image Detection and Attribution
Previous research has primarily focused on detecting fake images

generated by traditional generation models, such as GANs [13],

low-level vision models [7, 9], and perceptual loss models [8, 20].

Wang et al.[43] successfully trained a simple CNN model to differ-

entiate these generated images from authentic ones, capitalizing

on common flaws inherent in images from earlier generative tech-

nologies. Similarly, Yu et al.[50] demonstrated that it is possible

to trace fake images back to the specific traditional models that

created them due to distinctive "fingerprints" left by these technolo-

gies. Building on this, Girish et al. [12] introduced an attribution

method designed for scenarios where the generation model behind

the image is unknown.

Recently, there have been some works that focus on detecting

fake images generated by text-to-image generation models. the

DeFake [38] utilizes both the image and its associated generated

prompt for detection. During testing, DeFake generates prompts

using the BLIP model to assist the classifier in determining the au-

thenticity of images. Additionally, the DIRE method [44] represents

the latest detection techniques against diffusion model-generated

images, also employing a binary classifier. We emphasize here that

almost all existing works need to train a binary classifier to detect

fake images. We show in this paper that instead of the binary clas-

sifier, the natural difference between real and fake images can be

leveraged to conduct the detection.

10 LIMITATION
In this section, we discuss the possible limitations of the proposed

ZeroFake. It should also be noted that, unlike DIRE and DeFake, the

proposed ZeroFake is a zero-shot detection method, which takes

much less computational resources than the previous methods

during the training phase. However, during the inference phase,

the DDIM inversion and reconstruction will take more time than
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traditional detectors. We show that on our NVIDIA DGX-A100, the

inversion and reconstruction will take 30.2 seconds for one image,

while DeFake needs 12.3 seconds to load the model and conduct the

detection. Moreover, the ZeroFake also takes more computational

resources to detect fake images than the traditional detectors. This

is due to the fact that ZeroFake leverages the DDIM process to

add the noise to the images and then reconstruct them. The whole

process is resource-intensive. For one image, DeFake needs 3798

MiB GPU memory while ZeroFake takes 10076 MiB.

11 CONCLUSION
In conclusion, previous methods conducted fake image detection by

training a binary classifier, which is shown to be inefficient, lacking

in generalizability, and non-robust. In recognition of these limi-

tations, our work introduces a novel zero-shot detection method

called ZeroFake to distinguish fake images generated by text-to-

image generation models apart from real ones. ZeroFake uniquely

leverages the differential features exhibited by fake versus real

images during the processes of DDIM inversion and subsequent

reconstruction. Central to ZeroFake is the insight that fake images,

inherently synthetic in nature, demonstrate great robustness to per-

turbations during the DDIM inversion process compared to their

real counterparts. Our method takes advantage of this robustness by

applying a perturbation-based DDIM inversion where each image

undergoes strategic noise addition and subsequent noise reduction,

guided by carefully crafted adversary prompts. This meticulous

process effectively accentuates the resilience differences between

fake and real images, enabling accurate classification. Extensive

experimental evaluations affirm that ZeroFake surpasses previous

state-of-the-art methods in detecting a broad array of fake images,

including fake images, fake artwork, and edited images. Further-

more, our results highlight ZeroFake’s enhanced robustness against

potential adversarial example attacks, outperforming earlier de-

tection techniques. In an era where the authenticity of images is

paramount—owing to the ease of creating and disseminating highly

realistic fake images—the ability to reliably discern between gen-

uine and fabricated visuals is more crucial than ever. The adoption

of ZeroFake could significantly bolster public discourse by shielding

it from the influence of deceptive imagery, enhancing the integrity

of media content, and providing a robust tool for platforms and

regulatory bodies to combat the proliferation of digital misinfor-

mation.
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A APPENDIX
A.1 Quality Assurance of Construction of the

Adversary Noun List
In ZeroFake, we need to craft the adversary noun list manually. In

this section, we will discuss the quality assurance of the manual

construction of the adversary noun list. To make sure there is at

least one noun whose textual embedding is far away from the

prompts’ noun enough to make the prompt semantic change, we

craft our adversarial noun list by choosing four nouns that are

greatly different from each other, e.g., tree, airplane, cat, and others.

Since we can ensure the textual embedding is far away from each

other by our manual craft, there is at least one candidate whose

textual embedding is far away from any prompts’ first noun, as the

following proposition states.

Proposition A.1. Assume textual embedding of 𝑁 nouns in the
adversarial noun list as 𝑒1, ..., 𝑒𝑁 , and the minimum 𝐿2 distance be-
tween each other is 𝑑 . Then we can conclude that for any word 𝑤 ,
there exists a word with embedding 𝑒𝑖 in the adversarial noun list,
whose 𝐿2 distance between its embedding and𝑤 ’s embedding 𝑒𝑤 is
no less than 𝑑/2, shown in Equation 17,

∥𝑒𝑖 − 𝑒𝑤 ∥2 ≥ 𝑑/2, ∃𝑒𝑖 ∈ {𝑒1, ..., 𝑒𝑁 }. (17)

Proof. If the 𝐿2 distance between 𝑒𝑤 and any embedding 𝑒𝑖 in

the noun list is always smaller than 𝑑/2, i.e, 𝑒𝑤 is no less than 𝑑/2,
shown in Equation 18,

∥𝑒𝑖 − 𝑒𝑤 ∥2 < 𝑑/2, ∀𝑒𝑖 ∈ {𝑒1, ..., 𝑒𝑁 }. (18)

Then we can randomly choose 𝑒𝑖1 and 𝑒𝑖2 from the noun list, and

get the Equation 19,

∥𝑒𝑖1 − 𝑒𝑤 ∥2 + ∥𝑒𝑖2 − 𝑒𝑤 ∥2 < 𝑑. (19)

From the triangle inequality, we have Equation 20,

∥𝑒𝑖1 − 𝑒𝑖2 ∥2 ≤ ∥𝑒𝑖1 − 𝑒𝑤 ∥2 + ∥𝑒𝑖2 − 𝑒𝑤 ∥2 . (20)

And we get Equation 21,

∥𝑒𝑖1 − 𝑒𝑖2 ∥2 < 𝑑, (21)

which contradicts the given condition and the proposition is proved.

□

From the proposition, one can see that the distance between the

user’s prompt’s embedding and the textual embedding of the candi-

dates in our adversarial noun list is lower bounded by the minimum

distance between the textual embedding of two candidates. Thus, in

our experiments, we manually select several totally different nouns

in the adversarial noun list to ensure the quality of our ZeroFake.
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