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Abstract
Most existing membership inference attacks (MIAs) utilize met-
rics (e.g., loss) calculated on the model’s final state, while recent
advanced attacks leverage metrics computed at various stages, in-
cluding both intermediate and final stages, throughout the model
training. Nevertheless, these attacks often process multiple inter-
mediate states of the metric independently, ignoring their time-
dependent patterns. Consequently, they struggle to effectively dis-
tinguish between members and non-members who exhibit similar
metric values, particularly resulting in a high false-positive rate.

In this study, we delve deeper into the new membership sig-
nals in the black-box scenario. We identify a new, more integrated
membership signal: the Pattern of Metric Sequence, derived from the
various stages of model training. We contend that current signals
provide only partial perspectives of this new signal: the new one en-
compasses both the model’s multiple intermediate and final states,
with a greater emphasis on temporal patterns among them. Build-
ing upon this signal, we introduce a novel attack method called
Sequential-metric based Membership Inference Attack (SeqMIA).
Specifically, we utilize knowledge distillation to obtain a set of
distilled models representing various stages of the target model’s
training. We then assess multiple metrics on these distilled mod-
els in chronological order, creating distilled metric sequence. We
finally integrate distilled multi-metric sequences as a sequential
multiformat and employ an attention-based RNN attack model for
inference. Empirical results show SeqMIA outperforms all baselines,
especially can achieve an order of magnitude improvement in terms
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of TPR @ 0.1% FPR. Furthermore, we delve into the reasons why
this signal contributes to SeqMIA’s high attack performance, and
assess various defense mechanisms against SeqMIA.1
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1 Introduction
Machine learning (ML) has developed rapidly in the past decade.
Unfortunately, existing studies [15, 16, 51] have shown that ML
models can leak private information about their training set. Mem-
bership inference attacks (MIAs) [51] is one of the main privacy
attacks that have attracted lots of researchers’ concerns. It aims to
infer whether a sample belongs to a model’s training set, which
in turn violates the privacy of the sample’s owner. For example, if
an ML model is trained on data collected from individuals with a
certain disease, an adversary who knows that a victim’s data be-
longs to the training data of the model can quickly infer the victim’s
health status.

Most existing studies [9, 24, 47, 51, 53, 69] employ the target
model’s output posteriors or some metric (e.g., loss) derived from
them to launch their attacks. These attacks demonstrate effec-
tiveness in average-case metrics such as balanced accuracy and

1Our code is available at https://github.com/AIPAG/SeqMIA
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Table 1: Various perspectives of the membership signal “Pattern of Metric Sequences.” “✓” means this attack is based on this
perspective and “-” indicates that it is not.

Attacks

Pattern of Metric Sequences (i.e., metric values overall training epochs)

Final State Middle States Time-Dependent Patterns

Fluctuation Correlation Decline Rate Other Possible Implicit Patterns

[5, 6, 34, 45, 47, 51, 53, 57, 65] ✓ – – – – –

TrajectoryMIA [34] ✓ ✓ – – – –

SeqMIA ✓ ✓ ✓ ✓ ✓ ✓
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Figure 1: (a) the mean curves and fluctuation area of loss val-
ues for members and non-members during different training
epochs; (b) the distribution of the cumulative loss fluctuation
amplitude (CLFA) within 100 epochs.

ROC-AUC due to members typically exhibiting smaller losses com-
pared to non-members. However, these attacks exhibit a high false-
positive rate (FPR) when encountering both members and non-
members with similar small losses. A high false positive rate means
that an attacker will incorrectly identify non-member samples as
members, thereby reducing the attack’s effectiveness and reliability.

To tackle this issue, recent studies [6, 65] have employed sample-
dependent thresholds to calibrate membership inference based on
the target model, i.e., final model state at 100th (see Figure 1a). An
alternative approach, known as TrajectoryMIA [34], introduces an
additional membership signal, which is a collection of loss values
gathered during the target model training process (i.e., 0∼100th
epochs). The loss value set derived from various model states can
reveal greater distinctions between members and non-members,
even when they show similar low losses in the final model state.
The findings of our experiments, however, indicate that these recent
studies still face challenges in effectively distinguishing between
members and non-members with similar sets of loss values, leading
in particular to significantly higher false positive rates (FPR).

1.1 Our contributions
To overcome these limitations, in this work, we make an attempt to
answer, “is it possible to explore a new membership signal that en-
hances the distinguishability between members and non-members,
with a specific focus on reducing false-positive rate?”

Fortunately, we have discovered a newmembership signal termed
the Pattern of Metric Sequence, which is also derived from the vari-
ous stages of model training. As Table 1 illustrates, we claim that
the aforementioned signals provide only partial perspectives of
this new signal: this new signal includes both the model’s multiple
intermediate and final states and focuses more on time-dependent
patterns among them. To our knowledge, this signal has not been
previously recognized or utilized in prior literature. Intuitively, we
verify this signal from time-dependent views, such as fluctuation,
correlation, and decline rate. We now illustrate the first two per-
spectives (see decline rate in Appendix B).
Fluctuation of Metric Sequences. We choose the most com-
monly used metric, loss, as our example. Figure 1a shows the se-
quence of loss values as the training progresses (denoted as loss
sequence). Interestingly, we have further observed a new difference:
the fluctuation of loss sequence between members and non-members
also exhibits significant differences. More concretely, the loss se-
quence fluctuation of members tends to be smaller than that of
non-members, especially around the 60th to 100th epoch. Besides
expressing such fluctuation qualitatively, we further measure them
quantitatively. Specifically, we compute the cumulative loss fluctu-
ation amplitude (CLFA) for each sample by measuring the loss vari-
ation across consecutive epochs. We then count the frequency of the
samples regarding their CLFA distribution. As depicted by Figure 1b,
we observe members exhibit significantly smaller fluctuation of
loss sequence compared to non-members. The results confirm that
there exists a very clear difference in the pattern of loss sequence
between members and non-members (see other metrics in Appen-
dix Figure 13). Note that this observation is time-dependent and
can only be observed in metric sequence as the training epoch pro-
gresses, unlike the loss set used in TrajectoryMIA, where shuffling
the order does not affect the attack performance (see Section 5.2).
Correlation between Metric Sequences. Building upon the met-
ric sequence, we delve into another new view: the correlation be-
tween two different metric sequences. The intuition is that two
kinds of metric sequences (e.g., loss sequence and entropy se-
quence) of members tend to follow a similar trend compared to
non-members, as themodel is trained onmembers. Figure 2 presents
the correlation coefficients among multiple sequences metrics. We
observe that every pair of metric sequences for members shows
correlation coefficients no smaller than those for non-members and,
in most cases, even larger ones.
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Figure 2: Absolute correlation coefficients among multiple
metrics calculated from MLPs trained on Location.

SeqMIA. Building upon the pattern of metric sequences, we intro-
duce a novelmembership inference attack named SeqMIA (Sequential-
metric based Membership Inference Attack). First, the adversary
employs knowledge distillation to obtain a set of distilled models
representing various stages of the target model’s training. Then,
the adversary assesses multiple metrics on these distilled models in
chronological order, creating distilled metric sequence. The adver-
sary integrates multiple distilled metric sequences into a sequential
multiformat and utilizes a simple yet highly effective approach to
handle this sequential data, namely employing an attention-based
recurrent neural network (attention-based RNN) as the attackmodel
for inference. This attention-based RNN can automatically excavate
the aforementioned different patterns of metric sequence (even
some more complex implicit patterns) without explicitly character-
izing them in advance.

We conduct extensive experiments on 4 popular models using 7
benchmark datasets (4 image and 3 non-image datasets). Empirical
results show that SeqMIA outperforms the baselines in nearly all
cases. For example, when focusing on VGG-16 trained on CIFAR100,
SeqMIA surpasses all baselines by more than an order of magnitude
in terms of TPR @ 0.1% FPR. In addition, we conduct in-depth com-
parative analyses of metric non-sequences vs. metric sequences,
and single vs. multiple metrics, revealing the reasons for the su-
perior performance of SeqMIA. We also conduct ablation studies
to analyze various factors on the attack performance. Finally, we
demonstrate that SeqMIA performs better against several defenses
compared to the baselines, especially at TPR@ 0.1% FPR. In general,
our contributions can be summarized as follows:

• We introduce a novel membership signal termed the Pattern
of Metric Sequence, which can more effectively capture the
differences between members and non-members.

• We propose the Sequential-metric based Membership In-
ference Attack (called SeqMIA), which acquires sequential
multi-metric from the target model’s training process using
knowledge distillation, then captures the membership signal
via attention-based RNN attack model automatically.

• We extensively experiment and demonstrate that SeqMIA
consistently outperforms all baselines, particularly in reduc-
ing the FPR by more than an order of magnitude.

• We conduct comprehensive analyses of the features of se-
quential membership signals, some key factors influencing
attack performance, and various defenses against SeqMIA.

2 Preliminaries
2.1 Membership Inference Attack
Membership inference attack is one of the most popular privacy
attacks against ML models. The goal of the membership inference
attack is to determine whether a data sample is used to train a
target model. We consider data samples as members if they are
used to train the target model, otherwise, non-members. Formally,
considering a data sample 𝑥 , a trained ML model M, and back-
ground knowledge of an adversary, denoted by I, the membership
inference attack A can be defined as the following:

A : 𝑥,M,I → {0, 1}.

Here, 0 means the data sample 𝑥 is not a member ofM’s training
dataset, and 1 otherwise. The attack modelA is essentially a binary
classifier.

2.2 Metrics for MIA
The success of existing membership inference is attributed to the
inherent overfitting properties of ML models, i.e., models are more
confident when faced with the data samples on which they are
trained. This confidence is reflected in the model’s output poste-
rior, which results in several metrics that effectively differentiate
between members and non-members. We are here to present a brief
introduction below:
Loss. Loss, also known as the cost or objective function, measures
how well an ML model’s predictions match the ground truth for
given data samples. The goal of the ML algorithm is to minimize
this loss, as a lower loss indicates better performance of the model.
Typically, members’ losses are much lower than non-members’
losses, and most existing works [6, 45, 57, 65, 66] leverage this
discrepancy to mount their membership inferences.

Furthermore, loss trajectory is proposed by [34], which is a set of
multiple losses from a model’s training process, and is implemented
as a vector. We here emphasize that the loss trajectory is not a
sequential signal, due to the fact that there is no order between
these loss values. If we swap the positions of losses in this vector,
we will find that the attack performance of [34] is unaffected (see
Section 5.2). Thus, we denoted it as loss set in the following sections
in order to clearly indicate its essential features.
Max. Max refers to the maximum in the model’s output posteriors,
which is usually represented as a set of probabilities. To obtain
single predicted class labels from these probabilities, one common
approach is to take the class with the highest probability, i.e., maxi-
mum value. Similarly, the maximum value of members is usually
greater than that of non-members, which has been used in [47, 53].
SD. Standard deviation is a measure of the dispersion of the model’s
output posterior from its mean. Members tend to have larger stan-
dard deviations than non-members because the model has more
confidence in the predictions of the members, i.e., the probability
of the correct class is greater, and the probability of the other class
is much less. This metric has been used in [47].
Entropy. Entropy measures the uncertainty or randomness in a
model’s prediction. A low entropy indicates that the probability
distribution is concentrated and the model is more certain about
its predictions, while a high entropy indicates more uncertainty.
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Similarly, the entropy value of members is lower than that of non-
members, which has been used in [47, 51, 53]
M-Entropy. In contrast to entropy, which contains only infor-
mation about the output posterior, modified entropy (M-Entropy)
measures the model prediction uncertainty given the ground truth
label. Thus, correct prediction with probability 1 leads to a modified
entropy of 0, while incorrect prediction with probability 1 leads to a
modified entropy of infinity. Also, the modified entropy of members
is usually lower than that of non-members, and this metric is used
in [53].

2.3 Knowledge Distillation
Knowledge distillation (KD) is a category of methods that transfer
knowledge from large, complex models to smaller, more lightweight
ones. The primary goal is to improve the performance of the smaller
model while reducing resource consumption during deployment.
The main idea is to use the soft information (i.e., the output pos-
terior) of a larger teacher model as a supervised signal to train a
smaller student model. This soft information contains more valu-
able knowledge than hard ground truth labels, leading to better
generalization and efficiency of the student model.

Similar to [34], we use knowledge distillation to train a distilled
model (student model) that is as close as possible to the target model
(teacher model). In this work, we adopt the most widely-used KD
framework proposed by Hinton et al. [23]. Concretely, we use a set
of data (called distillation dataset) to query the teacher model and
obtain its output posteriors, called soft labels. Then, when training
the student model, soft labels are used to calculate the loss function
in addition to the ground truth labels. The loss function can be
expressed as follows:

𝐿 = 𝛼𝐿𝑠𝑜 𝑓 𝑡 + (1 − 𝛼)𝐿𝑔𝑟𝑜𝑢𝑛𝑑 (1)

where 𝐿𝑠𝑜 𝑓 𝑡 is the Kullback-Leibler divergence loss between the
soft labels and the student model’s output posteriors, 𝐿𝑔𝑟𝑜𝑢𝑛𝑑 is the
cross-entropy loss between the student model’s output posteriors
and the ground truth labels, and 𝛼 is a weight coefficient.

Note that our goal is to simulate the target model training process
and snapshot its intermediate version, rather than transferring
knowledge from the larger model to the smaller one. Therefore, we
employ the same model architecture as the target model to build
the distilled model. Further, we set 𝛼 = 1, which means that the
distilled model only mimics the target model’s output posteriors
regardless of the ground truth labels. For the sake of description, the
intermediate distilled models obtained by distillation, are named as
snapshots in this paper.

3 Attack Methodology
In this section, we present the attack methodology of SeqMIA. We
start by introducing the threat model. Then, we describe the design
intuition. Lastly, we present the detailed pipeline of SeqMIA.

3.1 Threat Model
In this paper, we focus on membership inference attacks in black-
box scenarios, which means that the adversary can only access
the output of the target model. Specifically, we only consider the
case where the output is the predicted probability (posterior) rather

than the predicted class label. Furthermore, we make two assump-
tions about the adversary’s knowledge. First, the adversary holds
a dataset 𝐷𝑎 , which is from the same distribution as the target
model’s training dataset. Second, the adversary knows the archi-
tecture and hyperparameters of the target model. Such settings are
following previous MIAs [6, 34, 38, 47, 51, 53, 65, 66]. Moreover, we
further demonstrate in Section 5.3 that both of these assumptions
can be relaxed.

3.2 Design Intuition
As aforementioned, we introduce a new membership signal termed
the Pattern of Metric Sequence, which is also derived from the var-
ious stages of model training. This new signal includes both the
model’s multiple intermediate and final states but focuses more
on time-dependent patterns among them. For example, members’
metric sequences tend to demonstrate relatively smaller fluctua-
tions compared to non-members. In addition, the correlations be-
tween different metric sequences of members are also much higher
compared to non-members. Therefore, our general hypothesis is
that simultaneous utilization of multiple metric sequences (serial-
ized metric values) would yield significantly stronger membership
signals compared to relying solely on a single metric or a non-
serialized metric. Based on this insight, our first attack strategy is
to construct “multi-metric sequences,” which carry the pattern of
metric sequences.

Furthermore, the previous study by Liu et al. [34] treats multiple
losses from the various model states as a one-dimensional vector
and directly feeds it into an MLP attack model for inference. How-
ever, the MLP model is primarily designed for independent input
values and fails to capture the sequential or time-series informa-
tion present in the input vector. This means that the MLP model
may overlook important sequence-based signals in the input (see
shuffling the vector’s loss values in Section 5.2). In contrast, models
specifically designed for time-series data, such as Recurrent Neural
Networks (RNNs), are better able to capture the sequential infor-
mation in the input vector, and thus can potentially excavate the
sequence-based signals, e.g., fluctuations in the metric sequences as
training progresses. Therefore, our second attack strategy involves
using an attention-based RNN as the attack model to process the
multiple metric sequences. This way, we can automatically uncover
not only these explicit patterns but also more complex implicit
patterns (see Section 5.2).

3.3 Attack Method
Based on the above, we propose a new membership inference at-
tack, namely the Sequential-metric based Membership Inference
Attack (SeqMIA). To execute SeqMIA, the adversary needs to acquire
the multi-metric sequences from the training process of the target
model. However, in this work, we consider the black-box scenario
where the adversary can only access the final well-trained target
model, i.e., the version at its final training epoch. To address this
issue, similar to Liu et al. [34], the adversary leverages knowledge
distillation on the target model to obtain its distilled model. This
way, the adversary gains full control of the distillation process and
can save the distilled models at different epochs. The attacker then
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Figure 3: Overview of SeqMIA. Different from existing MIAs,
SeqMIA focuses on the sequential membership information
(multi-metric sequences) in a high-dimensional space.

evaluates different metrics of a given target sample on each interme-
diate distillation model to obtain its multi-metric sequence, called
distilled multi-metric sequence. Finally, the attackmodel, functioning
as a membership classifier, takes the distilled multi-metric sequence
as input to infer the sample’s membership status. The overview of
SeqMIA is depicted in Figure 3, involving five stages: shadow model
training, model distillation, construction of multi-metric sequences,
serialization processing, and membership inference.
Shadow Model Training. As mentioned earlier, the adversary
holds an auxiliary dataset 𝐷𝑎 , which follows the same distribution
as the target model’s training dataset. The adversary first divides
this auxiliary dataset 𝐷𝑎 into two disjoint sets: the shadow dataset
𝐷𝑠 and the distillation dataset 𝐷𝑘 . The shadow dataset 𝐷𝑠 is di-
vided into two disjoint datasets, namely 𝐷𝑠

𝑡𝑟𝑎𝑖𝑛
and 𝐷𝑠

𝑡𝑒𝑠𝑡 . 𝐷
𝑠
𝑡𝑟𝑎𝑖𝑛

,
representing the members, is utilized to train the shadow model,
which aims to emulate the behavior of the target model, while𝐷𝑠

𝑡𝑒𝑠𝑡

represents the non-members. Given the assumption specified in
Section 3.1, the adversary can train a shadow model with the same
architecture and hyperparameters of the target model.
Model Distillation. The distillation dataset𝐷𝑘 is used to distill the
target and shadow models, simulating their training process. For
brevity, we refer to the target model and shadow model as the orig-
inal models. Following the approach in Liu et al. [34], we query the
two original models to obtain their output posteriors as soft labels
and only use 𝐿𝑠𝑜 𝑓 𝑡 (Kullback-Leibler divergence loss between the
soft labels and the student model’s output posteriors) to train the
distilled models for 𝑛 epochs. Subsequently, we capture snapshots
of the distilled model’s parameters at different epochs, resulting in
a series of snapshots 𝑠1, 𝑠2, ..., 𝑠𝑛 , which mimic the original model’s
training process. Recognizing the significance of membership in-
formation contained in the original model’s output posteriors, we
include the original model as an additional supplement in the snap-
shots series (denoted as 𝑠𝑛+1). While we can obtain the shadow
model’s training process, it does not match the exact distillation
process of the target model. Distilled models converge faster with
sufficient distillation data. Consequently, to align the membership
information depicted in the training processes of both target and
shadow models, we proceed by distilling the shadow model further,
aiming to emulate similar training processes.
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Figure 4: Workflow of multi-metric sequence construction,
which assembles the membership information of a sample
into a sequence of a 𝑘-dimensional space.

Construction of Multi-metric Sequences. Our construction
method involves serialized feature engineering to encode mem-
bership information leaked from the output posteriors of 𝑛 + 1
snapshots into sequences in a high-dimensional space. To achieve
this, we feed a given sample into 𝑠1, 𝑠2, ..., 𝑠𝑛, 𝑠𝑛+1 and obtain 𝑛 + 1
output posteriors 𝑜1, 𝑜2, ..., 𝑜𝑛, 𝑜𝑛+1. Subsequently, we calculate 𝑘
metric values (e.g., Loss, Max, SD, etc., as mentioned in Section 2.2)
for each output posterior 𝑜𝑖 . These 𝑛 + 1 values of the same metric
are concatenated together in temporal order, forming a single met-
ric sequence, which becomes a (𝑛 + 1)-dimensional vector. Finally,
we concatenate the 𝑘 metric sequences together as a sequential
membership signal in a 𝑘-dimensional space called multi-metric
sequence, represented as a 𝑘 ∗ (𝑛 + 1) matrix. See Figure 4 for an
illustration of how to construct the multi-metric sequence.
Serialization Processing. As the shadow model and its distill-
ing process are fully controlled by the adversary, they label the
multi-metric sequence obtained from 𝐷𝑠

𝑡𝑟𝑎𝑖𝑛
as 1 (members), and

that from 𝐷𝑠
𝑡𝑒𝑠𝑡 as 0 (non-members). Subsequently, the adversary

constructs a binary dataset and uses it to train the attack model. As
aforementioned, the MLP model ignores sequential or time-series
information in the multi-metric sequence, which may cause the
loss of some membership signals. Therefore, we utilize a recurrent
neural network (RNN) attack model to process this sequential data.
Specifically, to adequately emphasize the significance of different
points in the multi-metric sequence, we employ an attention-based
RNN as the attack model. This choice allows us to capture con-
textual semantics by learning weights that highlight key points in
such signals for membership inference. We train the attack model
by minimizing the cross-entropy loss for the binary classification
task.
Membership Inference. With the trained attack model, the ad-
versary can perform membership inference on a given target sam-
ple by following these steps: First, the target sample is encoded
into multi-metric sequence by feeding it to the series of snapshots
𝑠1, 𝑠2, ..., 𝑠𝑛, 𝑠𝑛+1 which are from the target model. Then, this se-
quence can be fed into the attack model to predict its membership
status, i.e., 1 or 0.

4 Experimental Setup
4.1 Datasets
We consider seven benchmark datasets of different tasks, sizes, and
complexity to conduct our experiments. Concretely, we adopt four
computer vision datasets, namely CIFAR10 [26], CIFAR100 [26],
CINIC10 [11], GTSRB [54], and three non-computer vision datasets,
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Table 2: Performance of target models, wherein train-
ing/testing accuracy is reported for each model.

Target model CIFAR10 CIFAR100 CINIC10 GTSRB

VGG-16 1.000/0.756 1.000/0.296 1.000/0.569 1.000/0.923
ResNet-56 0.987/0.662 0.998/0.243 0.972/0.472 1.000/0.930

WideResNet-32 0.991/0.710 0.976/0.371 0.952/0.502 0.999/0.912
MobileNetV2 0.986/0.667 0.998/0.218 0.972/0.463 1.000/0.917

Target model News Purchase Location

MLPs 0.976/0.663 1.000/0.716 1.000/0.568

namely Purchase [1], News [2] and Location [3]. See details in
Appendix A.

Following [34], we divide each dataset into five parts: target
training/testing dataset (𝐷𝑡

𝑡𝑟𝑎𝑖𝑛
/ 𝐷𝑡

𝑡𝑒𝑠𝑡 ), shadow training/testing
dataset (𝐷𝑠

𝑡𝑟𝑎𝑖𝑛
/ 𝐷𝑠

𝑡𝑒𝑠𝑡 ), and distillation dataset 𝐷𝑘 . Among them,
𝐷𝑠
𝑡𝑟𝑎𝑖𝑛

,𝐷𝑠
𝑡𝑒𝑠𝑡 and𝐷

𝑘 are disjoint subsets of the auxiliary dataset𝐷𝑎

held by the adversary. Specifically, the data partitioning is such that
the sizes of the former four datasets are kept exactly the same, and
the remaining data samples are placed into the distillation dataset
(see details of data splitting in Appendix Table 13).

4.2 Models
For image datasets, we adopt WideResNet-32 [67], VGG-16 [52],
MobileNetV2 [48] and ResNet-56 [20], as our target models. For the
non-image datasets, we adopt a 2-layer MLP as the target model.
These models are trained from 80 to 150 epochs due to the complex-
ity of model architectures and datasets. For distillation, the epoch
number is set to 50. The optimization algorithm used is SGD, with a
learning rate ranging from 0.01 to 0.1. See the target models’ perfor-
mance in Table 2. Lastly, both the architecture of the shadow model
and the distilled models in our experiments remain consistent with
that of the target model. Note that since recent research [10] has
shown that data augmentation increases membership leakage, all
attack methods in this paper, including ours, are performed on
target models without data augmentation.

4.3 Baselines
To demonstrate the effectiveness of SeqMIA, we compared it with
the following MIA methods.
Shadow Training. Shadow training is a method proposed by
Shokri et al. [51], which uses multiple shadow models to mimic the
target model and assigns membership labels to the output posteri-
ors from shadow models. With a large number of labeled output
posteriors, it is feasible to train an attack model. Further, Salem et
al. [47] employ only one shadow model to improve this method
and achieve similar attack performance. In this study, the improved
shadow training method [47] is adopted as one of our baselines,
denoted as ST.
Metric-based Attack. Metric-based attack [53] is performed di-
rectly based on some metric values calculated from the output
posteriors of the target model, and it does not require training the
attack model. In this paper, we choose two metrics, prediction en-
tropy, and modified prediction entropy, for the baseline attacks,
which are denoted as MBA(Entropy) and MBA(M-Entropy), respec-
tively.

LiRA. LiRA [6] trains 𝑁 reference models, of which 𝑁 /2 are IN
models (trained with the target sample), and 𝑁 /2 are OUT models
(trained without the target sample). Then, it calculates the Gaussian
distributions of losses on the target sample for IN models and OUT
models. Finally, it measures the likelihood of the target sample’s
loss (output by the target model) under each of the distributions,
and returns whichever is more likely (i.e., member or non-member).
Since the online attack of LiRA requires training new IN models for
every (batch of) target samples, we use its offline version in ourmain
evaluation, denoted as LiRA.We also provide a comparison between
its online version, denoted as LiRA (online), and our method on the
part of datasets and models.
EnhancedMIA. EnhancedMIA [65] utilizes 𝑁 distilled models to
capture the loss distribution of the target sample. Since these 𝑁

distilled models are trained on an auxiliary dataset relabeled with
the target model, this approach eliminates the uncertainty with
regard to the training set and the target sample.
TrajectoryMIA. TrajectoryMIA [34] is another state-of-the-art
attack method, which exploits membership information leaked
from the training process of the target model.

Among the aforementioned methods, the first two attacks rep-
resent conventional approaches that utilize the output posteriors.
LiRA and EnhancedMIA are two SOTA attacks that employ multi-
ple reference/distilled models to calibrate membership information
derived from the output posteriors. Additionally, TrajectoryMIA is
another SOTA attack that leverages supplementary membership
signals in conjunction with the output posterior.

Lastly, when performing LiRA and EnhancedMIA, we follow
previous work [6] and set 𝑁 = 64 for image datasets and 𝑁 = 256
otherwise.

4.4 Evaluation Metrics
First, we adopt two average-case metrics, balanced accuracy and
AUC, which have been widely used in [7, 10, 19, 22, 24, 33, 43].
Balanced accuracy. Balanced accuracy is the probability that a
membership inference attack makes a correct prediction on a bal-
anced dataset of members and non-members.
AUC. AUC is the area under the receiver operating characteristic
(ROC) curve, which is formed by the true-positive rate (TPR) and
false-positive rate (FPR) of a membership inference attack for all
possible thresholds.

Further, we use TPR@ low FPR and Full log-scale ROC as another
two metrics recently proposed by Carlini et al. [6]. This is due to
that a reliable inference attack targeting a small number of samples
in the entire dataset should be taken seriously. Meanwhile, the TPR
at high FPR is unreliable to the adversary. Therefore, these metrics
have been used in recent works [34, 65] to evaluate the utility of
MIAs more comprehensively.
TPR @ low FPR. TPR @ low FPR reports the true-positive rate
at a single low false-positive rate (e.g., 0.1% FPR), which allows
for a quick review of the attack performance on a small portion of
samples in the entire dataset.
Full log-scale ROC. Full log-scale ROC highlights TPRs in low
FPR regions by drawing the ROC curves in logarithmic scale, which
provides a more complete view of attack performance than TPR @
low FPR.
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(a) VGG-16

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100
T

ru
e

P
os

it
iv

e
R

at
e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

(b) ResNet-56
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(c) WideResNet-32

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours

TrajectoryMIA

EnhancedMIA

LiRA

MBA(M-Entropy)

MBA(Entropy)

ST

(d) MobileNetV2

Figure 5: Log-scale ROC curves for attacks on different model architectures and four image datasets (from top to bottom:
CIFAR10, CIFAR100, CINIC10, and GTSRB).

5 Experimental Results
5.1 Attack Performance
The attack performance of our SeqMIA and baseline attacks is pre-
sented in Figure 5 and Figure 6. First, we observe that SeqMIA
achieves the best performance in almost all cases. Specifically, for
TPR @ 0.1% FPR shown in Table 3, SeqMIA demonstrates an order
of magnitude improvement compared to the baseline attacks. Re-
garding the two averaged metrics, balanced accuracy, and AUC, we
can also find that SeqMIA outperforms all baseline attacks in most
cases. Additional results can be found in our technique report [28].

Furthermore, even on the well-generalized model, SeqMIA ex-
hibits a notable advantage over other baseline attacks in terms of
TPR @ 0.1% FPR. For instance, VGG-16 trained on GTSRB achieves
training and testing accuracies of 1.000 and 0.923, respectively, indi-
cating a well-generalized target model (see Table 2). For this model,
we surprisingly find that two state-of-the-art attacks, LiRA and En-
hancedMIA, only achieve 0% TPR @ 0.1% FPR, as shown in Table 3.
The state-of-the-art attack, TrajectoryMIA, only achieves a TPR of
0.21% at an FPR of 0.1%. In contrast, our SeqMIA demonstrates an
impressive 0.75%. This superior performance can be attributed to its
ability to capture and leverage the integrated membership signals:
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Figure 6: Log-scale ROC curves for attacks against MLPs trained on three non-image datasets.

Table 3: Attack performance of different attacks against VGG-16 trained on four image datasets.

MIA method TPR @ 0.1% FPR (%) Balanced accuracy AUC

CIFAR10 CIFAR100 CINIC10 GTSRB CIFAR10 CIFAR100 CINIC10 GTSRB CIFAR10 CIFAR100 CINIC10 GTSRB

ST 0.22 1.19 0.11 0.08 0.726 0.923 0.723 0.570 0.753 0.966 0.833 0.635
MBA(Entropy) 0.21 1.23 0.27 0.15 0.735 0.945 0.789 0.613 0.735 0.945 0.788 0.613

MBA(M-Entropy) 0.22 1.43 0.29 0.14 0.747 0.952 0.814 0.606 0.747 0.952 0.814 0.606
LiRA 0.62 0.10 0.31 0.00 0.565 0.775 0.707 0.508 0.575 0.819 0.756 0.480

EnhancedMIA 0.77 1.21 3.45 0.00 0.636 0.836 0.717 0.567 0.694 0.904 0.767 0.575
TrajectoryMIA 0.40 2.36 0.77 0.21 0.666 0.892 0.730 0.540 0.739 0.949 0.811 0.560

SeqMIA 11.99 37.03 24.70 0.75 0.766 0.959 0.850 0.577 0.869 0.992 0.937 0.649
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Figure 7: Performance of attacks using serialized and non-serialized membership signals against VGG-16 trained on CIFAR10.

Table 4: Attack performance of SeqMIA and LiRA (online)
against VGG-16 trained on CIFAR10 and CIFAR100.

MIA method TPR @ 0.1% FPR (%) Balanced accuracy AUC

CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100

LiRA(online) 6.38 19.91 0.687 0.884 0.766 0.961
SeqMIA 11.99 37.03 0.766 0.959 0.869 0.992

Pattern of Metric Sequence, even in scenarios where the model is
well-generalized.

Lastly, as shown in Table 4, evenwhen compared to the costly but
effective method LiRA(online), SeqMIA consistently outperforms it,
especially regarding TPR @ 0.1% FPR and balanced accuracy. This
comparison further emphasizes the effectiveness of SeqMIA.

5.2 Analysis
Recall that we use a simple yet effective approach, the attention-
based RNN, as our attack model to process the multi-metric se-
quences. This method automatically uncovers various patterns
in the metric sequences without requiring prior characterization.
While our SeqMIA has shown superior performance, we further in-
vestigate its success, particularly focusing on whether the attention-
based RNN can indeed uncover the different patterns in the metric
sequence as claimed.
Serialization vs. Non-serialization. We first investigate whether
SeqMIA can indeed distinguish the pattern of metric sequences
between members and non-members. To mitigate the effects of
multiple metrics, we use only one metric at a time. In particular, we
consider our SeqMIA, which utilizes an attention-based RNN attack
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Figure 8: Distribution of CLFA for members and non-
members in different training epochs for VGG-16 trained
on CIFAR100.
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Figure 9: Attention score of our attack against four models
trained on CIFAR100.

model to serialize the input, referred to as Serialization. For compar-
ison, we also consider TrajectoryMIA, which uses an MLP attack
model, referred to as Non-serialization. Additionally, we introduce a
variant of TrajectoryMIA where the order of the metrics is random-
ized, denoted as Non-serialization (shuffled). As shown in Figure 7,
we can observe that both Non-serialization and Non-serialization
(shuffled) achieve similar performance in all cases. These results
indicate that the MLP attack model treats the input values as in-
dependent and ignores any sequential or time-series information
present in the input vector. In contrast, Serialization achieved sig-
nificantly better attack performance in all cases. These results sug-
gest that attention-based RNNs processing either sequence data or
time-series data do discover patterns of metric sequences between
members and non-members.

Now, we further discuss why we should adopt the attention
mechanism. As shown in Figure 8, the magnitude of the loss value
fluctuations for both members and non-members is large in the first
10 training epochs (i.e., the model is in an underfitting state at this
stage), and thus it is difficult to distinguish between them. However,
when the model is overfitted or close to being overfitted (the last
10 training epochs), members reduce the magnitude of loss fluctua-
tions, while non-members do not. For example, almost all members

Table 5: TPR@0.1% FPRofRNN-based SeqMIA, Transformer-
based SeqMIA, and TrajectoryMIA against ResNet-56 trained
on four image datasets.

Dataset TPR @ 0.1% FPR (%)

RNN Transformer TrajectoryMIA

CIFAR10 4.43 2.55 0.37
CIFAR100 21.67 0.65 1.38
CINIC10 6.89 5.94 0.38
GTSRB 0.62 0.62 0.14

Table 6: TPR@ 0.1% FPR for attacks using different member-
ship signals against VGG-16 trained on four image datasets.

MIA method TPR @ 0.1% FPR (%)

CIFAR10 CIFAR100 CINIC10 GTSRB

Loss set 0.40 2.36 0.77 0.21
Multi-metric set 3.92 3.09 1.12 0.21

Loss sequence 6.83 25.75 16.33 0.14
Multi-metric sequence 11.99 37.03 24.70 0.75

have loss fluctuations of less than 0.01, whereas more than half of
the non-members have fluctuations of more than 0.01. We believe
that this is because, at this stage, the model matches the individual
characteristics of the members so that they exhibit consistently
small losses. Therefore, we introduce an attention mechanism to
focus on key parts of the metric sequence. Figure 9 describes the at-
tention scores of SeqMIAwith the four models trained on CIFAR100,
which implies that SeqMIA is able to capture the membership signal
in the metric sequences accurately.

In addition to RNNs, we further explore applying Transformer [56],
a self-attention-based technique, for serializing metric sequences in
SeqMIA. Transformers allow parallel processing of input sequences,
offering efficiency and scalability compared to the sequential pro-
cessing of RNNs. However, in our evaluation comparing RNN-based
and Transformer-based attack models for SeqMIA, surprisingly,
the RNN-based model performs better. We attribute this to se-
quence length constraints, smaller point dimensions, and the limited
amount of sequences, hindering the Transformer’s performance.
Despite this, the Transformer-based model in SeqMIA generally sur-
passes TrajectoryMIA, showcasing the effectiveness of serialization
in capturing membership information, as shown in Table 5. See
more results in our technique report [28].
More Signals of Multiple Metric Sequences. The previous stud-
ies [12, 43] have demonstrated the potential of utilizing multiple
metrics to enhance performance. However, these studies focus on
non-serialized metric values in white-box scenarios and do not con-
sider the influence of serializing multiple metrics. Here, we delve
deeper into the impact of extra information from multi-metric se-
quence, which is initially proposed by SeqMIA.

First, we take TrajectoryMIA as the example (denoted as Loss
Set) and extend it with multiple metrics (including loss and other
metrics in Section 2.2), denoted asMulti-metric Set. Both approaches
use a set of non-serialized metric values, which is constructed into a
vector and fed into an MLP attack model for inference. Besides, we
denote our SeqMIA as Multi-metric Sequence, and its single metric
version as Loss Sequence. As shown in Table 6, the multi-metric set
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Table 7: The impact of the number of distillation epochs for
VGG-16 trained on CIFAR10.

Distillation epochs

5 10 20 30 40 50

TPR @ 0.1% FPR (%) 1.99 5.75 9.83 10.60 12.37 11.99
Balanced accuracy 0.752 0.762 0.765 0.760 0.766 0.766

AUC 0.829 0.857 0.864 0.865 0.868 0.869

demonstrates higher attack performance than the loss set, which is
consistent with the conclusions in [12, 43]. Interestingly, the multi-
metric sequence exhibits a larger performance gain compared to
the improvement achieved by the multi-metric set. For instance,
when evaluating VGG-16 trained on CIFAR100, the multi-metric
sequence achieves a notable 34.67% TPR @ 0.1% FPR improvement
over the loss set, while the multi-metric set only improves by 0.73%.
See more results in our technique report [28]. We attribute this to
the fact that target models are optimized for member samples such
that members will get better on multiple metrics simultaneously,
whereas non-members do not.

To validate this hypothesis, we calculate the correlation matrix
of multi-metric sequences (as depicted in Figure 2). We can observe
that the correlation coefficients for members are usually greater
than for non-members. Furthermore, we evaluate the attack perfor-
mance of SeqMIA using dual-metric sequence, as shown in Figure 10.
We can find that the best attack performance is often achieved by
the two metrics, which have large differences in correlation co-
efficients between members and non-members. For instance, the
correlation coefficient of Loss and SD for members is 0.81, whereas,
for non-members, it is 0.28, as demonstrated in Figure 2. Meanwhile,
Loss and SD achieves the best performance(33% TPR @ 0.1% FPR),
as shown in Figure 10. See more results in our technique report [28].
Therefore, we argue that multiple metric sequences indeed contain
additional membership information than single metric sequences
and can further improve the attack performance.

5.3 Ablation Study
In this section, we investigate the impact of several important
factors on the attack performance of our method.
Number of Distillation Epochs. The number of epochs utilized
for knowledge distillation significantly impacts both the computa-
tional cost in the distillation process and the input dimension to
the attack model. Therefore, it is crucial to determine the optimal
number of epochs required in the distillation process.

Table 7 illustrates the impact of the number of distillation epochs
on the attack performance. It is evident that increasing the number
of distillation epochs can significantly increase the TPR @ 0.1%
FPR, while having minimal effect on the balanced accuracy and
AUC. This observation suggests that our attack is capable of dis-
tinguishing between members and non-members more reliably. As
argued in [6], average metrics are often uncorrelated with low FP
success rates. While the two average metrics (balanced accuracy
and AUC) of our attack no longer grow significantly after 20 dis-
tillation epochs, the TPR @ 0.1% FPR continues to improve. The
continued improvement of TPR@ 0.1% FPR suggests that on a small
portion of samples in the entire dataset, our attack becomes more

Table 8: The impact of distillation dataset size for VGG-16
trained on CIFAR10. The accuracy of target model is 0.569.

Distillation dataset size

10k 20k 70k 120k 170k 220k

Distilled accuracy 0.564 0.566 0.563 0.561 0.574 0.566

TPR @ 0.1% FPR (%) 9.38 14.83 18.22 20.96 20.98 22.57
Balanced accuracy 0.835 0.839 0.845 0.843 0.844 0.843

AUC 0.922 0.927 0.933 0.934 0.935 0.936

Table 9: The impact of the overfitting level of the target
model. The experiments are conducted on VGG-16 trained
on CINIC10.

Training dataset size

30k 25k 20k 15k 10k

Overfitting level 0.335 0.359 0.372 0.408 0.431

TPR @ 0.1% FPR (%) 8.41 10.21 11.85 13.03 20.43
Balanced accuracy 0.744 0.766 0.776 0.793 0.855

AUC 0.844 0.867 0.879 0.893 0.943

reliable. This situation should be taken into account by the model
stakeholders. Additionally, the best attack performance is achieved
within approximately 50 epochs, indicating that the computational
cost can be effectively controlled within an acceptable range.
Size of Distillation Dataset. For knowledge distillation, the size of
the distillation dataset is a crucial factor that significantly impacts
the distillation performance. To investigate the influence of this
factor on our attack performance, we conduct experiments with
varying sizes of the distillation dataset.

We present the results in Table 8. Similarly, we observe that a
larger distillation dataset size leads to higher TPR@ 0.1% FPR, while
having little impact on the balanced accuracy and AUC. This finding
demonstrates that a larger distillation dataset is advantageous in
improving the attack performance. Besides, it further supports the
claim that our attack becomes very reliable on a small portion
of samples in the entire dataset as the size of distillation dataset
increases.
Overfitting Level of the TargetModel. It is widely acknowledged
that the success of membership inference attacks is closely related
to the overfitting level of the target model [47, 51]. Here we quantify
the overfitting level using the training and testing accuracy gap
and manipulate it by varying the size of the training set. Concretely,
the distillation dataset size is kept fixed at 100,000 samples, while
we manipulate the size of the target/shadow training and testing
datasets, ranging from 30,000 down to 10,000 samples.

As described in Table 9, we observe that as the overfitting level
increases, the attack performance improves regarding TPR @ 0.1%
FPR, balancing accuracy, and AUC. Furthermore, we highlight that
even when the target model exhibits good generalization with a low
overfitting level (0.335), SeqMIA still achieves a significant 8.41%
TPR @ 0.1% FPR. Surprisingly, this performance outperforms that
of all baselines, even in the more overfitting scenario (overfitting
level of 0.431), as demonstrated in Table 3.
Disjoint Datasets. We relax our previous assumption that the ad-
versary possesses knowledge of the target model’s training dataset
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Figure 10: Attack performance of SeqMIA using double metrics against MLPs trained on Location.
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Figure 11: Attack performance of SeqMIA against different models trained on CIFAR10 by using ImageNet part (𝐷𝑡 ≠ 𝐷𝑎) and
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Figure 12: The impact of different model architectures used for the local (shadow and distilled) models. The target models and
local models are trained on CIFAR10.

distribution. Instead, we utilize CIFAR10 as the training dataset
for the target model (denoted as 𝐷𝑡 ) and a subset of CINIC10 de-
rived from ImageNet as the dataset held by the adversary (denoted
as 𝐷𝑎). In Figure 11, we observe that when 𝐷𝑡 ≠ 𝐷𝑎 , the attack
performance of SeqMIA is compromised. This degradation occurs
because the discrepancy in data distribution leads to differences
in prediction behavior between the target model and the models

trained by the adversary, consequently affecting the quality of our
constructed multi-metric sequences in capturing membership in-
formation. Nonetheless, SeqMIA’s performance still surpasses that
of all baselines. For instance, SeqMIA(𝐷𝑡 ≠ 𝐷𝑎) achieves a TPR @
0.1% FPR of more than 7% against VGG-16 (as shown in Figure 11),
while all baselines (𝐷𝑡 = 𝐷𝑎) achieve at most 0.77% (as referred to
in Table 3).
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Table 10: TPR@ 0.1% FPR of SeqMIA against VGG-16 trained
on CIFAR10 with DP-SGD.

𝛿 = 1e-5 and𝐶 = 1 Accuracy of the
target model

TPR @ 0.1% FPR (%)
𝜎 𝜖

No defense - - 0.756 11.99

DP-SGD

0 ∞ 0.575 0.76
0.2 1523 0.581 0.31
0.5 43 0.482 0.21
1 6 0.377 0.17

Table 11: TPR@0.1% FPR of different attacks against VGG-16
trained on CIFAR10 with DP-SGD (𝜎 = 0.2 and 𝜎 = 0.5).

TPR @ 0.1% FPR (%)

𝜎 = 0.2 𝜎 = 0.5

ST 0.11 0.04
MBA(Entropy) 0.11 0.10

MBA(M-Entropy) 0.11 0.10
LiRA 0.02 0.04

EnhancedMIA 0.10 0.12
TrajectoryMIA 0.15 0.16

SeqMIA 0.31 0.21

Different Model Architectures and Hyperparameters.We pro-
ceed to relax the second assumption that requires the adversary to
possess knowledge of the target model’s architecture and hyperpa-
rameters. In other words, the adversary is now allowed to utilize
different model architectures and hyperparameters to locally train
the shadow model and distilled model. As depicted in Figure 12, the
attack performance is typically optimal along the diagonal. This
can be attributed to the fact that using the same model architecture
and hyperparameters enables the adversary to more accurately
simulate the training process of the target model. While adopting a
different model architecture with different hyperparameters leads
to a decrease in SeqMIA’s performance, its worst-case performance
still surpasses that of all baselines (when both the target and adver-
sary models share the same architecture and hyperparameters). For
instance, the worst TPR @ 0.1% FPR achieved by SeqMIA against
VGG-16 is 3.2% (as shown in Figure 12), while all baselines achieve
at most 0.77% (as referred to in Table 3).

6 Discussion
In this section, we evaluate the performance of SeqMIA against sev-
eral existing defenses. Then, we discuss the limitations of SeqMIA.

6.1 Defense Evaluation
To mitigate the risk of membership leakage, a large body of defense
mechanisms have been proposed in the literature [4, 25, 29, 42, 44,
62, 70]. In this section, we thoroughly evaluate the effectiveness
of SeqMIA against three prominent defenses, namely DP-SGD [4],
Adversarial Regularization [42], and MixupMMD [29].
DP-SGD. Table 10 presents the performance of SeqMIA under DP-
SGD, evaluated on VGG-16 trained on CIFAR10 (see more results
in our technique report [28]). We employ the Opacus library to
implement DP-SGD and fix the parameters 𝛿 = 1e-5 and 𝐶 = 1,
following [6, 34]. We can observe that the attack performance of

Table 12: TPR@ 0.1% FPR of different attacks against ResNet-
56 trained on CINIC10 with AdvReg and MixupMMD.

TPR @ 0.1% FPR (%)

no defense AdvReg MixupMMD

ST 0.11 1.08 0.06
MBA(Entropy) 0.16 0.12 0.25

MBA(M-Entropy) 0.24 0.52 0.23
LiRA 0.00 0.02 0.11

EnhancedMIA 4.39 2.27 0.38
TrajectoryMIA 0.38 3.08 1.81

SeqMIA 6.89 24.62 4.62

SeqMIA gradually decreases as the defense effects increase. How-
ever, stronger defense effects also result in a sharp drop in the
accuracy of the target model. To balance defense strength and
model accuracy, we select the cases of 𝜎 = 0.2 and 𝜎 = 0.5 for
further analysis. These settings offer acceptable trade-offs between
defense strength and model accuracy. Table 11 shows that SeqMIA
still outperforms other baselines under DP-SGD. For instance, when
𝜎 = 0.2, the TPR @ 0.1% FPR of SeqMIA is more than twice that of
other baselines.
Adversarial Regularization.Adversarial Regularization (AdvReg)
is an adversarial training-based defense that adds noise to the out-
put posteriors, making it challenging for adversaries to distinguish
between members and non-members. As demonstrated in Table 12
(see more results in our technique report [28]), SeqMIA continues
to achieve the best attack performance in almost all cases. Interest-
ingly, we observe that AdvReg’s co-training with the target model
results in members being more involved in the training of the tar-
get model, which makes them more significantly different from
non-members. Thus, both SeqMIA and TrajectoryMIA demonstrate
enhanced attack performance. Notably, this enhancement is more
pronounced for SeqMIA, as it leverages more membership signals
leaked from the training process. For instance, when the target
model has no defense, SeqMIA achieves a TPR @ 0.1% FPR of 6.89%,
and when the target model is protected by AdvReg, the TPR @ 0.1%
FPR increases to 24.62%.
MixupMMD.MixupMMD is a defense aimed at mitigating mem-
bership inference attacks by reducing the target model’s generaliza-
tion gap. As previously discussed, the overfitting level of the target
model plays a crucial role in membership leakage. Consequently,
MixupMMD leads to a degradation in the performance of all attacks,
including our SeqMIA, as depicted in Table 12 (see more results in
our technique report [28]). However, it is worth noting that despite
this degradation, SeqMIA continues to outperform other baseline
attacks in almost all cases.

6.2 Limitations
SeqMIA has limitations as follows: it cannot be applied to label-only
scenarios due to its reliance on the output posterior, and it is not
suitable for large model scenarios regarding computation because it
requires training and distilling the shadow model. Therefore, model
holders can only provide predicted labels instead of the posterior
to defend against SeqMIA.
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7 Related Works
7.1 Membership Inference Attacks
Nowadays, there exist a wide range of other security and privacy
research in the machine learning domain [8, 17, 18, 21, 30, 32, 35,
36, 39, 40, 46, 49, 50, 58–60, 64, 68]. In this work, we mainly focus
on membership inference attacks. Membership inference attacks
have been successfully performed in various settings about the
adversary’s knowledge, including white-box [27, 43], black-box [9,
24, 47, 51, 53, 69], and label-only [10, 33] settings. They have been
applied in many machine learning scenarios, such as federated
learning [41, 43, 55] and multi-exit networks [31], etc.

Specifically, Shokri et al. [51] and Salem et al. [47] proposed
a shadow training technique that employs shadow models to ac-
quire the membership signals. Moreover, Song et al. [53] and Yeom
et al. [66] proposed the metric-based attack that directly com-
pares losses or other metric values of samples with a predefined
threshold. In addition, some membership signals obtained in the
white-box scenario are incorporated to improve the attack perfor-
mance [12, 43]. Besides, label-only attacks [10, 33, 61] solely rely
on the predicted labels to acquire the membership signals. Recently,
researchers [6, 34, 45, 57, 65] focused on reducing the false positives
of MIAs by using each sample’s hardness threshold to calibrate the
loss from the target model. Further, Bertran et al. [5] proposed a
new attack via quantile regression, which can obtain performance
close to that of LiRA [6] with less computation. Moreover, Liu et
al. [34] presented TrajectoryMIA, which utilizes the membership
signals generated during the training of the target model.

7.2 Defenses Against MIAs
Since the overfitting level is an important factor affecting mem-
bership leakage, some regularization techniques have been used
by [37, 47, 51] to defend against membership inference attacks, such
as L2 regularization, dropout and label smoothing, etc. Recently, Li
et al. [29] proposed the method MixupMMD to mitigate member-
ship inference attacks by reducing the target model’s generalization
gap. Furthermore, Abadi et al. [4] proposed a more general privacy-
preserving method DP-SGD, which adds differential privacy [14]
for the stochastic gradient descent algorithm. Subsequently, some
works [44, 62, 70] focus on reducing the privacy cost of DP-SGD
through adaptive clipping or adaptive learning rate. In addition, for
membership inference attacks, some elaborate defense mechanisms,
such as AdvReg [42] and MemGuard [25], have been conceived to
obscure the differences between the output posteriors of members
and non-members.

8 Conclusion
In this work, we introduce a new, more integrated membership sig-
nal: the Pattern of Metric Sequence, which comes from various stages
of model training. We verify that this new signal not only includes
these existing well-applied signals but also pays more attention
to time-dependent patterns, such as fluctuations and correlations.
Based on this new signal, we propose a novel membership infer-
ence attack against ML models, named Sequential-metric based
Membership Inference Attack. We construct sequential versions of
multiple metrics obtained from the training process of the target

model (multi-metric sequences) and leverage an attention-based
RNN to automatically mine the patterns of the metric sequences for
inference. Extensive experiments demonstrate SeqMIA outperforms
advanced baselines. we further conduct in-depth comparative anal-
yses of metric non-sequences vs. metric sequences, and single vs.
multiple metrics, revealing the reasons for its superior performance.
Then, we analyze some other factors on the attack performance.
Additionally, we demonstrate that SeqMIA outperforms existing
advanced baseline attacks under several representative defenses. In
the future, we aim to explore enhanced metrics with richer mem-
bership information and employ more efficient serialization models
to further improve membership inference performance.
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A Dataset Description
CIFAR10/CIFAR100. CIFAR10 and CIFAR100 [26] are commonly
used datasets for evaluating image recognition algorithms, each
including 60,000 color images of size 32 × 32. The difference is
only that the images in CIFAR10 are equally distributed into 10
classes, while the images in CIFAR100 are equally distributed into
100 classes.
CINIC10. CINIC10 [11] contains 270,000 images within the same
classes as CIFAR10. In particular, 60,000 samples belong to CIFAR10,
while the other samples come from ImageNet [13].
GTSRB. GTSRB [54] is a benchmark dataset used for traffic sign
recognition, which includes 51839 images in 43 classes. Since the
size of these images is not uniform, we resize them to 32× 32 pixels
during data preprocessing.
Purchase. Purchase is a dataset of shopping records with 197324
samples of 600 dimensions, which is extracted from Kaggle’s “ac-
quire valued shopper” challenge. Following previous works [34, 47,
51], we cluster these data into 100 classes for evaluating member-
ship inference attacks against non-image classifiers.
News. News is a popular benchmark dataset for text classification.
This dataset includes 20,000 newsgroup documents of 20 classes.
Following [47], we convert each document into a vector of 134410
dimensions using TF-IDF.
Location. Location is a preprocessed check-in dataset provided by
Shokri et al. [51], which is obtained from Foursquare dataset [63].
Location contains 5010 data samples of 446 dimensions across 30
classes.

Table 13: Data splits for our evaluation.

Dataset D𝑡
𝑡𝑟𝑎𝑖𝑛

D𝑡
𝑡𝑒𝑠𝑡 D𝑠

𝑡𝑟𝑎𝑖𝑛
D𝑠

𝑡𝑒𝑠𝑡 D𝑘

CIFAR10 10000 10000 10000 10000 20000
CIFAR100 10000 10000 10000 10000 20000
CINIC10 10000 10000 10000 10000 220000
GTSRB 1500 1500 1500 1500 45839
Purchase 20000 20000 20000 20000 110000
News 3000 3000 3000 3000 6000

Location 800 800 800 800 1400
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Figure 13: The distributions of the cumulative fluctuation am-
plitude of SD (left) and M-Entropy (right) within 100 epochs,
which is obtained from 10,000 members and 10,000 non-
members of VGG-16 trained on CIFAR100.
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Figure 14: The distributions of the decline rate of Loss (left)
and Entropy (right) within 100 epochs, which is obtained
from 10,000 members and 10,000 non-members of VGG-16
trained on CIFAR100.

B Additional Time-Dependent Patterns of
Metric Sequences

Decline Rate of Metric Sequences. We choose two metrics, Loss
and Entropy, as our example. First, we construct the sequences
of loss values and entropy values for each sample as the training
progresses. And the loss decline rate for each sample is calculated by
measuring the loss decline amplitude within a period of consecutive
epochs and then dividing by the number of epochs. Similarly, we
can obtain decline rate of entropy sequence. We then count the
frequency of the samples regarding the distribution of their decline
rate of loss (or entropy). As depicted by Figure 14, we observe
members exhibit significantly larger decline rate of loss (or entropy)
sequence compared to non-members. The results reconfirm that
there exists a very clear difference in the pattern of metric sequence
(e.g., loss sequence and entropy sequence) between members and
non-members.
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