
MGTBench: Benchmarking Machine-Generated Text Detection
Xinlei He

The Hong Kong University of Science
and Technology (Guangzhou)

Guangzhou, China
xinleihe@hkust-gz.edu.cn

Xinyue Shen
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
xinyue.shen@cispa.de

Zeyuan Chen
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
zeyuan.chen@cispa.de

Michael Backes
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
director@cispa.de

Yang Zhang∗
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

zhang@cispa.de

ABSTRACT
Nowadays, powerful large language models (LLMs) such as Chat-
GPT have demonstrated revolutionary power in a variety of nat-
ural language processing (NLP) tasks such as text classification,
sentiment analysis, language translation, and question-answering.
Consequently, the detection of machine-generated texts (MGTs)
is becoming increasingly crucial as LLMs become more advanced
and prevalent. These models have the ability to generate human-
like language, making it challenging to discern whether a text is
authored by a human or a machine. This raises concerns regarding
authenticity, accountability, and potential bias. However, existing
methods for detecting MGTs are evaluated using different model
architectures, datasets, and experimental settings, resulting in a lack
of a comprehensive evaluation framework that encompasses vari-
ous methodologies. Furthermore, it remains unclear how existing
detection methods would perform against powerful LLMs.

In this paper, we fill this gap by proposing the first benchmark
framework for MGT detection against powerful LLMs, named MGT-
Bench. Extensive evaluations on public datasets with curated texts
generated by various powerful LLMs such as ChatGPT-turbo and
Claude demonstrate the effectiveness of different detection meth-
ods. Our ablation study shows that a larger number of words in
general leads to better performance and most detection methods
can achieve similar performance with much fewer training samples.
Additionally, our findings reveal that metric-based/model-based
detection methods exhibit better transferability across different
LLMs/datasets. Furthermore, we delve into a more challenging task:
text attribution, where the goal is to identify the originating model
of a given text, i.e., whether it is a specific LLM or authored by a
human. Our findings indicate that the model-based detection meth-
ods still perform well in the text attribution task. To investigate

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670344

the robustness of different detection methods, we consider three
adversarial attacks, namely paraphrasing, random spacing, and
adversarial perturbations. We discover that these attacks can signif-
icantly diminish detection effectiveness, underscoring the critical
need for the development of more robust detection methods. We
envision that MGTBench will serve as a benchmark tool to acceler-
ate future investigations involving the evaluation of powerful MGT
detection methods on their respective datasets and the development
of more advanced MGT detection methods.1

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Large Language Models; Machine Learning; MGT Detection

ACM Reference Format:
Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang.
2024. MGTBench: Benchmarking Machine-Generated Text Detection. In
Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670344

1 INTRODUCTION
Large languagemodels (LLMs), such as T5 [28], GPT3 [11], PaLM [13],
and more powerful LLMs such as ChatGPT [5] and Claude [6], have
been a significant breakthrough in the field of natural language
processing (NLP). With huge numbers of parameters and being
trained with massive amounts of data, LLMs have shown remark-
able performance in various real-world applications, e.g., education,
customer service, and finance.

While powerful LLMs have shown impressive qualities in terms
of achieving remarkable performance in various tasks and gener-
ating human-like texts, several limitations and ethical concerns
have to be taken into account. First, LLMs may generate text that
sounds realistic but may not be entirely accurate or factual [22].
Second, the misuse of LLMs may raise concerns in education, mak-
ing a fair judgment impossible [33]. Also, it is difficult to trace back
the machine-generated text to its source, which raises concerns

1Our code is available at https://github.com/TrustAIRLab/MGTBench.

https://orcid.org/0009-0007-3879-9080
https://orcid.org/0009-0006-9954-587X
https://orcid.org/0009-0008-4504-7108
https://orcid.org/0000-0002-7130-9211
https://orcid.org/0000-0003-3612-7348
https://doi.org/10.1145/3658644.3670344
https://doi.org/10.1145/3658644.3670344
https://github.com/TrustAIRLab/MGTBench

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

about accountability, especially when the content is used to spread
misinformation or propaganda [38].

To address these issues, researchers have considered automatic
detection methods that can identify the machine-generated text
(MGT) from the human-written text (HWT). Concretely, those
methods can be concluded into two categories, i.e., metric-based
methods and model-based methods. For the metric-based meth-
ods [17, 24, 30], metrics such as log-likelihood, word rank, and
predicted distribution entropy are used to determine whether a
text belongs to MGT or HWT. Regarding the model-based meth-
ods [3, 18, 30, 39], classification models are trained by both MGTs
and HWTs.

Overall, existing MGT detection methods have been studied un-
der different LLMs and different datasets, albeit in isolation. Also,
powerful LLMs such as ChatGPT demonstrate remarkable perfor-
mance across diverse tasks, providing high-quality, human-like
answers. This prompts the need for a holistic evaluation of these
methods against powerful LLMs. To do this, we develop a compre-
hensive benchmark of MGT detection, namely MGTBench. MGT-
Bench follows a modular design, consisting of the input module,
the detection module, and the evaluation module. Until now, we
have implemented ten MGT detection methods. We also take ad-
vantage of the powerful LLMs including ChatGLM, Dolly, ChatGPT-
turbo, GPT4All, StableLM, and Claude, which are the most popular
and powerful LLMs (thus far), to produce MGTs on existing HWT
datasets. MGTBench enables researchers to benchmark various
methods on different datasets. Its modular design facilitates the
integration of additional detection methods, as well as the plugging
in of datasets and models.
Evaluation. We perform an extensive measurement study over
the 13 detection methods against 6 LLMs. Our measurement is per-
formed on 3 benchmark datasets including Essay, WP, and Reuters.
Note that for each dataset, besides the texts written by humans
(labeled as HWTs), we also query each LLM with the constructed
prompt (see Table 1) to obtain the MGT from the LLM (labeled as
MGTs).

Extensive evaluations show that the LM Detector outperforms
other detection methods and reaches the best performance. For in-
stance, to differentiate whether the texts are generated by humans
or ChatGPT-turbo on Essay, the detection F1-score is 0.993 with
LM Detector while only 0.968 with Log-Likelihood. Our ablation
study shows that an increased word count can enhance the detec-
tion performance, and 200 words is a sufficient length to achieve
satisfactory performance. We also find that most detection meth-
ods can achieve comparable performance with significantly fewer
training samples. For instance, with only 10 training samples, Log-
Likelihood achieves 0.967 F1-score to differentiate HWTs fromMGT
generated by ChatGLM on Essay, which is close to the performance
with full training samples (0.970). Another interesting finding is
that metric-based methods can better transfer to new LLMs while
model-based methods are more capable of adapting to new datasets.
For example, on Essay, Log-Likelihood trained on MGTs generated
by GPT4All can attain 0.983 F1-score in differentiating MGTs gen-
erated by ChatGLM, and OpenAI Detector trained on Essay can
achieve 0.931 F1-score on WP when dealing with MGTs generated
by ChatGPT-turbo.

Later, we consider a more challenging task, i.e., text attribution,
where the goal is to identify the exact model to generate the text,
e.g., either human or one of the LLMs. Our evaluation shows that
the model-based detection methods perform much better than the
metric-based detection method in the text attribution task. For
example, on Essay, LM Detector achieves 0.927 F1-score while the
F1-score is only 0.208 and 0.387 for Rank and GLTR.

Then, to quantify the robustness of different detection meth-
ods, we consider three adversarial attacks, namely paraphrasing,
random spacing, and adversarial perturbation. Evaluation results
demonstrate that current detection methods are extremely vulnera-
ble to adversarial attacks. Take LRR as an example, with WP as the
dataset and ChatGPT-turbo as the MGT generator, the detection F1-
score degrades 0.418, 0.413, and 0.469 in response to paraphrasing,
random spacing, and adversarial perturbation attacks (see Table 6
for more details). This pronounced vulnerability underscores the
necessity to develop more robust methods for MGT detection. Our
code and models will be made publicly available.

In summary, we make the following contributions:

• We propose MGTBench, a benchmarking framework for
MGT detection/attribution against powerful LLMs.

• Our empirical evaluation shows that the LM Detector out-
performs other detection methods in both MGT detection
and text attribution tasks. Additionally, our ablation studies
shed light on the unique characteristics of different detection
methods.

• We systematically evaluate the robustness of different detec-
tion methods by introducing three adversarial attacks. Our
findings indicate that those methods are highly susceptible
to such attacks, which highlights the need for future research
to develop more resilient MGT detection methods.

2 PRELIMINARY AND RELATEDWORK
2.1 Text Generation with Large Language

Models
The recent advancements in LLMs can be traced back to the trans-
former architecture proposed by Vaswani et al. [36], which intro-
duces the self-attention mechanisms to allow the model to focus
on different regions of the input sequence. Later Radford et al. [26]
develop the generative pre-trained transformer (GPT) based on
the transformer architectures. Being trained with a large corpus
of text data, GPT achieves superior performance on a wide range
of language generation tasks. GPT2 [27], a larger version of GPT
that contains more parameters and is trained on a larger corpus, is
developed and achieves better performance than GPT. GPT3 [11]
is the third generation of GPT with over 175B parameters, which
has been shown to be capable of generating coherent and con-
textually appropriate text even in situations where it is provided
with minimal input or guidance. Since November 2022, OpenAI
releases ChatGPT [5], which is trained based on the GPT-3.5 ar-
chitectures and leverages Reinforcement Learning from Human
Feedback (RLHF) [14, 31] to improve its generation ability. Chat-
GPT shows revolutionary capabilities in generating coherent and
relevant texts, which can be integrated into various applications,
such as chatbots, customer service, and education.

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Another notable model series in the field is the masked language
model. Bidirectional Encoder Representations from Transformers
(BERT) developed by Devlin et al. [15] is one of the most repre-
sentative models that is pre-trained using the masked language
modeling task. Liu et al. [23] develop RoBERTa, which leverages
a robustly optimized BERT pre-training approach and can reach
an even better performance than BERT in various tasks. With the
widespread use of LLMs for generating texts, concerns about au-
thenticity, accountability, and potential bias have also been raised.

In this paper, we consider six representative powerful LLMs,
including ChatGPT-turbo, ChatGLM, Dolly, GPT4All, StableLM,
and Claude.
ChatGPT-turbo [5]. ChatGPT is an advanced large language
model built upon the GPT-3.5 architecture and specifically designed
to generate highly human-like responses. To achieve this capability,
ChatGPT is fine-tuned with Reinforcement Learning from Human
Feedback (RLHF) [31] where human trainers actively engage in
conversations with ChatGPT. Here we consider the latest iteration
of ChatGPT, namely ChatGPT-turbo.
ChatGLM [1]. ChatGLM is another large language model based on
the GLM (General Language Model) frameworks [16]. The training
process involved a combination of supervised fine-tuning, feedback
bootstrap, and RLHF, thus enabling it to generate responses that
are in accordance with human-like patterns and preferences.
Dolly [2]. Dolly is an instruction-following large language model
released byDatabricks. It is trained on around 15K instruction/response
records, generated by Databricks employees in capability domains
such as brainstorming, classification, closed QA, generation, infor-
mation extraction, open QA, and summarization.
GPT4All [7]. GPT4All is an open-source assistant-style large lan-
guage model. It is trained over a massive curated corpus including
word problems, story descriptions, multi-turn dialogue, and code.
StableLM [4]. StableLM is an auto-regressive language model
based on the NeoX transformer architecture [10]. It is fine-tuned
on various chat and instruction-following datasets.
Claude [6]. Claude, developed by Anthropic, is an AI language
model similar to OpenAI’s ChatGPT. It is designed to engage in
natural language conversations, provide helpful responses, and
assist users with a variety of tasks.

2.2 Machine-Generated Text Detection
To address the above-mentioned issues, researchers have developed
various MGT detection methods [8, 17, 18, 20, 24, 25, 30, 34, 35, 39].
Current detection methods can be divided into two categories, i.e.,
metric-based methods and model-based methods. Generally speak-
ing, metric-based methods leverage pre-trained LLMs to process
the text and extract distinguishable features from it, e.g., the rank or
entropy of each word in a text conditioned on the previous context.
In this paper, we consider eight metric-based detection methods,
including Log-Likelihood, Rank, Log-Rank, Entropy, GLTR, Detect-
GPT, LRR, and NPR.
Log-Likelihood [30]. This approach leverages a language model
to measure the token-wise log probability. Concretely, given a text,
we average the token-wise log probability of each word to generate
a score for this text. Note that a larger score denotes the text is
more likely to be machine-generated.

Rank [17]. For each word in a text, given its previous context, we
can calculate the absolute rank of this word. Then, for a given text,
we compute the score of the text by averaging the rank value of
each word. Note that a smaller score denotes the text is more likely
to be machine-generated.
Log-Rank [24]. Slightly different from the Rank metric that uses
the absolute rank, the Log-Rank score is calculated by first applying
the log function to the rank value of each word.
Entropy [17]. Similar to the Rank score, the Entropy score of a
text is calculated by averaging the entropy value of each word
conditioned with its previous context. As mentioned by previous
work [17, 24], the machine-generated text is more likely to have a
lower Entropy score.
GLTR [17]. GLTR is developed as a support tool to facilitate the
labeling process of whether a text is machine-generated. In our
evaluation, we follow the suggestion of Guo et al. [18] and consider
the Test-2 features (i.e., the fraction of words that rank within 10,
100, 1,000, and others). Note that one can easily implement other
sets of features in MGTBench.
DetectGPT [24]. Mitchell et al. [24] propose DetectGPT that mea-
sures the change of the model’s log probability function by adding
minor perturbation to the original text. The intuition is that the text
derived from an LLM has a tendency to be in the local optimal of
the model’s log probability function. Therefore, any minor pertur-
bation of model-generated text tends to have a lower log probability
under the model than the original text, while minor perturbation
of human-written text may have a higher or lower log probability
than the original text.
LRR [32]. Su et al. [32] propose Log-Likelihood Log-Rank Ratio
(LRR), which combines Log-Likelihood and Log-Rank as they pro-
vide complementary information for the given text.
NPR [32]. Similar to DetectGPT, Normalized Perturbed Log-Rank
(NPR) also introduces perturbation to the original text. The motiva-
tion for NPR is that both MGTs and HWTs show vulnerability to
minor disturbances, as indicated by a rise in the Log-Rank score fol-
lowing such perturbations. However, this effect is more pronounced
in MGTs, as they exhibit a greater increase in the Log-Rank score
after disturbances, implying a higher NPR (noise-to-perturbation
ratio) score for MGTs compared to HWTs.

Regarding the model-based methods, a classification model is
usually trained using a corpus that contains both HWTs and MGTs.
By doing this, the classification model is expected to have the ca-
pability to identify MGTs from a given corpus. In this paper, we
consider five model-based methods.
OpenAI Detector [30]. The OpenAI Detector is used to detect
GPT2-generated output, whichwas created by fine-tuning a RoBERTa
model using outputs from the largest GPT2 model (i.e., with 1.5B
parameters). This model is capable of predicting whether a given
text was machine-generated or not.
ChatGPTDetector [18].ChatGPTDetector is developed byGuo et
al. [18] to distinguish human-written texts fromChatGPT-generated
texts. Themodel was created by fine-tuning a RoBERTamodel using
the HC3 [18] dataset. The detector is based on the RoBERTa model.
The authors provide two ways to train the RoBERTa model. The
first one only leverages the pure answered text, and the second one
leverages the question-answer text pair to jointly train the model.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

In our evaluation, we consider the first one to be consistent with
other detection methods.
ConDA [9]. Bhattacharjee et al. [9] develop Contrastive Domain
Adaptation (ConDA), which leverages the representation power of
contrastive learning to acquire domain-invariant representations
GPTZero [3].GPTZero is anMGT analyzer tool that uses twomain
measures, i.e., perplexity and burstiness, to determine whether
a text is machine-generated or written by a human.2 GPTZero
provides the publicly accessible API to produce a confidence score
about how likely a text is generated by the machine.
DEMASQ [21].

Kumari et al. [21] propose DEMASQ, an energy-based detection
model featuring optimization techniques inspired by the Doppler
effect to capture the relationship between input text embeddings
and output labels. Additionally, it utilizes explainable AI methods to
create diverse perturbations. We implement DEMASQ by ourselves
as the authors do not open-source the code.
LM Detector. Besides the previous methods, the detector can also
be built by fine-tuning the pre-trained language model (LM) with
an extra classification layer. Here we take the BERT model as an
example to evaluate its efficacy following Ippolito et al. [20].

Compared to previous work [25, 35], our study offers notable
advancements in the field of MGT detection by integrating more
detection methods into our benchmarking framework. Moreover,
we extend the evaluation to more powerful LLMs such as ChatGPT-
turbo and Claude. This broader scope enables us to gain deeper
insights into the performance and robustness of various detection
methods when applied to a wider range of LLMs. By incorporat-
ing these enhancements, our work significantly contributes to the
existing literature and paves the way for further advancements in
MGT detection research.

3 MGTBENCH
In this section, we introduce MGTBench, a modular framework
designed to benchmark MGT detection methods. Currently, we
have provided reference implementations of the 8 metric-based
detection methods and easy-to-use APIs for the 5 model-based
methods we mentioned before.

3.1 Modular Design
MGTBench consists of three different modules, including the input
module, detection module, and evaluation module.
Input Module. In the input module, we provide specific dataset
pre-processing functions for different datasets and our code base is
easy to cope with datasets from HuggingFace, which facilitates the
future developments of different users.
Detection Module. This module implements different metric-
based and model-based detection methods with a standardized
input/output format. Currently, we support 13 different detection
methods.
Evaluation Module. This module is used to evaluate the perfor-
mance of different detection methods. Now, we provide five dif-
ferent evaluation metrics, including accuracy, precision, recall, F1-
score, and AUC, which are the commonly used metrics to evaluate

2https://www.makeuseof.com/gptzero-detect-ai-generated-text/.

Table 1: The prompts we used to obtain MGTs from LLMs.
Following Verma et al. [37], we set 𝐾 to the number of words
in each HWT rounding to the nearest 100 and acquire the
<prompt>/<headline> by querying ChatGPT-turbo.

Dataset Prompt

Essay Write an essay in 𝐾 words to the prompt
<prompt>

WP Write a story in 𝐾 words to the prompt
<prompt>

Reuters Write a news article in 𝐾 words with the follow-
ing headline <headline>

classification performance. We also support sample-level logging
for detailed analysis.

3.2 Using MGTBench
To be best of our knowledge, MGTBench is the most comprehensive
benchmark tool for MGT detection against powerful LLMs. Users
can leverage MGTBench on their own dataset for a comprehensive
risk assessment of potential MGTs in the dataset. On the other
hand, researchers can leverage MGTBench as a tool to evaluate
new MGT detection/generation methods. As MGTBench follows
a modular design, its input and evaluation modules can be easily
re-used by new detection methods. Also, new detection methods
can be easily implemented within the standardized API provided
by MGTBench. Moreover, MGTBench can be integrated with Hug-
gingFace, given the fact that many model-based detection methods
have been published or are willing to publish their models into
HuggingFace, MGTBench can be seamlessly updated to fit the new
model-based detection methods. MGTBench is under continuous
development and we will include more detection methods as well
as analysis tools in the future.

4 EXPERIMENTAL SETTINGS
4.1 Datasets
In this paper, we consider three datasets provided by Verma et
al. [37], namely Essay, WP, and Reuters. Note that for each dataset,
besides the HWTs, it also contains MGTs generated by ChatGPT-
turbo and Claude. And we additionally generate MGTs from other
LLMs as well.
Essay. This dataset has 1,000 samples extracted from essays avail-
able on IvyPanda, encompassing both high school and university-
level essays across various academic disciplines. The authors first
query ChatGPT-turbo to generate the <prompt> corresponding
to the essay. Then, the constructed prompt would be leveraged to
query different LLMs and obtain the generated essays.
WP. This dataset has 1,000 samples that are derived from the subred-
dit r/WritingPrompts where users share creative writing prompts
and craft stories in response to these prompts. Following the con-
structed prompts, we can then query different LLMs to generate
stories.
Reuters. This dataset is derived from the Reuters 50-50 authorship
identification dataset [19], which consists of 1,000 (news) articles

https://www.makeuseof.com/gptzero-detect-ai-generated-text/

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

by 50 journalists (20 articles per journalist). As the article does
not have the headline, the authors first prompt ChatGPT-turbo
to generate a <headline> for each article. We also leverage this
headline to construct the prompt and query LLMs to obtain MGTs.

We show the prompt we used to query LLMs in Table 1. For each
entry in a dataset, we have the human text and six LLM-generated
texts (see Section 2.1 for more details about the six LLMs). We only
keep entries with more than 1 word for human and LLM-generated
texts. Then, we randomly split 80% of the entries as the training set
and the rest as the testing set.

4.2 Tasks
In our evaluation, our primary focus is on the MGT detection task,
which involves detecting whether a given text is generated by a
human or a machine (i.e., LLM). To accomplish this, we establish a
binary classification task for texts generated by humans and each
LLM, such as Human vs. ChatGPT-turbo, Human vs. ChatGLM,
etc. Note that we also consider a more complex task, namely text
attribution (see Section 5.2). This task seeks to pinpoint the precise
model responsible for generating the text. Essentially, when pre-
sented with a text, our goal is to determine whether it is generated
by the human or one of the six LLMs. This task can be viewed as a
seven-category classification scenario.

4.3 Detection Methods
For metric-based methods, we use GPT2-medium as the base model
in our experiments since it can already reach good performance
with limited cost. Given the metrics extracted with the GPT2-
medium, we additionally build a logistic regression model on top
of it to provide concrete predictions. For model-based methods, we
directly use the publicly available pre-trained models from Hug-
gingFace (OpenAI Detector, ChatGPT Detector, and LM Detector)
or GitHub (ConDA). Concretely, for OpenAI Detector, we use the
RoBERTa-base version of it as it usually gives better detection
performance. For ChatGPT Detector, we leverage the provided
RoBERTa-base model of it. For LM Detector, we leverage the dis-
tilled BERT-base model as it has superior performance and modest
expenditure. For ConDA, we leverage the RoBERTa-base model
targeted on ChatGPT.3 Note that for OpenAI Detector, ChatGPT
Detector, and ConDA, the pre-trained models are already optimized
for the MGT detection task (binary classification), therefore, we do
not further fine-tune them unless otherwise mentioned. It is also
worth mentioning that, in the text attribution task, we fine-tune all
detection methods as the number of classes increases from 2 to 7.

4.4 Evaluation Metrics
MGTBench supports various metrics to evaluate performance, in-
cluding accuracy, precision, recall, F1-score, and AUC (area under
the ROC curve). In our evaluation, unless otherwise mentioned, we
use F1-score as the main evaluation metric.

5 EVALUATION
We first present the experiment results on the MGT detection
task. As shown in Table 2, we observe that metric-based methods

3https://github.com/AmritaBh/ConDA-gen-text-detection.

such as Log-Likelihood, Log-Rank, GLTR, and LRR have relatively
good performances on different datasets as well. For instance, Log-
Likelihood reaches 0.970, 0.980, and 0.972 F1-score on Essay, WP,
and Reuters when distinguishing ChatGLM-generated texts from
HWTs. On the other hand, NPR and DetectGPT reach less satisfying
performance. For instance, on WP, to distinguish MGTs generated
by ChatGPT-turbo from HWTs, the F1-score is only 0.352 and 0.608,
respectively. We suspect the reason is that the metric changes less
when the perturbation is conducted on longer texts, which leads to
lower performance.

Regarding other model-based methods, we observe that LM De-
tector and DEMASQ achieve the best performance across different
datasets/LLMs in general. For instance, on Essay, the LM detector
and DEMASQ achieves 0.993 and 0.922 F1-score against ChatGPT-
turbo, respectively. This is expected as the LM detector and DE-
MASQ are trained on the corpus with both HWTs and MGTs, and
the model’s ability to capture the context and coherence informa-
tion greatly aids in differentiating the pattern variations between
these two types of texts. We also observe that the ChatGPT detec-
tor shows better performance in differentiating HWTs from MGTs
when the models are from the GPT family, i.e., ChatGLM, ChatGPT-
turbo, and GPT4All. For instance, on Essay, the F1-score is 0.923,
0.742, and 0.815 for ChatGLM, ChatGPT-turbo, and GPT4All, respec-
tively. We suspect the reason is that the ChatGPT detector is trained
on the corpus with both human answers and ChatGPT-generated
answers, which can better capture the “machine” pattern on the
GPT model family. On the other hand, we find that the OpenAI
Detector’s performance is less satisfying in the detection task (e.g.,
0.751 F1-score on Essay with Dolly-generated texts as MGTs). This
might be credited to the fact that this detector is trained on MGTs
produced by GPT2 while the MGTs produced by larger LLMs such
as ChatGPT-turbo or Claude have higher quality, which makes it
harder to be detected. Regarding ConDA, it is the weakest detec-
tion method. One possible reason is that ConDA is trained with
corpus with shorter length [9], which makes it harder to transfer to
longer texts. We later show that after fine-tuning, ConDA, OpenAI
Detector, and ChatGPT Detector can achieve comparable or even
better performance than LM Detector (see Figure 3). Lastly, we find
that GPTZero, a commercial MGT detection API, reaches good per-
formance except for Dolly on WP and Reuters as well as StableLM
on all datasets. By checking the distribution of the total number
of words (shown in Figure 1), we find that the MGTs have fewer
words in these cases, which leads to lower performance. It is also
mentioned on GPTZero’s website. Note that for GPTZero, we only
sample 1/8 testing data for evaluation, which roughly matches the
monthly word limit for the API subscription starting plan ($49.99).4
Detection Efficiency. We then quantify the time cost of each
detection method on different datasets. Here we consider ChatGPT-
turbo as the LLM for a case study since other LLMs show similar
time costs. As shown in Table 3, we can observe that most of the
detection methods have similar time costs except NPR, DetectGPT,
and GPTZero, which cost significantly more time than the others.
This is because NPR and DetectGPT require multiple rounds of
perturbation to the text to get a good estimation of the metric’s

4https://app.gptzero.me/app/api-subscription.

https://github.com/AmritaBh/ConDA-gen-text-detection
https://app.gptzero.me/app/api-subscription

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

Table 2: The performance (F1-score) of different detection methods. Here OpenAI-D, ChatGPT-D, and LM-D denote the OpenAI
Detector, ChatGPT Detector, and LM Detector. We follow this naming rule in the following tables/figures in this paper. * means
we only sample part of the data (1/8) for testing.

Dataset Method ChatGLM Dolly ChatGPT-turbo GPT4All StableLM Claude

Essay

Log-Likelihood 0.970 0.866 0.968 0.923 0.665 0.834
Rank 0.740 0.737 0.915 0.843 0.667 0.772
Log-Rank 0.983 0.865 0.966 0.923 0.692 0.814
Entropy 0.806 0.683 0.874 0.699 0.566 0.771
GLTR 0.988 0.848 0.954 0.925 0.756 0.806
LRR 0.982 0.810 0.925 0.904 0.748 0.746
NPR 0.956 0.865 0.218 0.927 0.740 0.238
DetectGPT 0.891 0.844 0.227 0.908 0.704 0.236
GPTZero* 0.923 0.880 0.980 0.943 0.486 0.870
DEMASQ 0.988 0.953 0.922 0.954 0.962 0.906
ConDA 0.668 0.069 0.000 0.260 0.663 0.664
OpenAI-D 0.921 0.724 0.353 0.863 0.774 0.009
ChatGPT-D 0.923 0.630 0.742 0.815 0.491 0.057
LM-D 1.000 0.997 0.993 0.997 0.997 0.980

WP

Log-Likelihood 0.980 0.794 0.841 0.934 0.786 0.773
Rank 0.840 0.760 0.797 0.891 0.781 0.709
Log-Rank 0.985 0.807 0.819 0.929 0.832 0.751
Entropy 0.800 0.662 0.770 0.766 0.644 0.731
GLTR 0.983 0.766 0.800 0.935 0.861 0.733
LRR 0.980 0.774 0.728 0.930 0.875 0.656
NPR 0.970 0.801 0.352 0.905 0.764 0.521
DetectGPT 0.812 0.719 0.608 0.808 0.695 0.517
GPTZero* 0.980 0.732 0.980 1.000 0.148 0.818
DEMASQ 0.980 0.930 0.970 0.955 0.922 0.895
ConDA 0.585 0.039 0.075 0.674 0.667 0.000
OpenAI-D 0.980 0.776 0.093 0.948 0.937 0.029
ChatGPT-D 0.880 0.528 0.352 0.795 0.616 0.044
LM-D 0.998 0.950 0.990 0.983 0.966 0.970

Reuters

Log-Likelihood 0.972 0.381 0.926 0.697 0.659 0.798
Rank 0.650 0.413 0.847 0.665 0.635 0.648
Log-Rank 0.990 0.373 0.944 0.735 0.701 0.785
Entropy 0.477 0.553 0.703 0.668 0.620 0.694
GLTR 0.987 0.556 0.946 0.742 0.750 0.772
LRR 0.992 0.590 0.948 0.796 0.766 0.715
NPR 0.950 0.790 0.284 0.843 0.751 0.560
DetectGPT 0.866 0.782 0.270 0.821 0.756 0.558
GPTZero* 0.980 0.485 0.936 0.980 0.611 0.750
DEMASQ 0.990 0.967 0.947 0.990 0.958 0.930
ConDA 0.664 0.137 0.000 0.667 0.000 0.667
OpenAI-D 0.985 0.713 0.954 0.900 0.903 0.000
ChatGPT-D 0.968 0.650 0.931 0.898 0.617 0.019
LM-D 1.000 0.995 0.995 1.000 0.995 0.993

change. Also, GPTZero needs to query the public API, where the
internet latency has to be taken into account.

In general, we consider LM Detector and Log-Rank as better
detection methods as they achieve the best detection performance.
Moreover, their associated time cost is relatively low, making them
comparable to other metric-based detection methods. Note that

later we omit NPR, DetectGPT, and GPTZero as they usually have
less satisfying performance and take much longer time/monetary
costs than the others.

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

100

101

102

103

#
.

W
or

ds

(a) Essay

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

100

101

102

103

#
.

W
or

ds

(b) WP

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

100

101

102

103

#
.

W
or

ds

(c) Reuters

Figure 1: The distribution of #. words for HWTs and MGTs on different datasets.

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(a) ChatGLM

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(b) Dolly

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(c) ChatGPT-turbo

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(d) GPT4All

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(e) StableLM

10 20 50 100 200 500 All
#. Words

0.0

0.2

0.4

0.6

0.8

1.0
F

1-
sc

or
e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(f) Claude

Figure 2: The F1-score of different detection methods under texts with different maximum number of words on Essay.

5.1 Ablation Studies
We now conduct several ablation studies to investigate how differ-
ent factors would affect detection performance.
Detection Performance with Different Text Length.We first
present the distribution of total number of words (#. words) for
HWTs and MGTs on different datasets (shown in Figure 1). We
observe that, although we consider to prompt the LLM with #.
words that are expected to be generated (see Table 1), different
LLMs demonstrate varying degrees of proficiency in matching the
specified word count. For instance, ChatGPT-turbo and Claude ex-
hibit the highest performance, while Dolly and StableLM exhibit
the lowest. We then take a step further to understand how the
number of words in texts would affect the detection performance.

Concretely, we train each detection method with the full-length
texts and test it with the texts that have been truncated to have
maximum𝐾 words, where𝐾 ∈ [10, 20, 50, 100, 200, 500]. The results
on Essay are shown in Figure 2. First, we observe that, in general,
larger𝐾 leads to better detection performance, which is in line with
previous work [12, 30, 37]. For instance, the detection performance
(F1-score) of ChatGLM with Entropy (Figure 2a) increases from
0.150 to 0.809 when 𝐾 increases from 10 to 200. Also, we find that
200 words are generally enough to achieve the (nearly) best per-
formance in most of the cases. For instance, for Claude (Figure 2f),
Log-Likelihood reaches F1-score of 0.800 and 0.834 with 200-word
texts and full-length texts. This discovery provides valuable insights

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0
F

1-
sc

or
e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(a) ChatGLM

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(b) Dolly

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(c) ChatGPT-turbo

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(d) GPT4All

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(e) StableLM

10 20 50 100 All
#. Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

DEMASQ

ConDA

OpenAI-D

ChatGPT-D

LM-D

(f) Claude

Figure 3: The F1-score of different detection methods with different numbers of training samples on Essay.

Table 3: Time cost (seconds) to differentiate texts generated
by ChatGPT or humans. Note that for GPTZero, we scale up
the time with full samples.

Method Essay WP Reuters

Log-Likelihood 63 60 62
Rank 75 70 72
Log-Rank 75 70 73
Entropy 50 47 52
GLTR 88 83 85
LRR 138 130 134
NPR 2307 2257 2391
DetectGPT 2185 2142 2272
GPTZero 1451 1419 1508
DEMASQ 332 339 327
ConDA 16 16 16
OpenAI-D 16 16 16
ChatGPT-D 16 15 15
LM-D 59 59 59

into the selection of HWTs and MGTs for the development of MGT
detection methods.
Fine-tune with Fewer Samples.We then investigate the detec-
tion effectiveness with fewer training samples and the results on
Essay are shown in Figure 3. Note that different from the previous
evaluation, here we also fine-tune ConDA, OpenAI Detector, and
the ChatGPT Detector with those training samples.

We can observe that, in most cases, 10 training samples are
sufficient for metric-based methods to achieve good detection per-
formance. For instance, when the LLM is ChatGLM (Figure 3a),
Log-Likelihood reaches 0.967 F1-score with only 10 training sam-
ples, which is close to the performance with full training data, i.e.,
0.970. On the other hand, for model-based methods, more train-
ing samples can better facilitate the detection performance. For
instance, the F1-score of LM-D increases from 0.121 (with 10 train-
ing samples) to 0.984 (with full training data). This difference is
expected, as metric-based methods primarily need to determine a
threshold to separate metric values, whereas model-based methods
require the optimization of a large number of parameters, typically
benefiting from a larger training dataset.
Transfer Setting. Given the necessity of the training procedure
for most detection methods, we aim to investigate the efficacy of
transferring these methods to different datasets and LLMs. Note
that here we also fine-tune ConDA, OpenAI Detector, and ChatGPT
Detector using the same training data for a fair comparison.

We first investigate whether the detection methods trained on
one dataset can be transferred to another dataset and the perfor-
mance is shown in Figure 4. We can observe that detection methods
trained on different datasets may have different transferability to
the other datasets. Concretely, WP has the highest transferabil-
ity while Reuters has the lowest. For instance, for Log-Likelihood
trained on WP, the test F1-score is 0.907 and 0.779 on Essay and
Reuters. However, for Log-Likelihood trained on Reuters, the test
F1-score is 0.938 and 0.335 on Essay and WP. One possible reason
is that Reuters only contains news articles from 50 authors, repre-
senting a relatively narrow domain. In contrast, WP covers a wide

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.968 0.687 0.909

0.907 0.841 0.779

0.938 0.335 0.926

(a) Log-Likelihood

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.966 0.683 0.907

0.907 0.819 0.777

0.924 0.321 0.944

(b) Log-Rank

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.874 0.589 0.735

0.817 0.770 0.685

0.786 0.218 0.703

(c) Entropy

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.954 0.725 0.858

0.911 0.800 0.778

0.829 0.195 0.946

(d) GLTR

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.925 0.591 0.906

0.880 0.728 0.790

0.688 0.103 0.948

(e) LRR

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.922 0.823 0.698

0.719 0.970 0.721

0.228 0.819 0.947

(f) DEMASQ

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.998 0.662 0.948

0.703 0.995 0.699

0.668 0.686 0.998

(g) ConDA

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.966 0.931 0.911

0.818 0.973 0.925

0.708 0.871 0.968

(h) OpenAI-D

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.946 0.656 0.830

0.662 0.888 0.771

0.758 0.341 0.945

(i) ChatGPT-D

Essay WP Reuters
Test Dataset

E
ss

ay
W

P
R

eu
te

rsT
ra

in
D

at
as

et

0.993 0.983 0.849

0.763 0.990 0.906

0.672 0.966 0.995

(j) LM-D

Figure 4: The F1-score of different detection methods when the training dataset and the testing dataset are different. Here The
MGTs are generated by ChatGPT-turbo.

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.970 0.636 0.963 0.845 0.480 0.554

0.934 0.866 0.926 0.898 0.671 0.840

0.983 0.746 0.968 0.910 0.542 0.669

0.973 0.843 0.962 0.923 0.657 0.776

0.847 0.801 0.832 0.823 0.665 0.807

0.941 0.866 0.926 0.902 0.671 0.834

(a) Log-Likelihood

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.983 0.612 0.952 0.858 0.534 0.521

0.936 0.865 0.926 0.889 0.721 0.816

0.985 0.783 0.966 0.925 0.617 0.671

0.973 0.830 0.959 0.923 0.672 0.749

0.856 0.819 0.847 0.829 0.692 0.802

0.934 0.863 0.924 0.889 0.721 0.814

(b) Log-Rank

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.806 0.651 0.882 0.678 0.502 0.773

0.792 0.683 0.854 0.704 0.529 0.772

0.757 0.534 0.874 0.558 0.426 0.726

0.790 0.685 0.860 0.699 0.531 0.763

0.761 0.712 0.792 0.724 0.566 0.760

0.802 0.655 0.880 0.680 0.502 0.771

(c) Entropy

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.988 0.570 0.908 0.826 0.485 0.432

0.936 0.848 0.926 0.894 0.733 0.809

0.975 0.805 0.954 0.919 0.662 0.683

0.975 0.828 0.949 0.925 0.699 0.751

0.898 0.832 0.889 0.870 0.756 0.795

0.932 0.849 0.922 0.895 0.726 0.806

(d) GLTR

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.982 0.400 0.667 0.750 0.518 0.188

0.932 0.810 0.910 0.879 0.748 0.748

0.966 0.743 0.925 0.905 0.708 0.646

0.968 0.731 0.922 0.904 0.704 0.637

0.932 0.810 0.910 0.879 0.748 0.745

0.917 0.821 0.897 0.867 0.746 0.746

(e) LRR

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.988 0.819 0.669 0.872 0.862 0.667

0.982 0.953 0.673 0.987 0.985 0.665

0.839 0.755 0.922 0.862 0.705 0.807

0.992 0.956 0.718 0.954 0.952 0.684

0.980 0.862 0.662 0.867 0.962 0.667

0.694 0.693 0.800 0.766 0.721 0.906

(f) DEMASQ

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.993 0.916 0.010 0.984 0.963 0.000

0.995 0.995 0.029 0.997 0.994 0.020

0.910 0.512 0.998 0.856 0.164 0.861

1.000 1.000 0.010 1.000 0.997 0.030

0.993 0.981 0.084 0.985 0.991 0.000

0.830 0.625 0.890 0.876 0.154 0.998

(g) ConDA

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.993 0.959 0.901 0.995 0.934 0.276

0.993 0.979 0.955 1.000 0.988 0.803

0.975 0.956 0.966 0.965 0.876 0.941

0.988 0.973 0.978 0.977 0.973 0.724

0.995 0.973 0.790 0.997 0.994 0.228

0.888 0.599 0.967 0.746 0.444 0.998

(h) OpenAI-D

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

0.992 0.676 0.667 0.901 0.580 0.020

0.911 0.893 0.822 0.892 0.734 0.588

0.964 0.785 0.946 0.939 0.559 0.612

0.988 0.951 0.651 0.980 0.846 0.317

0.975 0.915 0.449 0.967 0.968 0.116

0.946 0.907 0.951 0.947 0.797 0.919

(i) ChatGPT-D

ChatG
LM

Dolly

ChatG
PT-tu

rbo

GPT4All

StableLM
Claude

Test LLM

Chat
GLM

Doll
y

Chat
GPT-tu

rb
o

GPT4A
ll

Sta
bleL

M

Clau
de

T
ra

in
L

L
M

1.000 0.800 0.000 0.846 0.783 0.000

1.000 0.997 0.000 1.000 0.994 0.000

0.966 0.881 0.993 0.957 0.164 0.964

1.000 0.997 0.000 0.997 0.963 0.000

0.997 0.997 0.000 1.000 0.997 0.000

0.854 0.858 0.967 0.876 0.221 0.980

(j) LM-D

Figure 5: The F1-score of different detection methods on Essay when the train LLM and the test LLM are different.

range of topics, providing a more diverse dataset. This diversity
can better guide the detection method to acquire general features
that facilitate the differentiation between MGTs and HWTs.

Also, we find that compared to the metric-based methods, model-
based methods like OpenAI Detector and LMDetector are relatively
robust across different datasets. For example, given the LM Detec-
tor trained on Essay (Figure 4j), the test F1-score only drops 0.010
and 0.144 on WP and Reuters. However, for Entropy trained on
Essay (Figure 4c), the test F1-score drops 0.285 and 0.139 on WP

and Reuters. This is because metric-based detection methods usu-
ally rely on one specific metric to perform the detection, which
might not be robust enough for dataset distribution shifts. We take
Log-Likelihood as a case study and visualize its distributions for
HWTs and MGTs (generated by ChatGPT-turbo) across different
datasets in Figure 6a. We can observe that for different datasets,
the best threshold to separate HWTs and MGTs is usually different,
making it hard to transfer. On the contrary, model-based methods

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

−5 −4 −3 −2 −1
Log-Likelihood

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Essay, Human

Essay, ChatGPT-turbo

WP, Human

WP, ChatGPT-turbo

Reuters, Human

Reuters, ChatGPT-turbo

(a) Different Datasets

−6 −5 −4 −3 −2 −1 0
Log-Likelihood

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Human

ChatGLM

Dolly

ChatGPT-turbo

GPT4All

StableLM

Claude

(b) Different LLMs

Figure 6: The log-likelihood distributions of HWTs and
MGTs. Note that (b) is derived from the Essay dataset.

Essay WP Reuters
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

Log-Likelihood

Rank

Log-Rank

Entropy

GLTR

LRR

ConDA

OpenAI-D

ChatGPT-D

LM-D

Figure 7: The F1-score of different detection methods on the
text attribution task.

can extract various features related to both LLM and human pat-
terns. This feature extraction process could enhance the detection
performance and make it more robust to the dataset distribution
shift.

We then investigate whether the detection methods trained on
one LLM can be transferred to the other LLMs as well. The perfor-
mance on Essay is summarized in Figure 5. Other datasets show
similar trends. We first observe that the DEMASQ in general has
better performance when the training and testing LLMs are dif-
ferent (Figure 5f). For instance, DEMASQ trained to detect MGTs
generated by Dolly can also detect MGTs generated by GPT4All
with 0.985 F1-score, which even increase 0.003. Another interesting
observation is that, in general, compared to model-based methods,
metric-based methods are more robust against LLM shifts, i.e., the
variance across different LLMs is smaller.

To delve deeper into the underlying reasons, we visualize the
log-likelihood distributions for HWTs and MGTs (generated by
different LLMs) on Essay (shown in Figure 6b). We can observe that,
although different LLMs have varied log-likelihood distributions,
they have significantly higher log-likelihood values than HWTs,
and -3.0 log-likelihood is a good split point to separate HWTs and
MGTs from different LLMs. This implies that MGTs generated by
diverse LLMs differ from HWTs when evaluated using carefully
designed metrics such as log-likelihood.
Larger Dataset. We perform additional experiments on a larger
dataset (HC3 [18]) which consists of 24,322 records from humans
and ChatGPT. The detection performance is summarized in Table 4
in Appendix. Note that here we ignore Rank as Log-Rank performs
significantly better than Rank in most of the cases. We observe
that most detection methods still have good performance on HC3,
e.g., LM Detector achieves 0.987 F1-score. An exception is ConDA
where the detection F1-score is only 0.032. One possible reason is
that the texts in HC3 have shorter average length, which brings
extra difficulty in the detection process.

5.2 Text Attribution
Previous evaluations have shown the remarkable performance of
MGT detection, especially with the model-based methods. We now
explore a more difficult task, i.e., text attribution. Here the goal
is to examine whether human-generated texts or those generated
by different LLMs can be accurately attributed to their respective
source models. We extend previous MGT detection methods (except
DEMASQ as it is designed for binary classification) to the text
attribution task by increasing the number of classes from 2 to 7 in
the classification layer and further fine-tuning the model.

The performance of text attribution with different methods is
summarized in Figure 7. We find that, compared to the MGT de-
tection task, metric-based detection methods have less satisfying
performance on the text attribution task. For instance, on Essay,
Log-Likelihood reaches 0.970 F1-score in distinguishing ChatGLM-
generated texts from HWTs (Table 2). However, the F1-score of
Log-Likelihood is only 0.374 in the text attribution task (Figure 7).
This is expected as the text attribution task not only needs to distin-
guish whether the text is generated by humans or machines but also
requires the precise prediction of the source model. However, the
specific characteristics among texts generated by different LLMs
cannot be captured precisely by the metric-based methods.

We also observe that model-based methods have significantly
better performance than metric-based methods. For instance, on
WP, ConDA achieves a 0.926 F1-score while the F1-score is only

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 2 5 10 20
Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

ConDA

OpenAI-D

ChatGPT-D

LM-D

(a) Essay

1 2 5 10 20
Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

ConDA

OpenAI-D

ChatGPT-D

LM-D

(b) WP

1 2 5 10 20
Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

ConDA

OpenAI-D

ChatGPT-D

LM-D

(c) Reuters

Figure 8: The F1-score of text attribution performance with different training epochs.

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.667 0.000 0.013 0.000 0.000 0.248 0.072

0.000 0.791 0.026 0.124 0.052 0.000 0.007

0.118 0.033 0.157 0.124 0.190 0.183 0.196

0.000 0.255 0.052 0.444 0.235 0.007 0.007

0.013 0.203 0.190 0.196 0.248 0.020 0.131

0.425 0.013 0.098 0.072 0.092 0.170 0.131

0.039 0.026 0.118 0.085 0.150 0.314 0.268

(a) Log-Likelihood

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.699 0.000 0.013 0.000 0.000 0.242 0.046

0.000 0.856 0.007 0.098 0.039 0.000 0.000

0.144 0.020 0.222 0.137 0.163 0.170 0.144

0.000 0.183 0.072 0.503 0.216 0.007 0.020

0.020 0.196 0.196 0.255 0.268 0.013 0.052

0.399 0.013 0.092 0.098 0.111 0.163 0.124

0.092 0.013 0.150 0.078 0.144 0.281 0.242

(b) Log-Rank

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.876 0.000 0.020 0.000 0.000 0.072 0.033

0.000 0.948 0.007 0.033 0.013 0.000 0.000

0.229 0.092 0.085 0.157 0.144 0.190 0.105

0.013 0.281 0.052 0.425 0.176 0.020 0.033

0.026 0.314 0.039 0.131 0.301 0.124 0.065

0.392 0.072 0.046 0.078 0.131 0.235 0.046

0.288 0.026 0.144 0.137 0.046 0.176 0.183

(c) GLTR

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.895 0.000 0.007 0.000 0.000 0.026 0.072

0.000 0.889 0.000 0.013 0.098 0.000 0.000

0.288 0.013 0.157 0.144 0.163 0.026 0.209

0.013 0.052 0.137 0.275 0.431 0.013 0.078

0.026 0.163 0.111 0.157 0.451 0.039 0.052

0.386 0.046 0.078 0.118 0.222 0.033 0.118

0.340 0.000 0.183 0.092 0.065 0.039 0.281

(d) LRR

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.967 0.000 0.000 0.020 0.000 0.013 0.000

0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.020 0.654 0.000 0.275 0.052 0.000

0.000 0.000 0.000 0.993 0.007 0.000 0.000

0.000 0.013 0.000 0.000 0.980 0.007 0.000

0.000 0.000 0.013 0.000 0.007 0.980 0.000

0.000 0.000 0.000 0.000 0.007 0.000 0.993

(e) ConDA

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.928 0.000 0.007 0.046 0.000 0.007 0.013

0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.052 0.503 0.000 0.392 0.052 0.000

0.000 0.000 0.000 0.987 0.013 0.000 0.000

0.000 0.163 0.000 0.000 0.830 0.007 0.000

0.000 0.020 0.000 0.000 0.033 0.948 0.000

0.000 0.000 0.000 0.052 0.007 0.000 0.941

(f) OpenAI-D

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.935 0.000 0.007 0.039 0.000 0.013 0.007

0.000 0.961 0.000 0.000 0.039 0.000 0.000

0.000 0.085 0.412 0.000 0.458 0.046 0.000

0.007 0.000 0.013 0.961 0.000 0.013 0.007

0.000 0.085 0.026 0.000 0.889 0.000 0.000

0.000 0.000 0.150 0.000 0.078 0.771 0.000

0.092 0.000 0.000 0.046 0.000 0.000 0.863

(g) ChatGPT-D

Human

ChatGLM
Dolly

ChatGPT-tu
rbo

GPT4All

StableLM
Claude

Prediction

H
um

an

C
ha

tG
LM

D
ol

ly

C
ha

tG
P

T
-t

ur
bo

G
P

T
4A

ll

St
ab

le
LM

C
la

ud
e

T
ru

e

0.967 0.000 0.000 0.007 0.000 0.013 0.013

0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.052 0.641 0.000 0.281 0.026 0.000

0.000 0.000 0.000 0.993 0.007 0.000 0.000

0.000 0.052 0.026 0.000 0.915 0.007 0.000

0.000 0.007 0.039 0.000 0.007 0.948 0.000

0.039 0.000 0.000 0.150 0.000 0.007 0.804

(h) LM-D

Figure 9: The normalized confusion matrix of text attribution with different methods on Essay. Note that the values in the
diagonal represent the class-wise accuracy. The first row presents 4 (best-performing) metric-based methods. The second row
shows 4 model-based methods.

0.361, 0.386, and 0.378 for Log-Rank, GLTR, and LRR, respectively.
We take log-likelihood as an example (Figure 6b), the log-likelihood
distributions for MGTs from different LLMs are hard to separate
since they are overlapped. Conversely, model-based methods can
better capture the semantic and syntactic relationships between
words and phrases, which greatly improves the attribution perfor-
mance on different LLMs.
Training Epochs. We then investigate how the #. training epochs
affects the text attribution performance. Note that here we only
consider the model-based methods as they have significantly better
performance than the metric-based methods. The results are shown
in Figure 8.

We find that the performance keeps improving when the training
epoch increases from 1 to 5, but plateaus from 5 to 20. For instance,
on WP, the F1-score of ChatGPT Detector increases from 0.444

to 0.760 when the training epoch increases from 1 to 5, while the
F1-score is 0.836 with 20 epochs. Therefore, we stop the training
after 20 epochs as the performance is satisfying and the training
cost is reasonable.
Class-Wise Performance. To better investigate the detection per-
formance on different classes, we visualize the normalized confu-
sion matrix of different detection methods in Figure 9. Note that
here we only present the results on Essay as other datasets share
similar trends.

We can see that, although metric-based methods have acceptable
performance in identifying HWTs and MGTs generated by Chat-
GLM, the performance on attributing MGTs from other LLMs is
largely limited. Take LRR as an example (see Figure 9d), the pre-
diction accuracy of Human and ChatGLM is 0.895 and 0.889, while
the prediction accuracy of Dolly, ChatGPT-turbo, and Claude is

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

only 0.157, 0.275, and 0.281, respectively. This is expected due to
potential overlap in the distribution of the metric among various
LLMs, which introduces extra challenges in attribution.

On the other hand, model-based methods have almost perfect
performance in identifying HWTs (over 0.928 accuracy), and better
performance in attributing the source model of MGTs. For instance,
ConDA achieves 0.993, 0.980, and 0.0.993 accuracy in attributing
texts generated by ChatGPT-turbo, GP4All, and Claude, respectively.
This suggests that model-based methods are more suitable for the
text attribution task, as they excel in capturing context, coherence,
and long-range dependencies.

Broadly speaking, our findings suggest that the model-based
methods excel in the text attribution task. However, they do exhibit
challenges in accurately classifyingMGTswithin a specific category,
e.g., Dolly. This underscores the necessity for the development of
more advanced and effective text attribution techniques.

5.3 Adversarial Attacks
Our previous evaluation demonstrates the effectiveness of MGT
detection methods. We then take a step further to evaluate whether
those methods are robust against adversarial attacks. Concretely,
we consider three different attack strategies:

• Paraphrasing. This attack replaces each sentence with its
paraphrase using a paraphrasing model.

• Random Spacing. This attack randomly inserts spaces into
the given texts.

• Adversarial Perturbation. This attack optimizes perturba-
tions to deceive a target detector.

we evaluate the attack performance on the MGT detection task and
we consider the fine-tuned version of all model-based methods. For
paraphrasing, we consider ChatGPT Paraphraser5 as the paraphras-
ing model. As to random spacing, we consider inserting space in
each position of a text with 1% probability. Regarding adversarial
perturbation, we consider the attack proposed by Ren et al. [29]
and leverage the TextAttack6 library to implement the attack. We
consider the LM Detector as the target detector for adversarial per-
turbation. Note that the attack only perturbs MGTs by applying
one attack strategy. We do not further perturb HWTs as such texts
may already contain misspellings, extra spaces, grammar mistakes,
etc.

We evaluate the effectiveness of the attack by measuring the
F1-score degradation after applying the attack. The results are sum-
marized in Table 6 in Appendix. We observe that, in general, adver-
sarial perturbation is the most effective strategy. For instance, on
Essay with ChatGPT-turbo, the adversarial perturbation degrades
0.97 F1-score for LM Detector. Also, this perturbation can transfer
to other detection methods as well, e.g., the F1-score degradation
is 0.84, 0.54, and 0.70 for OpenAI Detector, ConDA, and LRR on
Essay with ChatGPT-turbo. Another observation is that paraphras-
ing and random spacing are more effective against metric-based
methods than model-based methods. For example, on Reuters with
Claude, paraphrasing and random spacing degrade the F1-score
of Log-Likelihood by 0.44 and 0.77, while only 0.05 and 0.00 for
OpenAI-D. This could be attributed to the fact that paraphrasing

5https://huggingface.co/datasets/humarin/chatgpt-paraphrases.
6https://github.com/QData/TextAttack/.

or random spacing alters word distribution, potentially influencing
the metrics calculated by metric-based methods. However, since
these methods do not significantly change the semantic meaning,
their effect on model-based methods is comparatively lower.

Additionally, we consider another paraphrasing attack targeting
on the HWTs. Concretely, we perform three perturbations on the
HWTs by asking ChatGPT to “Paraphrase”, “Polish”, or “Rewrite”
the HWTs. The results are summarized in Table 5 in Appendix.
We observe that compared to metric-based methods, model-based
methods can better adapt to the ChatGPT paraphrasing attacks. For
example, OpenAI Detector achieves 0.946 F1-score when detect-
ing the texts paraphrased by ChatGPT, while Log-Likelihood only
reaches 0.374. We also find that fine-tuning with the paraphrased
texts can mitigate the threat, e.g., on Essay, the F1-score for Log-
Likelihood increases from 0.367 to 0.783 when fine-tuned with the
texts by “Polish” perturbations.

Overall, our findings indicate that MGT detection methods are
vulnerable to potential adversarial attacks. This prompts the need
for developing more robust detection methods. Possible directions
could be combining input filtering, data augmentation, and adver-
sarial training into existing detection methods.

6 CONCLUSION
In this paper, we perform the first systematic quantification of ex-
isting MGT detection methods under the representative powerful
LLMs. Specifically, we consider 8 metric-based and 5 model-based
detection methods. Our analysis reveals that the LM Detector con-
sistently excels across various datasets. Additionally, our ablation
studies indicate a shortcoming of current methods in accurately
distinguishing MGTs with a limited number of words. Interest-
ingly, most detection methods demonstrate the ability to achieve
satisfactory performance with considerably fewer training samples.
Moreover, we observe that metric-based methods exhibit better
adaptability to different LLMs, whereas model-based methods show
superior flexibility in transitioning across diverse datasets.

We also explore the feasibility of applying existing MGT de-
tection methods to text attribution, a notably more complex task.
Our findings indicate that model-based methods significantly out-
perform their metric-based counterparts. This effectiveness is at-
tributed to the model-based approaches’ proficiency in capturing
semantic and syntactic nuances within texts, whereas metric-based
methods, dependent mainly on specific metrics, struggle to differ-
entiate between source LLMs in the text attribution task.

Further, we assess the robustness of MGT detection methods by
introducing three different adversarial attacks, namely paraphras-
ing, random spacing, and adversarial perturbation. Our evaluation
uncovers a pronounced vulnerability across various detection meth-
ods to these attacks. This assessment highlights the need to develop
more robust MGT detection methods. We also discuss the limita-
tions and implications of our work in Appendix (see Section A.1).

To facilitate research in this domain, we integrate the detection
methods as well as datasets into a modular-designed framework
named MGTBench. We envision that MGTBench will serve as a
benchmark tool to expedite future research endeavors in enhancing
MGT detection methodologies and refining the training processes
of LLMs.

https://huggingface.co/datasets/humarin/chatgpt-paraphrases
https://github.com/QData/TextAttack/

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

REFERENCES
[1] ChatGLM. https://github.com/THUDM/ChatGLM-6B.
[2] Dolly. https://github.com/databrickslabs/dolly.
[3] GPTZero. https://gptzero.me/.
[4] StableLM. https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b.
[5] ChatGPT. https://chat.openai.com/chat.
[6] Claude. https://claude.ai.
[7] Yuvanesh Anand, Zach Nussbaum, Brandon Duderstadt, Benjamin Schmidt, and

Andriy Mulyar. Gpt4all: Training an assistant-style chatbot with large scale data
distillation from gpt-3.5-turbo. https://github.com/nomic-ai/gpt4all, 2023.

[8] Sameer Badaskar, Sachin Agarwal, and Shilpa Arora. Identifying Real or Fake
Articles: Towards better Language Modeling. In International Joint Conference on
Natural Language Processing (IJCNLP), pages 817–822. ACL, 2008.

[9] Amrita Bhattacharjee, Tharindu Kumarage, RahaMoraffah, and Huan Liu. Conda:
Contrastive domain adaptation for ai-generated text detection. In Annual Meeting
of the Association for Computational Linguistics and International Joint Conference
on Natural Language Processing (ACL/IJCNLP), pages 598–610. ACL, 2023.

[10] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,
USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben
Wang, and Samuel Weinbach. Gpt-neox-20b: An open-source autoregressive
language model. CoRR abs/2204.06745, 2022.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In
Annual Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2020.

[12] Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, Bang An, Dinesh
Manocha, and Furong Huang. On the Possibilities of AI-Generated Text De-
tection. CoRR abs/2304.04736, 2023.

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with
Pathways. CoRR abs/2204.02311, 2022.

[14] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep Reinforcement Learning from Human Preferences. In Annual
Conference on Neural Information Processing Systems (NIPS), pages 4299–4307.
NIPS, 2017.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pages 4171–4186. ACL,
2019.

[16] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. GLM: General Language Model Pretraining with Autoregressive Blank
Infilling. In Annual Meeting of the Association for Computational Linguistics (ACL),
pages 320–335. ACL, 2022.

[17] Sebastian Gehrmann, Hendrik Strobelt, and Alexander M. Rush. GLTR: Statis-
tical Detection and Visualization of Generated Text. In Annual Meeting of the
Association for Computational Linguistics (ACL), pages 111–116. ACL, 2019.

[18] Biyang Guo, Xin Zhang, ZiyuanWang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jian-
wei Yue, and YupengWu. How Close is ChatGPT to Human Experts? Comparison
Corpus, Evaluation, and Detection. CoRR abs/2301.07597, 2023.

[19] John Houvardas and Efstathios Stamatatos. N-Gram Feature Selection for Au-
thorship Identification. In Artificial Intelligence: Methodology, Systems, and Appli-
cations (AIMSA), pages 77–86. Springer, 2006.

[20] Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck.
Automatic Detection of Generated Text is Easiest when Humans are Fooled. In
Annual Meeting of the Association for Computational Linguistics (ACL), pages
1808–1822. ACL, 2020.

[21] Kavita Kumari, Alessandro Pegoraro, Hossein Fereidooni, and Ahmad-Reza
Sadeghi. DEMASQ: Unmasking the ChatGPT Wordsmith. In Network and

Distributed System Security Symposium (NDSS). Internet Society, 2024.
[22] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How

Models Mimic Human Falsehoods. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 3214–3252. ACL, 2022.

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. CoRR abs/1907.11692, 2019.

[24] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and
Chelsea Finn. DetectGPT: Zero-Shot Machine-Generated Text Detection using
Probability Curvature. CoRR abs/2301.11305, 2023.

[25] Jiameng Pu, Zain Sarwar, Sifat Muhammad Abdullah, Abdullah Rehman, Yoonjin
Kim, Parantapa Bhattacharya, Mobin Javed, and Bimal Viswanath. Deepfake
Text Detection: Limitations and Opportunities. In IEEE Symposium on Security
and Privacy (S&P). IEEE, 2023.

[26] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training. 2016.

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. OpenAI blog,
2019.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Ma-
chine Learning Research, 2020.

[29] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating Natural
Language Adversarial Examples through Probability Weighted Word Saliency.
In Annual Meeting of the Association for Computational Linguistics (ACL), pages
1085–1097. ACL, 2019.

[30] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss,
Jeff Wu, Alec Radford, and Jasmine Wang. Release Strategies and the Social
Impacts of Language Models. CoRR abs/1908.09203, 2019.

[31] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize
from human feedback. CoRR abs/2009.01325, 2020.

[32] Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. DetectLLM: Leveraging
Log Rank Information for Zero-Shot Detection of Machine-Generated Text. CoRR
abs/2306.05540, 2023.

[33] Teo Susnjak. ChatGPT: The End of Online Exam Integrity? CoRR abs/2212.09292,
2022.

[34] Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. Authorship Attribution for
Neural Text Generation. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8384–8395. ACL, 2020.

[35] Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. TURING-
BENCH: A Benchmark Environment for Turing Test in the Age of Neural Text
Generation. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 2001–2016. ACL, 2021.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Annual Conference on Neural Information Processing Systems (NIPS),
pages 5998–6008. NIPS, 2017.

[37] Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting
Text Ghostwritten by Large Language Models. CoRR abs/2305.15047, 2023.

[38] Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato,
Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac
Kenton, Sasha Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba
Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks, William S. Isaac, Sean
Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social risks of harm
from Language Models. CoRR abs/2112.04359, 2021.

[39] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi,
Franziska Roesner, and Yejin Choi. Defending Against Neural Fake News. In
Annual Conference on Neural Information Processing Systems (NeurIPS), pages
9051–9062. NeurIPS, 2019.

A APPENDIX
A.1 Limitations and Discussions
Choice of LLM/Methods/Datasets. In our current study, we have
concentrated on 6 representative LLMs and 13 detection methods
on 3 benchmarking datasets. We also investigate the detection per-
formance with larger models such as Llama2-7b and Vicuna-7b, and
the detection F1-score with LM-D is over 0.970 on three datasets,
which demonstrates the efficacy of those detection methods on
larger models. Regarding methods, our implemented methods are
mainly based on pre-defined metrics (metric-based) or pre-trained

https://github.com/THUDM/ChatGLM-6B
https://github.com/databrickslabs/dolly
https://gptzero.me/
https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b
https://chat.openai.com/chat
https://claude.ai
https://github.com/nomic-ai/gpt4all

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, & Yang Zhang

Table 4: The performance (F1-score) of different detection
methods on the HC3 dataset.

Method F1-score Method F1-score

Log-Likelihood 0.952 DetectGPT 0.806
Log-Rank 0.964 DEMASQ 0.959
Entropy 0.893 ConDA 0.032
GLTR 0.968 OpenAI-D 0.918
LRR 0.963 ChatGPT-D 0.893
NPR 0.848 LM-D 0.987

Table 5: The performance (F1-score) of different detec-
tion methods under different paraphrase strategies by
ChatGPT-turbo. Concretely, we ask ChatGPT to para-
phrase/polish/rewrite the HWT as MGT. The value in the
parenthesis denotes the performance when training with
these perturbed data.

Dataset Method Paraphrase Polish Rewrite

Essay

Log-Likelihood 0.374 (0.781) 0.367 (0.783) 0.469 (0.801)
Rank 0.665 (0.718) 0.611 (0.726) 0.644 (0.732)
Log-Rank 0.403 (0.760) 0.397 (0.748) 0.462 (0.767)
Entropy 0.459 (0.710) 0.524 (0.710) 0.475 (0.703)
GLTR 0.471 (0.737) 0.415 (0.717) 0.519 (0.753)
LRR 0.360 (0.642) 0.335 (0.618) 0.385 (0.665)
DEMASQ 0.736 (0.836) 0.692 (0.584) 0.741 (0.743)
ConDA 0.859 (0.980) 0.810 (0.987) 0.895 (0.968)
OpenAI-D 0.965 (0.959) 0.802 (0.888) 0.947 (0.973)
ChatGPT-D 0.946 (0.926) 0.880 (0.903) 0.933 (0.900)
LM-D 0.917 (0.969) 0.498 (0.959) 0.884 (0.980)

WP

Log-Likelihood 0.537 (0.650) 0.540 (0.647) 0.560 (0.635)
Rank 0.538 (0.611) 0.456 (0.582) 0.522 (0.622)
Log-Rank 0.506 (0.618) 0.518 (0.629) 0.540 (0.596)
Entropy 0.553 (0.622) 0.540 (0.594) 0.579 (0.642)
GLTR 0.551 (0.643) 0.532 (0.652) 0.567 (0.639)
LRR 0.431 (0.500) 0.381 (0.479) 0.401 (0.518)
DEMASQ 0.710 (0.842) 0.714 (0.811) 0.728 (0.833)
ConDA 0.705 (0.949) 0.628 (0.927) 0.763 (0.974)
OpenAI-D 0.841 (0.955) 0.731 (0.872) 0.846 (0.921)
ChatGPT-D 0.796 (0.820) 0.634 (0.694) 0.762 (0.713)
LM-D 0.621 (0.931) 0.526 (0.883) 0.623 (0.927)

Reuters

Log-Likelihood 0.083 (0.499) 0.073 (0.554) 0.073 (0.508)
Rank 0.515 (0.593) 0.445 (0.600) 0.441 (0.577)
Log-Rank 0.086 (0.517) 0.029 (0.515) 0.038 (0.494)
Entropy 0.343 (0.557) 0.435 (0.536) 0.346 (0.524)
GLTR 0.067 (0.576) 0.029 (0.563) 0.038 (0.547)
LRR 0.095 (0.491) 0.000 (0.542) 0.039 (0.410)
DEMASQ 0.807 (0.954) 0.693 (0.821) 0.756 (0.900)
ConDA 0.997 (1.000) 0.985 (0.997) 0.997 (1.000)
OpenAI-D 0.940 (0.983) 0.792 (0.995) 0.929 (1.000)
ChatGPT-D 0.908 (0.992) 0.874 (0.952) 0.919 (0.968)
LM-D 0.957 (1.000) 0.944 (0.966) 0.955 (1.000)

LMs (model-based). Nevertheless, as LLMs continue to advance,

we recognize the potential of incorporating novel approaches such
as prompt tuning and in-context learning into MGTBench as well.
These methodologies have demonstrated remarkable efficacy and
efficiency in adapting to new tasks, suggesting a valuable direc-
tion for future exploration and integration within our framework.
Our modular design of MGTBench is a significant strength, en-
abling seamless scalability and adaptability. This flexibility allows
for the incorporation of an array of new detection methods and
LLMs as they emerge, ensuring that MGTBench remains at the
forefront of developments in this rapidly evolving field. Regarding
the datasets, our current datasets cover aspects ranging from news
articles (Reuters) to creative prompts (WP). We acknowledge that
there are also other domains of datasets with varied topics, word
counts, and even languages. Expanding our datasets to encompass
this diversity would undoubtedly enrich the development of MGT
detection methods.
Data Overlapping. It is also important to ensure that the (labeled)
test data have not been observed by the model during training.
Regarding metric-based methods, we leverage GPT2-medium as
the base model, which does not use labeled data for pre-training.
Regarding model-based methods, for ConDA, it’s pre-trained using
the TuringBench dataset. For OpenAI Detector, it uses 250k records
from the WebText dataset and GPT2-generated texts. Regarding
ChatGPT Detector, it uses the HC3 dataset. Regarding LM Detec-
tor, we use the pre-trained BERT model and fine-tune it with our
training dataset. For DEMASQ, we train the model with our train-
ing dataset. We check those datasets via python scripts and find
no overlap with our testing data. Regarding GPTZero, we are not
aware of its training dataset as it only provides API. Therefore, the
performance of all methods except GPTZero does not suffer from
data snooping.
Security Implication. Designing and benchmarking MGT detec-
tion methods has important security implications in the following
aspects. First, detecting MGT effectively can stifle the spread of
automated misinformation campaigns, which can be used to ma-
nipulate public sentiment, sway elections, or incite unrest. Second,
Phishing emails or scam messages can be tailored using generative
AI. A robust MGT detection system can help in identifying and
blocking such attempts, safeguarding individuals and institutions
from potential financial losses. Also, for sectors like journalism,
academia, and legal processes, the authenticity of information is
paramount MGT detection ensures the integrity of content in these
fields, thereby preserving trust. Moreover, as AI systems become
more integral in various applications, adversarial attacks, where
AI-generated content is used to fool other AI systems, will become
more prevalent. An MGT detection framework can act as a first
line of defense against such attacks. Another implication is that as
users become more aware of AI’s capabilities, there’s a growing
skepticism towards digital content. Effective MGT detection can
alleviate these concerns, ensuring users can trust the platforms
they engage with.

MGTBench: Benchmarking Machine-Generated Text Detection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 6: The performance degradation (F1-score) caused by the three attack strategies. Each cell contains three values. The
first, second, and third values represent performance degradation caused by paraphrasing, random spacing, and adversarial
perturbation, respectively. The best strategy in each cell is highlighted in bold. Note that we round the value to two decimal
places to ease the reading process.

Dataset Method ChatGLM Dolly ChatGPT-turbo GPT4All StableLM Claude

Essay

Log-Likelihood 0.37 | 0.56 |0.77 0.24 | 0.54 |0.65 0.22 |0.75 |0.72 0.29 |0.76 |0.70 0.14 |0.30 |0.22 0.24 |0.65 |0.50
Rank -0.10| 0.45 |0.59 0.11 | 0.52 |0.65 0.09 | 0.83 |0.87 0.07 |0.67 |0.62 0.00 | 0.00 |0.00 0.04 | 0.66 |0.67
Log-Rank 0.47 | 0.41 |0.76 0.23 | 0.51 |0.63 0.22 | 0.70 |0.71 0.28 | 0.61 |0.70 0.18 |0.27 |0.22 0.21 |0.56 |0.43
Entropy 0.05 | 0.37 |0.59 0.20 | 0.37 |0.45 0.26 | 0.61 |0.71 0.21 | 0.48 |0.55 0.18 |0.26 |0.16 0.28 |0.50 |0.47
GLTR 0.61 | 0.21 |0.68 0.21 | 0.43 |0.50 0.19 | 0.52 |0.57 0.27 | 0.50 |0.67 0.21 |0.22 |0.22 0.23 |0.44 |0.37
LRR 0.83| 0.27 |0.77 0.22 | 0.34 |0.54 0.25 | 0.55 |0.70 0.32 | 0.39 |0.68 0.28|0.28 |0.27 0.20 |0.35 |0.35
DEMASQ 0.32| 0.13 |0.26 0.01 | 0.14 |0.16 0.03 | 0.11 |0.18 0.00 | 0.15 |0.25 0.00 | 0.05 |0.09 0.03 | 0.03 |0.06
OpenAI-D 0.12 | 0.18 |0.73 -0.00| 0.10 |0.57 0.00 | 0.13 |0.84 0.00 | 0.31 |0.68 0.00 |0.20 |0.16 0.21 | 0.00 |0.38
ChatGPT-D 0.30 |0.94 |0.89 0.00 | 0.10 |0.23 -0.01|0.86 |0.33 0.01 | 0.18 |0.57 -0.01|0.17 |0.12 -0.02|0.23 |0.17
LM-D 1.00| 0.00 |0.04 0.00 | 0.07 |0.88 0.00 | 0.00 |0.97 0.00 | 0.01 |0.69 0.00 | 0.00 |0.16 0.00 | 0.01 |0.94

WP

Log-Likelihood 0.75 | 0.43 |0.90 0.49 | 0.45 |0.62 0.53 |0.60 |0.47 0.61 | 0.63 |0.82 0.50| 0.45 |0.15 0.65| 0.61 |0.40
Rank 0.04 | 0.33 |0.84 0.18 | 0.36 |0.70 0.28 |0.63 |0.48 0.23 | 0.55 |0.86 0.25 | 0.33 |0.50 0.26 |0.48 |0.48
Log-Rank 0.75 | 0.35 |0.87 0.48 | 0.41 |0.63 0.51 |0.56 |0.47 0.58 | 0.44 |0.77 0.53| 0.43 |0.14 0.60| 0.52 |0.36
Entropy 0.34 | 0.25 |0.56 0.29 | 0.25 |0.43 0.44| 0.40 |0.42 0.41 | 0.40 |0.58 0.38| 0.26 |0.10 0.50| 0.41 |0.32
GLTR 0.73| 0.16 |0.60 0.42 | 0.31 |0.50 0.45 |0.46 |0.46 0.53 | 0.38 |0.63 0.56| 0.34 |0.09 0.56| 0.44 |0.27
LRR 0.79| 0.20 |0.78 0.44 | 0.22 |0.59 0.42 | 0.41 |0.47 0.60 | 0.27 |0.64 0.64| 0.33 |0.14 0.48| 0.31 |0.21
DEMASQ 0.01 | 0.02 |0.16 0.01 | 0.10 |0.15 0.00 | 0.02 |0.17 -0.01| 0.08 |0.19 0.04 |0.12 |0.06 0.02 |0.10 |0.07
ConDA 0.00 | 0.00 |0.01 0.00 | 0.00 |0.07 0.00 | 0.00 |0.02 0.01 | 0.01 |0.09 0.01| 0.00 |0.00 0.86| 0.12 |0.18
OpenAI-D 0.01 | 0.03 |0.69 0.01 | 0.10 |0.59 0.00 | 0.00 |0.36 0.00 | 0.08 |0.58 0.01 |0.11 |0.09 0.18| 0.00 |0.05
ChatGPT-D -0.01| 0.90 |0.91 -0.01| 0.16 |0.21 -0.00|0.74 |0.30 -0.00|0.66 |0.48 -0.01|0.50 |0.05 0.04 |0.37 |0.07
LM-D 0.00 | 0.02 |0.99 -0.00| 0.04 |0.89 0.00 | 0.00 |0.55 0.00 | 0.11 |0.96 0.14 | 0.42 |0.94 -0.00| 0.06 |0.97

Reuters

Log-Likelihood 0.57 |0.78 |0.69 -0.23|-0.38|-0.21 0.31 | 0.62 |0.76 0.31 |0.64 |0.51 0.35 |0.53 |0.34 0.44 |0.77 |0.62
Rank 0.02 | 0.46 |0.49 -0.09|-0.40|-0.22 0.11 | 0.80 |0.82 0.13 |0.56 |0.46 0.12 |0.47 |0.32 0.04 |0.62 |0.52
Log-Rank 0.54 | 0.59 |0.70 -0.21|-0.37|-0.22 0.28 | 0.49 |0.76 0.33 |0.63 |0.52 0.37 |0.56 |0.36 0.41 |0.74 |0.62
Entropy 0.19 |0.37 |0.37 -0.16|-0.23|-0.14 0.32 |0.63 |0.61 -0.09|-0.16|-0.17 -0.11|-0.16|-0.15 0.42 |0.63 |0.52
GLTR 0.52 | 0.32 |0.68 0.13|-0.02|-0.10 0.33 | 0.33 |0.67 0.30 |0.56 |0.50 0.33 |0.50 |0.36 0.39 |0.65 |0.61
LRR 0.54 | 0.32 |0.70 0.22 |0.33 |0.19 0.35 | 0.31 |0.74 0.30 | 0.48 |0.54 0.39 |0.47 |0.46 0.29 | 0.54 |0.57
DEMASQ 0.00 | 0.02 |0.25 0.00 | 0.04 |0.12 0.00 | 0.03 |0.18 0.00 | 0.02 |0.18 -0.01| 0.03 |0.12 -0.01| 0.02 |0.21
ConDA 0.00 | 0.00 |0.00 0.00 | 0.00 |0.01 0.00 | 0.00 |0.00 0.00 | 0.00 |0.00 -0.01|-0.01|0.06 0.00 | 0.00 |0.00
OpenAI-D 0.01 | 0.10 |0.51 0.00 |0.23 |0.13 -0.00| 0.18 |0.80 0.00 | 0.22 |0.35 0.00 |0.18 |0.14 0.05 | 0.00 |0.58
ChatGPT-D 0.01 |0.90 |0.79 -0.02| 0.07 |0.15 0.00 |0.74 |0.53 0.00 |0.55 |0.50 -0.00|0.41 |0.20 -0.08| 0.29 |0.47
LM-D 0.00 | 0.00 |0.71 0.00 | 0.00 |0.20 -0.01| 0.01 |0.99 0.00 | 0.00 |0.59 -0.01| 0.01 |0.36 -0.00| 0.01 |0.74

	Abstract
	1 Introduction
	2 Preliminary and Related Work
	2.1 Text Generation with Large Language Models
	2.2 Machine-Generated Text Detection

	3 MGTBench
	3.1 Modular Design
	3.2 Using MGTBench

	4 Experimental Settings
	4.1 Datasets
	4.2 Tasks
	4.3 Detection Methods
	4.4 Evaluation Metrics

	5 Evaluation
	5.1 Ablation Studies
	5.2 Text Attribution
	5.3 Adversarial Attacks

	6 Conclusion
	References
	A Appendix
	A.1 Limitations and Discussions

