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ABSTRACT
Adapting Large Language Models (LLMs) to specific tasks intro-
duces concerns about computational efficiency, prompting an ex-
ploration of efficient methods such as In-Context Learning (ICL).
However, the vulnerability of ICL to privacy attacks under realistic
assumptions remains largely unexplored. In this work, we present
the first membership inference attack tailored for ICL, relying solely
on generated texts without their associated probabilities. We pro-
pose four attack strategies tailored to various constrained scenarios
and conduct extensive experiments on four popular large language
models. Empirical results show that our attacks can accurately
determine membership status in most cases, e.g., 95% accuracy ad-
vantage against LLaMA, indicating that the associated risks are
much higher than those shown by existing probability-based at-
tacks. Additionally, we propose a hybrid attack that synthesizes the
strengths of the aforementioned strategies, achieving an accuracy
advantage of over 95% in most cases. Furthermore, we investigate
three potential defenses targeting data, instruction, and output. Re-
sults demonstrate combining defenses from orthogonal dimensions
significantly reduces privacy leakage and offers enhanced privacy
assurances.
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1 INTRODUCTION
The rapid evolution of Large Language Models (LLMs) has garnered
widespread attention, reshaping various facets of contemporary so-
ciety. These models, distinguished by their remarkable capabilities,
have been instrumental in augmenting diverse aspects of human
life. However, customizing LLMs for specific domains often involves
computationally inefficient adjustments.

To overcome these challenges, In-Context Learning (ICL) [8]
emerges as a novel and efficient approach to task-specific adaptation
within the paradigm of LLMs. Unlike conventional fine-tuning, ICL
does not necessitate extensive updates to model parameters. Instead,
it harnesses the power of prompts —additional contextual content—
to guide the model’s learning through analogy [13].

While ICL offers substantial advantages, its integration into
language models raises a critical issue: vulnerability to privacy
breaches. This concern is particularly pronounced for language
models designed for personalization and adaptation to user-specific
inputs, where the prompt becomes a repository of sensitive infor-
mation. For instance, LLMs integrated with ICL are increasingly
deployed in healthcare analytics [26, 28, 36]. Knowing that the vic-
tim’s data belongs to the model’s training data, i.e., the prompt of
the ICL, the adversary can immediately learn about the victim’s
health status. This form of sensitive information leakage stems from
one of the most serious privacy threats in machine learning, namely
Membership Inference Attacks (MIAs) [18, 19, 22, 29, 34, 35, 38, 39].

In this case, MIAs aim to determine whether a data sample has
been used for in-context learning, and their success holds two sig-
nificant implications. Firstly, MIAs represent a fundamental form of
a privacy attack, offering insights into more sophisticated attacks
and implying diverse privacy vulnerabilities [34]. Secondly, MIAs
can serve as a valuable tool for auditing data provenance. Existing
MIAs targeting language models rely on the probability associated
with the texts returned by LLMs [14, 15, 27, 37]. However, a signifi-
cant drawback of these probability-based attacks is that they can be
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easily mitigated if LLMs only return generated texts (which is actu-
ally the current realistic scenario). The fact that probability-based
attacks can be easily averted makes it more difficult to evaluate
whether a model is truly vulnerable to membership inference or
not, which may lead to premature claims of privacy for LLMs.

In this work, we concentrate on the membership leakage of
in-context learning, and present the first text-only membership
inference attack that relies only on the final text generated by the
language model. Specifically, we propose four attack methods: GAP,
Inquiry, Repeat, and Brainwash. The GAP attack serves as a baseline,
considering samples as members if correctly classified and as non-
members if not. Among the three advanced attacks, the Inquiry
attack directly asks the language model whether it has encountered
specific samples. The Repeat attack identifies samples as members
if the language model can generate text that closely matches the
original input. Finally, in more challenging scenarios where the
model produces fixed responses like “positive” or “negative,” we
introduce the Brainwash attack. This novel method consistently
influences the model to provide specific incorrect answers, and
membership is inferred based on the sample’s ability to conform to
this brainwashing process.

We conduct extensive experiments on four popular large lan-
guage models and three benchmark datasets. Empirical results show
that our attacks achieve significant performance across various
scenarios. For example, the Brainwash attack achieves over 95%
accuracy advantage in inferring membership status against LLaMA
on the DBPedia and AGNews datasets. Even when applied to on-
line commercial models such as GPT-3.5, our attack maintains an
advantage of over 60% on the TREC dataset.

We further comprehensively investigate factors influencing the
attack, including the number of demonstrations and their position
in the prompt. Results indicate that the vulnerability of demonstra-
tions emerges from a synergistic interplay between prompt size
and the demonstration position. These findings offer insights for
designing prompts that are more resilient against privacy attacks.
Moreover, we undertake a comprehensive case study investigat-
ing the evolving behavior of updated language models over time.
Despite ongoing efforts to enhance model safety, our results re-
veal persistent vulnerabilities in the prompt, even with updated
versions.

Recognizing the applicability of our attacks across diverse scenar-
ios, we further design a hybrid attack that combines the strengths
of the Brainwash and Repeat attacks. Empirical evidence shows
that the hybrid attack outperforms both individual methods in most
cases, e.g., 81.2% accuracy advantage compared to 67.8% and 73.0%,
respectively. Lastly, we explore three potential defenses at the data,
instruction, and output levels. Our results demonstrate that these
defenses are effective for specific attacks and datasets. Additionally,
we find that combining defenses from all these orthogonal dimen-
sions significantly mitigates privacy leakage and provides stronger
privacy guarantees.

We summarize our contribution as follows:

• We present the first text-only membership inference attack
against ICL.We design four text-only attacks and empirically
demonstrate their effectiveness across four popular language
models and three diverse datasets.

Figure 1: An illustrative example of In-Context Learning.
The language model is initialized by a prompt combined
with instruction (pink) and demonstrations (green).

• We conduct extensive studies of factors influencing attack
performance and reveal that the vulnerability of demonstra-
tions emerges as a synergistic interplay between prompt size
and the demonstration position.

• We integrate two powerful attacks to construct a hybrid at-
tack, which significantly enhances our attack’s performance
and generalizability.

• We explore three potential defenses for ICL against text-only
attacks and empirically show their effectiveness inmitigating
privacy leakage.

2 PRELIMINARIES
2.1 In-Context Learning
In-Context Learning (ICL) emerges as a distinctive feature of large
language models (LLMs) [8], affording LLMs the capability to ac-
quire proficiency in specific tasks through exposure to limited
demonstration examples. In contrast to the conventional notion of
“learning,” In-Context Learning does not require updating model
parameters. Instead, it augments the input with additional content,
referred to as a prompt, to facilitate learning through analogy [13].
Specifically, within the prompt, the model is provided with several
input-output pairs as examples, instructing the model to respond
in a similar format.

To integrate ICL into LLMs, the model undergoes an initializa-
tion process. This process involves carefully constructing a task-
specific prompt, encompassing an optional task instruction (I) and 𝑘
demonstration examples ({(𝑥𝑖 , 𝑦𝑖 ) |𝑖 ≤ 𝑘, 𝑖 ∈ N+}). The server con-
catenates these components to form a complete prompt, denoted
as prompt = {I, 𝑠 (𝑥1, 𝑦1), . . . , 𝑠 (𝑥𝑘 , 𝑦𝑘 )}. Here, the function 𝑠 (·, ·)
denotes the transformation of demonstration pairs into natural
language following a predefined template. In addition, for a certain
task in ICL, the number of demonstrations is not large, typically no
more than 8, i.e., 𝑘 ≤ 8. This is due to a trade-off between input size
and performance. Increasing the number of demonstrations beyond
eight results in only marginal performance improvements [51]. We
provide an illustrative case in Figure 1. Highlighted in pink are the
task instructions, which instruct the language model to classify
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the questions into different categories, and in green are the two
demonstrations.

During testing, the language model accepts input samples 𝑥
in the same format as the prompt demonstration, i.e., “Question:
x; Answer Type:{ }”. Subsequently, the model assigns probabilities
𝑃 (𝑦𝑖 |𝑥, prompt) to all potential answers 𝑦𝑖 ∈ Y, and selects the out-
put token based on sampling strategies, such as greedy decoding,
which selects the token with the highest probability. Mathemati-
cally, this process is represented as:

argmax
𝑦𝑖 ∈Y

𝑃 (𝑦𝑖 |𝑥, prompt) .

It is important to note that in ICL, the term “model’s training data”
might bemisleading.While the prompt contains demonstration data
used to guide the model’s responses, there is no actual retraining of
the model’s weights involved. Instead, the model uses the provided
examples to draw analogies and make predictions, simulating a
form of learning without altering its underlying parameters. This
distinction is crucial for understanding the model’s behavior and
the potential vulnerabilities associated with ICL.

2.2 Membership Inference Attack
Membership inference attack (MIA) represents one of the most
basic forms of privacy attack [34], where the attacker aims to deter-
mine whether a given sample belongs to the training dataset. Such
an attack has been widely studied in the traditional ML domain, as
leaking the membership information could cause several implica-
tions. This concern persists in the realm of Large Language Models
(LLMs), where the revelation of the prompt containing specific data
translates to a breach of private information. This becomes particu-
larly consequential in sensitive tasks. Furthermore, the significance
of MIA actually extends beyond its primary privacy implications.
Specifically, knowing the prompt used by an LLM allows an ad-
versary to obtain extra information about the LLM’s ICL prompts,
which infringes on the LLM’s intellectual property rights. From
another perspective, MIA can be used as an auditing tool by users
to find out whether their data is being collected to craft the LLM’s
ICL prompts.

The theoretical rationale behind existing membership inference
attacks is mainly based on the observation that models exhibit
varying degrees of confidence in their responses, particularly fa-
voring samples encountered during training. Membership infer-
ence attacks employ a variety of approaches, one prominent and
straightforward method is to use the posteriors to train an attack
model. In this approach, samples with more “member-like” pos-
teriors are classified as members. Additionally, efforts to enhance
MIA performance have been explored by incorporating additional
information such as model intermediate representation [29] or loss
trajectory [24], and by actively training shadow models with care-
fully crafted datasets [9]. In all of these instances, it seems that
having access to the model posterior is a necessary requirement
for launching the attack.

Recent research [12, 22] endeavors have delved into the prospect
of attacking models without direct access to the posterior. These
efforts leverage the distance between the target sample and the
decision boundary to predict membership status. However, the
opacity of model architecture/parameters and the discrete input

space pose challenges for extending this approach to large language
models.

To the best of our knowledge, all existing membership infer-
ence attacks against LLMs necessitate, at a minimum, access to the
probability associated with predictions. This requirement is crucial
for calculating corresponding loss [14, 45] or perplexity [10, 11],
which can then be used to extract membership signals. In this work,
we explore the most stringent scenarios where only the generated
content/text is available to the adversary. We refer to such kind of
attack as text-only membership inference attack. Besides, we em-
phasize here that compared to probability-based attacks, text-only
attacks are much more realistic in real-world applications where
probabilities are rarely accessible.

3 PROBLEM STATEMENT
Adversary’s Objective: The primary objective of the adversary
is to determine whether a specific target sample 𝑥 was included in
the construction of a prompt used to customize a language model
M. The prompt, denoted as prompt, comprises a set of 𝑘 demon-
strations, formatted as prompt = {I, 𝑠 (𝑥1, 𝑦1), . . . , 𝑠 (𝑥𝑘 , 𝑦𝑘 )}. The
adversary’s goal is to determine whether the target sample 𝑥 has
been utilized in crafting the prompt. That is, the goal is to determine
whether 𝑥 is in the set {𝑥1, . . . , 𝑥𝑘 }.
Adversary’s Capabilities: In this work, the adversary can access
tailored language models that are customized via prompts with
fixed demonstrations, as indicated in previous research [41, 48]. For
example, Copy.ai [1] suggests employing well-crafted prompts that
include examples and stylistic instructions to generate high-quality
marketing copy, and these prompts do not change between requests.
Furthermore, as GPTs [2] (powered by GPT-3.5/4) and GLMs [3]
(powered by ChatGLM4) gain increasing interest, we anticipate
more use cases of customized LLMs with fixed demonstrations to
perform user-determined tasks, such as sentiment analysis [43] and
text summarization [17].

More concretely, we consider the most strict and realistic sce-
nario where the adversary has only black-box access to the target
language modelM, meaning they can see the text generated but
not the tokenizer or associated probabilities. Additionally, the ad-
versary has the ground truth answer 𝑦 for the target sample 𝑥 . This
assumption aligns with most existing membership inference works
in computer vision [16, 21, 46] and natural language processing
domains [14, 27, 45].

4 ATTACK METHODOLOGY
4.1 A Baseline Attack: GAP Attack
We start with a baseline attack that extends from the existing attack
in the vision domain. Under the assumption that the adversary
only has access to the generated texts without additional details,
a straightforward approach for membership inference involves
exploiting the well-known overfitting phenomenon, where mod-
els tend to memorize samples from the training dataset, thereby
exhibiting higher accuracy on these than on the testing dataset.

Prior research [30] indicates language models exhibit minimal
overfitting due to their massive training dataset and fewer train-
ing epochs on individual data points [32]. However, In-Context
Learning introduces a potential vulnerability, as it allows language
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Figure 2: The GAP attack involves querying the model with
a target sample. The adversary determines the membership
status by evaluating the accuracy of the model’s prediction:
if the prediction is correct, the target sample is classified as
a member; otherwise, it is classified as a non-member.

models to recall recently encountered demonstrations, thus behav-
ing as if they have “memorized” them.

Building on this, we categorize samples that are correctly identi-
fied as “members” and the rest as “non-members.” This approach
is an uncomplicated extension of existing work in the vision do-
main [47] to language model settings. We refer to this basic attack
methodology as the GAP attack, which serves as our starting point
and baseline for comparison.
Methodology: The attack methodology is structured as follows
(see Figure 2 for an illustration):

• The adversary selects a target sample 𝑥 , which is a sentence
whose membership status they aim to determine.

• The adversary sends the target sample 𝑥 to the model and
observes the model’s response. If the model returns the cor-
rect answer, the sentence is classified as a member of the
dataset; if not, it is deemed a non-member.

TREC DBPedia AGNews
Dataset
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Figure 3: Performance of the baseline membership inference
attack (GAP), revealing challenges and suboptimal results,
particularly evident in larger language models such as GPT-
3.5. In this figure, language models are prompted with one
example with the instruction presented in Figure 2. The per-
formancemetric, which indicates the advantage over random
guessing, is detailed in Section 5.1.

Figure 4: The Inquiry attack determines membership status
by directly querying the model. In our work, we use the
prompt “Have you seen this sentence before.”

The results, illustrated in Figure 3, reveal unsatisfactory perfor-
mance, particularly for LLMs like GPT-3.5 (0 means random guess),
as these models perform very well even when the test samples are
not seen in the prompt. This suboptimal performance motivates us
to develop more effective attacks tailored specifically for LLMs.

4.2 Inquiry Attack
Intuition: The core concept of this attack method hinges on the
language model’s ability to remember information from past con-
versations and deliver context-based responses. When we interact
with a language model, it processes the context and produces a
response informed by the knowledge it has acquired from previous
inputs by the user, particularly from the provided prompt (prompt)
and its included demonstrations. Consequently, a direct and intu-
itive approach is to directly question the language model about its
previous encounters with specific samples.
Methodology: The attack methodology is structured as follows
(refer to Figure 4 for an illustration):

• The adversary selects a target sample 𝑥 , which is a sentence
that they aim to determine its membership status.

• The adversary crafts a query to the model with the prompt:
“Have you seen this sentence before: {𝑥 }?”

• The adversary sends the query to the model and observes
the model’s response. If the model confirms with a “yes”, the
sentence is classified as a member of the dataset; if not, it is
deemed a non-member.

4.3 Repeat Attack
The Inquiry attack, while direct and straightforward, may trigger
alerts and consequently be denied a response as it overtly queries
the language model’s prompt. To mitigate this risk, we introduce
the Repeat attack, which employs a more subtle approach.
Intuition: This attack leverages the strongmemorization capability
of language models to generate context-aware responses. Unlike
the Inquiry attack, which uses queries with clear intentions (such as
"Have you seen this sentence before?"), we use the core functionality
of a language model, which is to predict the next words. When
provided with just the beginning of a target sample, such as the
first three words, the model attempts to complete the sentence
by adding more words. Our hypothesis is that the model’s prior
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Figure 5: The Repeat attack initiates a conversation with
a few words and asks the model to complete the sentence.
The adversary predicts membership status by assessing the
semantic similarity between the generated sample and the
target sample.

knowledge, enhanced through ICL, will encourage the language
model to generate text that mirrors previously encountered content.
Methodology: The attack method consists of the following steps
(see Figure 5 for an illustration):

• The adversary selects a target sample 𝑥 , which is a sentence
that they aim to determine its membership status.

• The adversary truncates the target sample, retaining only
its first few words, which are then inputted to the language
model. The generated response 𝑥

′
from the model is ob-

tained.
• The adversary then feeds 𝑥 and 𝑥

′
to a text encoder E to ex-

tract their embeddings and measure the semantic similarity
between them by a function Φ.

Similarity = Φ(E(𝑥), E(𝑥
′
)) (1)

If the similarity score exceeds a predetermined threshold, the
sample is classified as a member of the dataset; otherwise, it
is classified as a non-member.

For practical implementation, we use the first three words of
the sentence to prompt the language model. The SentenceTrans-
former network [33], a widely utilized text encoder, is employed to
calculate semantic similarity using cosine distance. Figure 6 shows
that member samples generally exhibit higher similarity with the
generated text, while non-member samples display a more flattened
similarity distribution. This supports our initial hypothesis.

In practice, setting a similarity threshold between 0.8 and 0.9
tends to produce satisfactory accuracy. Further fine-tuning of this
threshold through additional sample training can enhance the ef-
fectiveness of the attack.

4.4 Brainwash Attack
In this scenario, we explore a more common and strict scenario
where the language model’s output is confined to a predefined
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Figure 6: Member samples are more likely to exhibit high
similarity with the generated sample, while the similarity
distribution for non-members is more flattened. These distri-
butions were obtained by querying the GPT-3.5 model using
the procedure detailed in Figure 5 with the TREC dataset,
using one example as a demonstration.

list of responses. This does not entail modifying the model’s basic
operational framework, like converting it into a classification model
based on Large Language Models. Instead, the language model
continues to generate responses in an autoregressive manner as
before. The key difference here is the introduction of a server-side
filter, which evaluates the outputs to ensure they are permissible
and non-harmful. This added layer heightens the complexity of
launching effective attacks.

For instance, in the sentiment analysis task, the languagemodel is
limited to outputting “positive” or “negative” predictions. However,
to the user, the interaction with the model remains unchanged.

In such a controlled output environment, launching attacks like
the GAP attack remains feasible, though it represents a suboptimal
method. More sophisticated attacks, such as those that depend on
inducing the model to repeat sentences or to disclose previously
seen sentences, are unlikely to succeed due to the server’s filtering
mechanism.

To overcome this challenge, we present the last text-only mem-
bership inference attack, namely Brainwash Attack. This text-only
membership inference attack is designed to operate effectively un-
der the stringent conditions imposed by output filters.
Intuition: Initially, let’s consider a simplified case where an adver-
sary has access to the probability or logits associated with outputs.
Under these conditions, determining membership is straightfor-
ward: a higher probability suggests that the model is more confident
in its prediction, likely because the item was seen in the prompt.
The main idea of this attack is to approximate the confidence, which
is challenging given the limitations of the language model output.

To address this challenge, we approximate confidence by eval-
uating how firm the model is on previously encountered correct
answers when it is “brainwashed” by unreasonable or incorrect
queries. Specifically, if an incorrect fact is presented to the model
and it hasn’t encountered this information before, the model is
more susceptible to being misled. Conversely, if the model is famil-
iar with the correct information from its prompt, it is less likely to
accept the incorrect fact.
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Figure 7: The Brainwash attack persistently presents the tar-
get sample to the model with a consistent incorrect answer
until the model responds inaccurately. The number of itera-
tions required indicates the likelihood of membership.

Methodology: The approach involves several key steps, as outlined
below and illustrated in Figure 7:

• The adversary selects a target sample 𝑥 , which is a sentence
that they aim to determine its membership status. In addition,
the adversary knows its correct answer 𝑦.

• The adversary crafts a query to the model with the same
template, for example: “Question: x; Answer Type: 𝑦.” Here, 𝑦
denotes the wrong answer compared to the correct answer
𝑦.

• The adversary repeats querying the model with the above
prompt until the model responds with the incorrect answer
𝑦.

• The attacker then counts the number of queries needed for
the model to accept the incorrect answer. If this number
exceeds a predefined threshold, the sample is classified as a
member; otherwise, as a non-member.

In our experiments, we consider multiple choice for the incorrect
answer 𝑦. The adversary counts the number of queries for each
incorrect answer, and we use the average number of queries as a
robust metric for evaluating confidence. Figure 8 demonstrates that
member samples necessitate significantly more queries to output
the incorrect answer, i.e., the language model is much firmer for the
correct answer it has seen before. In contrast, non-member samples
are more likely to be influenced to output incorrect answers. This
observation confirms our intuition. We empirically determined that
setting the threshold between 3 to 4 is a reasonable choice for
most models and datasets, although the optimal threshold selection
necessitates a few additional samples for refinement.

5 EXPERIMENTS
5.1 Experimental Setup
Language Models:We evaluate our attacks on four representative
language models, including GPT2-XL [31], LLaMA [42], Vicuna [4],
and GPT-3.5 [5]. GPT2-XL is a 1.5B parameter version of GPT-2
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Figure 8: Member samples resist incorrect labels, requiring
more iterations to change the model’s output, while non-
members are more easily influenced. These distributions
were obtained by querying the GPT-3.5 model using the pro-
cedure detailed in Figure 7 with the TREC dataset, using one
example as a demonstration.

developed by OpenAI. For LLaMA and Vicuna, we utilize their 7B
version and version 1.5 (Vicuna-7b-v1.5), respectively. We access
GPT-3.5 through its official API with the version name gpt-3.5-
turbo-0613, which was released on June 13th. We also examine the
impact of different versions of this model in Section 5.5, providing
insights into how variations in model versions affect our attack
outcomes. This selection spans fully open-source to fully closed
commercial models, demonstrating the applicability of our attacks
across a wide spectrum.
Datasets: We assess the impact of our attacks on three benchmark
text classification datasets: AGNews [49], a 4-class News Topic
Classification dataset; TREC [20], a 6-class Question Classification
dataset; andDBPedia [49], a 14-class OntologyClassification dataset.
We structure the prompts according to the template designed by
Zhao et al. [51], known for its effective performance, with illustra-
tive examples provided in the extended version [44]. It is worth
noting that our objective is to determine if the sample is included
in the prompt. Therefore, there is no requirement to ensure that
these datasets are not utilized in training the pretrained models.
Given LLMs are trained on extensive datasets, we hypothesize that
they do not strongly memorize any specific dataset. Therefore, we
anticipate minimal impact on performance. We further explore the
influence of memorization on attack performance in the extended
version [44].
Evaluation Settings: The evaluation setting in our work differs
from traditional membership inference attack settings, where train-
ing datasets typically comprise thousands or tens of thousands of
data samples. In these cases, adversaries receive both the training
dataset and an equivalently sized testing dataset, tasked with de-
termining the membership status for all samples within this mixed
dataset. However, the context shifts for In-Context Learning, where
membership pertains to a smaller subset, typically fewer than eight
samples. Consequently, evaluating attack performance through a
single run may yield unrepresentative results.

Instead of conducting a single experiment, we repeat the experi-
ment 500 times and leverage the average performance as our final
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Figure 9: Comparison of attack performance across three datasets and four language models, highlighting the consistent
efficacy of Brainwash and Repeat attacks, alongside the variable performance of Inquiry and GAP attacks contingent on model
architecture.

result. This experimental design, previously employed in studies
targeting In-Context Learning [14, 45], enhances the robustness
and reliability of our assessments.

Each experiment entails the construction of a target prompt
based on specified hyperparameters, such as the number of demon-
strations. Subsequently, we assess the membership status of two
target samples: one sample selected from the prompt is labeled as
a member, while another is randomly chosen and designated as a
nonmember.

To facilitate this approach, the dataset is initially deduplicated
and randomly divided into two parts: the demo part, containing
samples utilized for prompt construction, and the test part, housing
samples earmarked for testing. For each experiment, we randomly
select samples from the demo part based on the prompt design to
construct the prompt. Simultaneously, one sample from the test part
is randomly chosen and labeled as a nonmember in the experiment.
In this paper, we repeat the experiment 500 times, equating to the
labeling of a dataset with 500 members and 500 nonmembers.
Evaluation Metrics:We consider two widely applied metrics to
evaluate the attack performance:

• Advantage [40, 47]: This metric, denoted as

Adv = 2 × (Acc − 0.5),

measures the advantage over random guessing, which of-
fers an average-case evaluation of the attack’s effectiveness.
Following previous work [40, 47], the metric is multiplied
by 2 to scale a 100% accurate attack performance to 1, while
random guessing remains at 0. A higher advantage implies
better-than-random performance, providing a comprehen-
sive perspective on the attack’s overall effectiveness.

• Log-scale ROC Analysis [9]: This metric focuses on the
true-positive rate at low false-positive rates, effectively cap-
turing the worst-case attack performance.

Given that determining membership status is a binary classifica-
tion task, with an equal number of positive and negative samples,
the advantage metric provides an intuitive measure of performance.
An advantage of 0 signifies random guessing, while an advantage
of 1 indicates an accurate prediction of all membership statuses.
This simplicity aids in the straightforward interpretation of the
performance of the attacks.

For all proposed attacks, we employ the advantage metric to
gauge average-case performance. In the case of the Repeat and
Brainwash attacks, we additionally utilize the log-scale ROC curve
to depict their worst-case performance. It’s important to note that
we cannot present worst-case performance for all attacks since, in
the other two, only hard membership predictions are obtainable.

5.2 Results
We start by evaluating the performance of our attacks under the
basic setting, where the prompt contains only one demonstration:
prompt = {I, 𝑠 (𝑥1, 𝑦1)}. Here, the adversary aims to determine
whether the target sample 𝑥 is contained in prompt, i.e., 𝑥 = 𝑥1 or
𝑥 ≠ 𝑥1.

We report the advantage of all four attacks in Figure 9. As we
can see, Brainwash and Repeat attacks consistently exhibit strong
performance across all four language models. This remarkable per-
formance is particularly evident with LLaMA and Vicuna, as demon-
strated in Figure 9b and Figure 9c. For example, Brainwash achieves
nearly 100% advantage on 5 out of 6 tasks with LLaMA and Vicuna.

In contrast, the performance of Inquiry and GAP attacks varies
significantly depending on the model architecture. For GPT2-XL,
GAP attack even achieves 54.4% advantage on DBPedia, although
this is the optimal performance it can achieve across all datasets
and models. Furthermore, with LLaMA, the Inquiry attack achieves
75.0% advantage on AGNews, showcasing strong performance even
with relatively straightforward approaches. However, for GPT-3.5,
both attacks prove ineffective, with a performance close to ran-
dom guessing. Encouragingly, Brainwash and Repeat attacks, while
showing a slight performance decrease, maintain effectiveness in
inferring membership status on GPT-3.5. This observation high-
lights the prevalence of membership leakage vulnerabilities in large
language models, even when the model solely outputs text infor-
mation.

Notably, while the Brainwash and Repeat attacks consistently
outperform the other two, they show varying advantages under
different model architectures. As Figure 9 shows, for the GPT family
of models (GPT2-XL and GPT-3.5), the Repeat attack outperforms
Brainwash in most cases, suggesting that the generative behaviors
of these models on members and non-members are quite different
when queries starting from a few words are given complementary
words to finish with. However, for LLaMA and Vicuna, they show
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Figure 10: Membership Inference Attack (MIA) performancewith varying numbers of demonstrations in the prompt, illustrating
the influence of demonstration quantity on the efficacy of Repeat and Brainwash attacks. Our experiments are conducted on
the TREC dataset.
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Figure 11: Log-scale Receiver Operating Characteristic (ROC)
curve depicting the worst-case performance of Brainwash
and Repeat attacks, revealing their efficacy in discerning
ambiguous samples.

greater vulnerability to the Brainwash attack, suggesting that these
models are more firm or believe in the knowledge they have gained
from prompt. The question of why these large language models
have different properties and behaviors is beyond the scope of this
work, and we leave it to more relevant research areas.

We further report the worst-case performance (log-scale ROC) of
the Brainwash and Repeat attacks in Figure 11. We can observe that
both Brainwash and Repeat attacks exhibit remarkable performance,
particularly in the low false positive area. This observation implies
the effectiveness of our attacks in determining the membership
status of samples that are hard to differentiate.

5.3 Influence of Number of Demonstrations
In the previous section, we established the effectiveness of our
attacks under the scenario where the prompt solely comprises one
demonstration. However, in a more practical scenario, language
model owners often leverage multiple demonstrations to construct
prompt to enhance performance. In this section, we explore the
performance of our proposed attack under the influence of the
number of demonstrations.

It is noteworthy that an increased number of demonstrations
does not unilaterally enhance performance, as an extended prompt
incurs higher costs in terms of tokens and may be constrained by
input limitations of the language model. Therefore, in this section,
we vary the number of demonstrations from 1 to 6 to assess its
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Figure 12: Log-scale ROC curve illustrating the worst-case
performance of Membership Inference Attacks with varying
numbers of demonstrations in the prompt, emphasizing the
consistent superiority of one demonstration over multiple
demonstrations.

impact on attack performance. We limited the number of demon-
strations to 6 due to the input size restrictions of GPT2-XL, and
further evaluated the long context performance in the extended
version [44].

Moreover, we consider the positional influence of demonstra-
tions within the prompt. Specifically, we posit that for prompt =

{I, 𝑠 (𝑥1, 𝑦1) . . . 𝑠 (𝑥𝑘 , 𝑦𝑘 )} containing 𝑘 demonstrations, the impact
of 𝑥1 and 𝑥𝑘 should be different. The reason for this argument is
that the demonstrations are entered into the language model se-
quentially, and the model’s memory for the first demonstration
should be significantly influenced by subsequent demonstrations
compared to the last demonstration. Consequently, in the ensuing
experiments probing the influence of the demonstration number
(𝑘), we examine the effects on the first and last demonstrations (i.e.,
𝑥1 and 𝑥𝑘 ) separately.

We first report the effect of 𝑘 on inferring the first demonstration
in Figure 10. We can see that while the GAP and Inquiry attacks
are insensitive to the number of demonstrations, the remaining
two attacks show a clear trend between it and attack performance.
Specifically, both the Repeat and Brainwash attacks obtain optimal
results when there is only one demonstration, and the attack per-
formance gradually decreases as the number of demonstrations in-
creases. We further report the worst-case performance in Figure 12.
We can find that attacks against one demonstration consistently
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Figure 13: Comparative analysis of Membership Inference Attack (MIA) performance targeting the first and last demonstration,
underscores the impact of the distance between the target sample and the query on model memorization. Our experiments are
conducted on the TREC dataset.
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Figure 14: Exploration of attack performance across different positions (1st to 6th) of demonstrations within a prompt. Results
reveal varying vulnerabilities for Repeat and Brainwash attacks. Notably, demonstrations in the middle exhibit a lower
vulnerability compared to those positioned at the beginning or end. Our experiments are conducted on the TREC dataset.

outperform scenarios with more demonstrations, even in terms of
low false positives.

We then report the effect of 𝑘 on inferring the last demonstra-
tion. For comparison purposes, we present the results for both the
first and the last presentation. In addition, in order to observe the
trend more clearly, we only present the results in two language
models: GPT2-XL and GPT-3.5. First, as shown in Figure 13, we
can get a similar observation that there is no significant trend for
GAP and Inquiry attacks, but a decreasing trend for Repeat and
Brainwash attacks. Therefore, we next discuss the findings based
on the latter two powerful attacks (Figure 13c and Figure 13d).
These observations suggest that attack performance is negatively
correlated with the number of demonstrations, regardless of which
demonstrations an adversary aims at to infer membership. These
observations also suggest that more demonstrations will not only
improve model performance, but also reduce membership leakage.
Furthermore, we can find that the attack performance of the first
demonstration is more susceptible to the number of demonstra-
tions compared to the last demonstration, as shown by the steeper
trend of the first demonstration. This observation validates our
previously mentioned argument that the model’s memory on the
first demonstration is more likely to be affected than on the last
demonstration, as the next few demonstrations may overwrite the
knowledge from the first demonstration.

5.4 Influence of the Demonstration Position
The above results suggest that the number of demonstrations has
a different effect on the first and last demonstrations. We next
explore in more depth the effect of demonstration position on at-
tack performance. Concretely, we maintain a consistent number
of demonstrations at 6 and use our proposed attacks to infer the
membership status of each demonstration, ranging from the 1𝑠𝑡 to
the 6𝑡ℎ position.

We report the relationship between demonstration position and
attack performance in Figure 14. We can observe that demonstra-
tions at different positions exhibit varying vulnerability, particularly
evident for our two powerful attacks, Repeat and Brainwash. Inter-
estingly, the results show that the worst attack performance is not
against the first demonstration. Instead, demonstrations positioned
in the middle sometimes exhibit poor attack performance. For in-
stance, as illustrated in Figure 14c, inferring the membership status
of the first demonstration in GPT-3.5 yields 27.6% advantage, while
inferring the third demonstration results in only 21.6% advantage.
This observation is further validated in the worst-case performance
shown in Figure 16. Notably, for the Brainwash attack (Figure 16a),
the last demonstration attains the best performance, as expected,
with the first demonstration ranking second. Conversely, the third
demonstration (represented by the green line) exhibits the poorest
performance.

We emphasize that this finding alignswith previous research [23],
which indicates that when large language models encounter long
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Figure 15: Evolution of Attack Performance: Comparative analysis of attack performance on four GPT-3.5 API versions (gpt-
3.5-turbo-0301, gpt-3.5-turbo-0613, gpt-3.5-turbo-1106, and gpt-3.5-turbo-0124) over a ten-month period. Results demonstrate
that the robustness of commercial models like GPT-3.5 doesn’t monotonically increase over time. We conduct our experiments
on the TREC dataset. Experiments on the DBPedia dataset derive the same conclusion, detailed results can be found in [44].
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Figure 16: Log-scale ROC curve confirms that demonstra-
tions in the middle exhibit reduced vulnerability compared
to those located at the beginning or end, even in the worst-
case scenario. We use LLaMA as an example here.

input, they are more prone to focusing on the initial and conclud-
ing parts of the context while neglecting the middle section. This
conclusion may motivate users to strategically place their valuable
demonstrations in the middle of the prompt. However, this strate-
gic placement may potentially compromise utility. Consequently,
designing a privacy-preserving positional strategy that balances
privacy and utility presents an intriguing problem for further ex-
ploration.

5.5 Attack Performance Over Time
In response to the increasing security risks associated with Large
Language Models, both researchers and companies are focusing on
developing responsible and resilientmodels capable of withstanding
potential threats, including jailbreak attacks. A significant area of
exploration involves examining how different versions of Large
Language Models address these security challenges, particularly
concerning text-only membership inference attacks, as proposed
in our study.

In this section, we conduct a case study using one of the most in-
fluential LLMs, GPT-3.5, to discern how the performance of attacks
varies across different versions. Since the beginning of 2023, the
OpenAI has released four API versions: gpt-3.5-turbo-0301, gpt-3.5-
turbo-0613, gpt-3.5-turbo-1106, and the latest gpt-3.5-turbo-0125,

with the numerical suffix denoting the release date (the first three
in 2023 and the latest in 2024). Employing these versions, we exe-
cute our proposed four attacks and assess how their performance
changes over an eleven-month period.

We first evaluate attack performance with the basic setup of
prompt containing only one demonstration (sampled from the
TREC dataset) and report the results in Figure 15a. We can find a
clear trend in the different patterns exhibited by different versions
of GPT-3.5 under attacks. Notably, the attack performance of the
newly released APIs decreases under our Brainwash and Inquiry
attacks but increases in the latest version. In contrast, the Repeat
attack demonstrates higher performance on recently released APIs.
In the case of the GAP attack, which considers the generalization
gap in training and testing datasets, the attack differences across
the four versions of LLMs are negligible.

Extending our observations to prompt with multiple demonstra-
tions, as depicted in Figure 15b, where prompt contains 6 demonstra-
tions, and the target demonstration is positioned at the beginning,
reveals an intriguing pattern. The older version (gpt-3.5-turbo-0301)
exhibits higher attack performance for Brainwash and Inquiry at-
tacks, while Repeat shows significantly lower performance. This
observation remains consistent regardless of the target demonstra-
tion’s position, as illustrated in Figure 15c, where placing the target
demonstration at the end yields conclusions analogous to those
when positioned at the beginning.

This observation may stem from synergies between attacks, as
observed in previous studies [25, 40], different attacks exhibit corre-
lations. For instance, defending against adversarial examples could
inevitably increase vulnerability to membership inference attacks.
Given the diverse attack surface against LLMs, protecting against
all potential threats becomes exceedingly challenging.

In summary, different versions of GPT-3.5 APIs manifest varied
behaviors when subjected to attacks, and no single version out-
performs all four types of attacks. This understanding helps us
navigate the challenge of securing language models in the face of
evolving security threats.
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Figure 17: Performance comparison of the hybrid attack
against individual Brainwash and Repeat attacks across two
language models. The hybrid attack effectively combines the
strengths of both, often surpassing individual attack perfor-
mances. In this figure, language models are prompted with
one example. Full results on four language models can be
found in [44].

6 HYBRID ATTACK
Given the observed varieties in the effectiveness of different at-
tacks across models, datasets, and model versions, it becomes a
fascinating challenge from an adversary’s point of view to devise
a combined approach that consistently performs well in different
scenarios. In this section, we present a hybrid attack that combines
the strengths of both the Brainwash attack and the Repeat attack
to achieve strong performance in all scenarios. We chose these
two attacks because they are resilient across different models and
datasets.

6.1 Methodology
Recall that the Repeat attack involves sending the first few words to
the language model and assessing the semantic similarity between
generated text and target samples, while the Brainwash attack
iteratively induces the language model with incorrect answers and
uses the number of iterations to determine membership status. In
the hybrid attack, we concatenate both the similarity and iteration
number, training a two-layer neural network as the attack model.

The attack model comprises fully connected layers and takes two
inputs: the similarity returned by the Repeat attack and the average
iteration number from the Brainwash attack. The output is the
probability of membership. To train the attack model, we assume
the adversary can collect a small shadow dataset sampled from
the same distribution as the demonstrations contained in prompt.
Our experiments indicate that training the attack model with the
ensemble of Brainwash and Repeat attacks is not arduous: only 100
samples are sufficient.

Once the attack model is trained, the hybrid attack is deployed as
follows: for a target sample, both Repeat and Brainwash attacks are
applied to obtain corresponding metrics (similarity and iteration
number). These values are then fed into the attack model to obtain
the final prediction.

6.2 Results
We evaluate the effectiveness of our hybrid attack across four lan-
guage models and present the results in Figure 17. Notably, the
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Figure 18: Log-scale ROC curve illustrating the performance
of the hybrid attack in leveraging the strengths of both Brain-
wash and Repeat attacks. The hybrid attack strategically
combines their advantages to achieve superior performance
across the false positive rate spectrum.

hybrid attack capitalizes on the strengths of both Brainwash and
Repeat attacks. In the majority of cases, the hybrid attack exhibits
performance no less than the optimal performance achievable by
Brainwash and Repeat attacks individually. Moreover, in certain sce-
narios, the hybrid attack even outperforms each individual attack.
For instance, in Figure 17a, where Brainwash and Repeat attacks
achieve advantages of 67.8% and 73.0%, respectively, the hybrid
attack achieves an advantage of 81.2%, showcasing its ability to
derive benefits from both attacks.

To delve into how the hybrid attack leverages the advantages of
both attacks, we present the log-scale ROC curve in Figure 18. In
the high false positive rate area, the hybrid attack capitalizes on the
superior performance of the Repeat attack, while in the low false
positive area, it aligns with the strategy of the Brainwash attack.
This strategic combination results in high overall performance
across the entire false positive rate area.

In the extended version [44], we further demonstrate that the hy-
brid attack maintains its advantage when targeting prompt consist-
ing of multiple demonstrations and attacking demonstrations at dif-
ferent positions within the prompt. This evidence suggests that an
adversary does not need to select a specific language model/dataset
to attack; instead, the hybrid attack proves to be effective in differ-
ent scenarios and can be used as a general attack against In-Context
Learning.

7 POTENTIAL DEFENSES
Our proposed attack demonstrates effective performance in infer-
ring the membership status of target samples, revealing significant
privacy threats. However, as of our current knowledge, there is a
lack of a comprehensive defense framework to safeguard In-Context
Learning (ICL) from membership inference attacks.

In this section, we explore three potential defenses aiming tomin-
imize the information leakage from the language model regarding
its prompt.

7.1 Instruction-Based Defense
Drawing inspiration from the strong control that instructions can
exert over languagemodels (e.g., prompt injection attack), our initial
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Figure 19: Evaluation of a filter-based defense strategy against our attacks. Figure 19a and Figure 19b demonstrate the defense’s
impact on Repeat attack performance. Figure 19c depicts the change in semantic similarity distribution for member samples
before and after the defense. Figure 19d presents the log-scale ROC curve, highlighting the defense’s effectiveness against
worst-case performance scenarios.
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Figure 20: The defense instruction successfully reduces the
effectiveness of the Inquiry attack for the TREC dataset;
nevertheless, this mitigating effect does not extend to the
Repeat attack or other datasets. We present the results on
the GPT2-XL and Vicuna, full results can be found in [44].

approach involves using instructions to compel the language model
to refrain from leaking any information related to its prompt.

Specifically, we task GPT-3.5 with designing a prompt intended
to prevent the model from disclosure of prompt-related details.
This strategy leverages previous findings [52] which suggest that
language models can be particularly adept at crafting prompts,
potentially surpassing human efforts in this domain. The generated
instruction by GPT-3.5 is as follows:“Respond to the following
queries without directly mentioning or alluding to any specific
examples, demonstrations, or instances that might have been used
in the prompt.”

We place this defense instruction at the end of the prompt and
conduct the three most powerful attacks against demonstrations
protected by this instruction.

While the efficacy of the defense instruction is evident in Fig-
ure 20, showcasing a reduction in the performance of the Inquiry
attack for the TREC dataset, this effectiveness does not uniformly
extend to other datasets, as depicted in the extended version [44].
Notably, the addition of the defense instruction tends to marginally
decrease the performance of the Brainwash attack in most instances,
though the variance is not statistically significant, we posit this
reduction primarily to the increased distance between the query

and the demonstration. Intriguingly, when evaluating the defense
effect against Repeat attacks, in certain scenarios, the attack per-
formance is observed to be even higher compared to scenarios
without defense. We posit that integrating a well-designed defense
instruction tailored to a specific attack and dataset may constitute
a pragmatic approach to mitigate privacy leakage. However, the
creation of a universally applicable defense instruction necessitates
further scrutiny and exploration.

7.2 Filter-Based Defense
While acknowledging the resilience of the Repeat attack against
simple defense instructions, we leverage insights from this attack
methodology to devise an ad-hoc defense that actively modifies the
language model’s output. Specifically, since the Repeat attack de-
termines membership status based on semantic similarity between
the generated response and the target sample, we implement an
output filter that modifies the response while preserving its util-
ity. To achieve this, when the language model outputs content, we
send that content to GPT-3.5 and request a sentence rewrite. This
filter-based defense consistently reduces the performance of the
Repeat attack across all datasets, as illustrated in both Figure 19a
and Figure 19b.

It is worth noting that our approach involves actively modifying
the response, distinguishing it from common filter defenses [50].
Blacklist-based filter defenses, which return an empty string if the
output significantly overlaps with the prompt, may initially seem
effective against prompt leakage but are susceptible to circumven-
tion. For instance, an attacker could instruct the language model
to output text encoded in a Caesar cipher or introduce additional
spaces between characters to evade detection. On the other hand,
whitelist-based filters, which only permit output from a predefined
list, pose a greater challenge to bypass but may impact the utility,
and we have considered and proposed the Brainwash attack tailored
for this challenging scenario.

To understand how our filter-based defense diminishes the at-
tack performance of Repeat, we analyze the semantic similarity
distribution for member samples before and after the defense. As
shown in Figure 19c, before the defense, a considerable number of
responses generated by the language model exhibit high similar-
ity to the target sample (similarity close to 1). Our observations,
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Figure 21: Effectiveness of combining defenses frommultiple
dimensions. Results demonstrate that integrating defenses
targeting different dimensions—such as data, instruction,
and postprocessing—substantially enhances overall defense
effectiveness and significantly reduces privacy leakage.

along with previous work [50], indicate that the language model
can sometimes reproduce the exact content from its prompt. How-
ever, after applying the output filter, the semantic similarity spreads
more smoothly rather than concentrating near 1. The log-scale ROC
curve (Figure 19d) emphasizes that the performance degradation
primarily occurs in the low false-positive rate area, indicating the
defense’s effectiveness against worst-case scenarios.

It’s important to note that while rewriting the output is effective
against the Repeat attack, it is not applicable to Brainwash and
Inquiry attacks. These attacks only require the model to produce a
predefined output or a binary answer, and manipulating the output
can either distort the intended meaning (thus impacting utility) or
render the defense ineffective. Consequently, the implementation of
output filtering stands as a supplementary defense tailored to spe-
cific attack types, rather than offering a comprehensive, universal
solution.

7.3 DP-based Defense
Differential privacy (DP) has been established as a key defense
mechanism against membership inference attacks. In this section,
we assess the effectiveness of an existing DP-based defense strat-
egy [41], which generates synthetic demonstrations from the pri-
vate dataset with DP guarantees. Specifically, we set num-private-
train to 1 to exclude unseen data. The resulting DP demonstra-
tions are of low quality, such as “Users Admin ApollosemblingIC
negatives direct@GetMapping.” Because of the high dissimilarity
between the generated DP and original demonstrations, the effec-
tiveness of the Repeat attack is reduced to almost random guessing.

However, DP is less effective against the Brainwash attack. De-
spite the generated samples being dissimilar to the original samples,
the Brainwash attack still achieves a 0.228 advantage, as depicted
in the yellow bar in Figure 21.

As DP-based, instruction-based, and filter-based defenses target
orthogonal components of the language model—namely, the data,
the instruction, and the output—a logical approach is to combine
these three defenses for enhanced protection. In Figure 21, we
illustrate the synergy of combining different defense strategies. On
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Figure 22: Visualization of loss dynamics in the Brainwash
attack: The figures demonstrate that the loss for the correct
class increases when the language model is brainwashed
by wrong labels, translating unobservable loss changes into
observable signals, such as the number of repetitions.

the basis of the DP-based defense, the instruction-based defense
further reduces the performance of the Brainwash attack while
having a negligible influence on the Repeat attack performance.
Adding the filter-based defense on top of these two defenses further
reduces the effectiveness of the Repeat attack. Upon combining
all three defenses, the overall performance of the hybrid attack
is reduced from 0.59 to 0.11. These results suggest that effective
defense strategies should not focus on a single component but
rather leverage a combination of defenses targeting orthogonal
components.

8 DISCUSSION AND LIMITATIONS
In this section, we discuss how our findings can advance our under-
standing of vulnerabilities in ICL, as well as the current limitations.
For Attack:We first evaluated the worst-case performance using a
posterior-based method across three datasets for three open-source
models: GPT2-XL, LLaMA, and Vicuna. The results, presented in the
extended version [44], illustrate that utilizing posterior probabilities
to determine membership status yields robust performance. This
supports our hypothesis that samples within the prompt exhibit
a significantly lower loss, indicating higher model confidence in
demonstrations.

However, despite the effectiveness of the posterior-based attack,
the inability to observe the loss directly from text output high-
lights the difficulty of conducting membership inference attacks
using only text data. The main challenge lies in converting these
unobservable aspects into observable ones.

To tackle this, we conducted an in-depth analysis to understand
how the Brainwash attack converts unobservable signals, such
as loss, into observable ones. Specifically, we visualized the loss
dynamics for both the correct class and the maliciously introduced
“brainwash” class, as illustrated in Figure 22.

Both two figures indicate that when we brainwash the language
model using incorrect labels, the loss on the correct class grad-
ually increases, while the loss on the incorrect brainwash class
decreases. When the loss of the correct class surpasses that of the
brainwash class, the language model predicts the wrong label. This
phenomenon explains how ICL interacts with brainwash samples.
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Furthermore, we can see that for member samples and non-
member samples, the speed loss increase is different. Specifically,
as shown in Figure 22b, for non-member samples that are not
included in the prompt, the loss on the correct class increases rapidly
when facing brainwash samples. This indicates that the language
model’s confidence in target samples can easily be influenced, and
the language model quickly accepts the brainwash class, evidenced
by the sharp decrease of the loss on the brainwash class. However,
for member samples, the loss on the correct class increases more
slowly, and the brainwash class requires more repetitions to reduce
the loss, resulting in a delayed intersection point.

This analysis highlights how our brainwash attack can transform
unobservable signals, such as loss, into observable signals, such as
the number of repetitions. This conversion makes the attack feasi-
ble in realistic and challenging scenarios where the target model
outputs only text. Besides, this approach is analogous to label-only
membership inference attacks in the vision domain, where adversar-
ial perturbations indicate model confidence in target samples. Our
method can be regarded as an adversarial perturbation technique
for LLMs with text-only output, even with restricted output.

We acknowledge that currently, it’s challenging to provide a
theoretical understanding of the vulnerability, as the community
is still exploring how ICL interacts with the model. For example,
NeedleInAHayStack [6] demonstrates that when facing a long con-
text, the models are more likely to memorize information encoded
at the beginning/end, but Anthropic [7] later pointed out that these
findings may be influenced by the prompt.

Our attack provides empirical evidence on how models mem-
orize demonstrations in an adversarial setting and shares some
common vulnerabilities, like the first and last demonstrations are
more more vulnerable to privacy leakage. Moreover, our analysis
suggests further attacks could follow the same intuition by propos-
ing different methods that better approximate the confidence of the
LLMs to the target samples, thereby enhancing attack performance.
For Defense: Our work provides insights into defense strategies,
indicating that effective defenses should combine multiple compo-
nents, such as data, instruction, and output, rather than focusing
on a single aspect. As shown in Figure 21, different defense mech-
anisms each have their own advantages, and combining defenses
from orthogonal dimensions can result in better synergy.

Additionally, our study indicates that relying solely on devel-
oper interventions, such as Reinforcement Learning from Human
Feedback (RLHF), may introduce side effects. This is evidenced by
the varying attack performance across different model versions,
as shown in Figure 15. A version that is effective at defending
against one type of attack may inadvertently increase the model’s
vulnerability to another type of attack.

While it is challenging to draw a formalized conclusion at this
stage, we believe our findings offer valuable insights that could
benefit the community in better understanding these vulnerabilities.

9 ETHICAL AND PRIVACY CONSIDERATIONS
Membership inference attacks against ICL in LLMs pose signifi-
cant privacy risks, as they can reveal whether specific data points
were used in the model’s demonstrations. This threat can lead to
the exposure of sensitive personal information, undermining user

trust and potentially causing harm. Ethically, it is crucial to ensure
transparency, fairness, and accountability in the use of LLMs.

On the other hand, these attacks can serve as auditing tools
to verify whether unauthorized data has been used to construct
prompts. To mitigate these risks, we suggest a series of strategies,
including differential privacy, instruction-based, and filter-based
defenses. We strongly recommend that developers integrate these
approaches when releasing query APIs. Employing these mitigation
strategies can protect user data and maintain ethical standards in
AI development and deployment.

10 CONCLUSION
In this paper, we propose the first text-only membership inference
attack against ICL. Our attack exhibits effectiveness across various
scenarios, including instances where the language model is con-
strained to generating responses from a predefined list. We conduct
extensive experiments across diverse datasets and language models
and empirically demonstrate the effectiveness of our attacks. We
delve into an exploration of factors influencing attack efficacy, re-
vealing that the vulnerability of demonstrations results from the
intricate interplay between prompt size and the demonstration
position. A thorough investigation into the information leakage
in language models over time uncovers persistent vulnerabilities
even with updated versions, heightening our concerns. To mitigate
membership leakage, we explore three potential defenses, finding
that their combination significantly reduces privacy leakage.

Our study not only enhances our understanding of the intricacies
of ICL vulnerabilities but also contributes practical considerations
for prompt design and defense mechanisms. Despite the successful
implementation of defenses in specific scenarios, the quest for a
comprehensive and generalized defense strategy persists. As the
field continues to advance, our findings provide a foundation for
researchers and practitioners alike, guiding efforts toward a more
secure and privacy-conscious integration of ICL into the transfor-
mative landscape of LLMs.
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