
Auditing Membership Leakages of Multi-Exit Networks
Zheng Li

CISPA Helmholtz Center for
Information Security

Yiyong Liu
CISPA Helmholtz Center for

Information Security

Xinlei He
CISPA Helmholtz Center for

Information Security

Ning Yu
Salesforce Research

Michael Backes
CISPA Helmholtz Center for

Information Security

Yang Zhang
CISPA Helmholtz Center for

Information Security

ABSTRACT
Relying on the truth that not all inputs require the same level of
computational cost to produce reliable predictions, multi-exit net-
works are gaining attention as a prominent approach for pushing
the limits of efficient deployment. Multi-exit networks endow a
backbone model with early exits, allowing predictions at interme-
diate layers of the model and thus saving computation time and
energy. However, various current designs of multi-exit networks
are only considered to achieve the best trade-off between resource
usage efficiency and prediction accuracy, the privacy risks stem-
ming from them have never been explored. This prompts the need
for a comprehensive investigation of privacy risks in multi-exit
networks.

In this paper, we perform the first privacy analysis of multi-exit
networks through the lens of membership leakages. In particular,
we first leverage the existing attack methodologies to quantify the
multi-exit networks’ vulnerability to membership leakages. Our
experimental results show that multi-exit networks are less vul-
nerable to membership leakages, and the exit (number and depth)
attached to the backbone model is highly correlated with the attack
performance. Furthermore, we propose a hybrid attack that exploits
the exit information to improve the performance of existing attacks.
We evaluate membership leakage threat caused by our hybrid attack
under three different adversarial setups, ultimately arriving at a
model-free and data-free adversary. These results clearly demon-
strate that our hybrid attacks are very broadly applicable, thereby
the corresponding risks are much more severe than shown by ex-
isting membership inference attacks. We further present a defense
mechanism called TimeGuard specifically for multi-exit networks
and show that TimeGuard mitigates the newly proposed attacks
perfectly.1

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

1Our code is available at https://github.com/zhenglisec/Multi-Exit-Privacy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3559359

KEYWORDS
machine learning; multi-exit networks; membership leakages

ACM Reference Format:
Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, Yang Zhang. 2022.
Auditing Membership Leakages of Multi-Exit Networks. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3548606.3559359

1 INTRODUCTION
Machine Learning (ML) has established itself as a cornerstone for
a wide range of critical applications, such as image classification
and face recognition. To achieve better performance, large ML mod-
els with increasing complexity are proposed. The improvement in
performance stems from the fact that the deeper ML model fixes
the errors of the shallower one. This means some samples that are
already correctly classified or recognized by the shallow ML model
do not require additional complexity. However, such progression to
deeper ML models has dramatically increased the latency and en-
ergy required for feedforward inference, which further contradicts
the research activity in Green AI [1, 48] that aims to decrease AI’s
environmental footprint and increase its inclusivity. This reality has
motivated research on input-adaptive mechanisms, i.e., multi-exit
networks, which is an emerging direction for fast inference and
energy-efficient computing.

The multi-exit model consists of a backbone model (i.e., a large
vanilla model) and multiple exits (i.e., lightweight classifiers) at-
tached to the backbone model at different depths. The backbone
model is used for feature extraction and the lightweight classifiers
allow data samples to be predicted and to exit at an early layer of the
model based on tunable early-exit criteria. Multi-exit architecture
can be applied to many critical applications as it can effectively
reduce computational costs. For example, exiting early means low
latency, which is crucial for operating under real-time constraints in
robotics applications, such as self-driving cars. Furthermore, early
exiting can improve energy efficiency, which directly influences
battery life and heat release, especially on mobile devices.

1.1 Our Contributions

Motivation. Multi-exit networks, despite their low latency and
high energy efficiency, also rely on large-scale data to train them-
selves, as the way vanilla ML models are trained. In many cases,
the data contains sensitive and private information about indi-
viduals, such as shopping preferences, social relationships, and
health status. Various recent studies have shown that vanilla ML

https://github.com/zhenglisec/Multi-Exit-Privacy
https://doi.org/10.1145/3548606.3559359
https://doi.org/10.1145/3548606.3559359

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

models, represented by image classifiers, are vulnerable to privacy
attacks [33, 35, 37, 42, 46, 49, 51]. One major attack in this domain
is membership inference: An adversary aims to infer whether a
data sample is part of a target ML model’s training dataset.

However, various current designs of multi-exit networks are
only considered to achieve the best trade-off between resource us-
age efficiency and prediction accuracy, the privacy risks stemming
from them have never been explored. This prompts the need for
a comprehensive investigation of privacy risks in multi-exit net-
works, such as the vulnerability of multi-exit networks to privacy
attacks, the reasons inherent in this vulnerability, the factors that
affect attack performance, and whether or how these factors can
be exploited to improve or reduce attack performance.

In this paper, we take the first step to audit the privacy risks of
multi-exit networks through the lens of membership inference.
More specifically, we focus on machine learning classification,
which is the most common machine learning task, and conduct
experiments with 3 types of membership inference attacks, 6 bench-
mark datasets, and 8 model architectures.

Main Findings. We first leverage the existing attack method-
ologies (gradient-based, score-based, and label-only) to audit the
multi-exit networks’ vulnerability through membership inference
attacks. We conduct extensive experiments, and the empirical re-
sults demonstrate that multi-exit models are less vulnerable to
membership inference attacks than vanilla ML models. For instance,
considering the score-based attacks, we achieve an attack success
rate of 0.5413 on the multi-exit model trained on CIFAR-10 with
the backbone model being ResNet-56, while the result is 0.7122 on
the corresponding vanilla ResNet-56. Furthermore, we delve more
deeply into the reasons for the lower vulnerability and reveal that
the reason behind this is that the multi-exit models are less likely
to be overfitted.

We also find that the number of exits is negatively correlated
with the attack performance, i.e., multi-exit models with more exits
are less vulnerable to membership inference. Besides, a more inter-
esting observation is that considering a certain multi-exit model,
exit depth is positively correlated with attack performance, i.e.,
exits attached to the backbone model at deeper locations are more
vulnerable to membership inference. These observations are due to
the fact that different depths of exits in the backbone model actu-
ally imply different capacity models, and that deeper exits imply
higher capacity models, which are more likely to be overfitted by
memorizing properties of the training set.

Hybrid Attack. The above findings render us a new factor to
improve the attack performance. More concretely, we propose a
novel hybrid attack against multi-exit networks that exploit the
exit information as new knowledge of the adversary. The hybrid
attack’s methodology can be divided into two stages, each of which
actually represents one type of attack against ML models:

• Hyperparameter stealing: the adversary’s goal is to steal the
hyperparameters, i.e., the number of exits and the exit depth
of a given multi-exit network designed by the model owner.

• Enhancedmembership inference: the adversary then exploits
the stolen exit information as new knowledge to launchmore
powerful member inference attacks.

In particular, we study three different adversaries for obtaining
exit information by starting with some strong assumptions, and
gradually relaxing these assumptions in order to show that far more
broadly applicable attack scenarios are possible. Our investigation
shows that indeed, our proposed hybrid attack can achieve better
attack performance by exploiting extra exit information, compared
to original membership inference attacks.
Adversary 1. For the first adversary, we assume they have direct
access to the exit information, i.e., exit depth, as well as train a
shadow model of the same architecture (especially the exit place-
ments) as the target model. Further, the adversary trains the shadow
models on a shadow dataset that comes from the same distribution
as the target dataset. The assumption of same-architecture and
same-distribution also holds for almost all existing membership
inference attacks [33, 35, 37, 42, 46, 49, 51].

We start by querying the target model using a large number
of data samples to determine the number of exits attached to the
model. Then we propose different methods (e.g., one-hot encoding)
based on the attack models adopted by existing attacks to exploit
this exit information. Extensive experimental evaluation shows that
extra exit information indeed leaks more membership information
about training data. For example, our hybrid attack achieves an
attack success rate of 0.7681 on a multi-exit WideResNet-32 trained
on CIFAR-100, while the result of the original attack is 0.6799.
Adversary 2. For this adversary, we relax the assumption that they
have direct access to exit information and keep the assumption of
the same architecture and same distribution unchanged. This is a
more challenging scenario compared to the previous one.

In this scenario, we propose time-based hyperparameter stealing
to obtain the exit information. Concretely, we feed a set of samples
to the target multi-exit model and record the inference time of
these samples. We then propose a simple but effective unsupervised
method to cluster the samples based on different inference times.
Thus, the number of clusters implies the number of exits, and the
index of clusters implies the exit depth.

The intuition is that the goal of multi-exit models is to reduce
computational costs by allowing data samples to be predicted and
to exit at an early point. Therefore, the inference time for data
samples inevitably varies with the depth of the exit, i.e., data sam-
ples leaving deeper exit points imply longer inference times. Thus,
we can determine the exit depths by observing the magnitude of
inference time. Experimental results show that our hybrid attack
achieves a strong performance as our time-based hyperparameter
stealing can achieve almost 100% prediction accuracy of exit depths.
Adversary 3. This adversary works without any knowledge about
the target models and target datasets, that is, the adversary can
only construct a shadow model that is different from the target
model or a dataset from a different distribution from the target
dataset. Meanwhile, the different architectures between the shadow
model and the target model will inevitably lead to different exit
placements between them. Encouragingly, our hybrid attack still
has better attack performance than the original attacks, suggesting
that the extra exit information has a broader range of applicable
attack scenarios.

Finally, we propose a simple but effective defense mechanism
called TimeGuard, which postpones giving the prediction, rather

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

than giving them immediately. Our in-depth analysis shows that
TimeGuard can reduce attack performance to a lower bound and
maintain high efficiency, i.e., achieve the best trade-off between
privacy and efficiency.

Abstractly, our contributions can be summarized as follows:
• We take the first step to audit the privacy risks of multi-exit
networks through the lens of membership inference attacks.

• Our empirical evaluation shows that the multi-exit networks
are less vulnerable to member inference, and the exit infor-
mation is highly correlated with the attack performance.

• We propose a hybrid attack that exploits the exit information
to improve the attack performance of membership inference.

• We evaluate membership leakage threat caused by hybrid
attack under three different adversarial setups, ultimately ar-
riving at a model-free and data-free adversary, which further
enlarges the scope of the hybrid attack.

• We propose TimeGuard to mitigate privacy risks stemming
from our attack and empirically evaluate its effectiveness.

2 PRELIMINARIES
2.1 Membership Leakages in Machine Learning

Models
Membership leakages in ML models emerge when an adversary
aims to identify whether a data sample was used to train a certain
model or not. It can raise severe privacy risks as themembership can
reveal an individual’s private information. For example, identifying
an individual’s participation in a hospital’s health analytic training
set reveals that this individual was once a patient in that hospital.

To evaluate the vulnerability of a givenMLmodel to membership
leakages, membership inference attacks are used as an auditing tool
to quantify the private information that a model leaks about the
individual data samples in its training set. In this work, we focus
on auditing the membership leakages of multi-exit networks.

2.2 Multi-Exit Networks
Multi-exit networks save computation by making input-specific
decisions about bypassing the remaining layers, once the model
becomes confident. More concretely, a multi-exit network applies
multiple lightweight classifiers on a vanilla ML model to allow the
inference to preemptively finish at one of the exit points when
the network is sufficiently confident with a predefined stopping
criterion. See Figure 1 for an illustration of the design of multi-exit
networks. In this paper, we focus on the pioneer and, meanwhile
the most representative design of multi-exit networks.

Backbone Initialisation. As aforementioned, multi-exit networks
modify the vanilla ML model by adding multiple lightweight classi-
fiers at certain placements throughout the network. Here, vanilla
ML models are also referred to as backbone models. A backbone
model can be any regular machine learning model architecture. For
example, in this work, we focus on the image classification task, so
such backbone models can be convolutional networks applicable
to vision, such as VGG [50], ResNet [18], and MobileNet [47].

Exit Placement. For simplicity, exit placements are restricted
to be at the output of individual network blocks, following an
approximately equidistant workload distribution.

Linear Layer (Classifier)

Convolutional Layer
Residul Block

Block Group

Internal Exit
Point (Exit 0)

Internal Exit
Point (Exit 1)

Final Exit
Point (Exit 2)

Figure 1: An illustration of multi-exit network with 3 exits
inserted, including 2 internal exit points and 1 final exit
point.

Multi-Exit Network Training. Given a training dataset, a multi-
exit model is optimized by minimizing the loss function of all train-
ing samples and exit points. The training process includes two
phases: feedforward pass and backward pass. In the former, data
samples are passed through the model, including the final exit point
and internal exit points, and the network outputs from all exit points
are recorded, and then the loss of the network is calculated. In the
latter, the weights of the model are updated using gradient descent
by the loss backpropagation. In addition to the joint training de-
scribed above, Kaya et al. [29] also perform exit-only training, i.e.,
optimizing only the attached lightweight classifiers. In this work,
we focus only on joint training, as it allows for better prediction
performance.

Early-Exit Criteria. Given a data sample, it will leave at one of
the exit points when the network is sufficiently confident with a
predefined stopping criterion. To quantify confidence, we use the
estimated probability that the sample belongs to the top-1 class. If
this probability surpasses a threshold 𝜏 , we consider the prediction
to be credible. This threshold helps to instantly adjust early exits
based on resource availability and performance requirements. Fol-
lowing most previous works [21, 26, 29, 43, 44, 54], the principle of
threshold selection is to guarantee the same or similar classification
performance as vanilla models while gaining a lower computational
cost. See our technique report [36] for how to select a threshold.

Application Scenarios. As introduced in Section 1, with the
benefits of low latency and energy efficiency, multi-exit archi-
tectures can be used in many real-world applications. In the in-
dustry, IT companies leverage multi-exit networks to accelerate
forward inference. For instance, Intel [2] has developed multi-
exit architectures to reduce the computational cost of DNNs. Mi-
crosoft [61] and Huawei [23] conducted research on reducing the
computational complexity of BERT for bringing language mod-
els to IoT devices. Besides, there is a growing body of applica-
tions deploying multi-exit architectures to IoT scenarios and real-
time systems [24, 27, 28, 34, 60]. In academia, there has been sub-
stantial research focusing on minimizing the computational and
energy requirements of multi-exit networks for efficient infer-
ence [13, 21, 22, 25, 26, 29, 30, 32, 38, 43, 44, 54–57]. In short, multi-
exit networks are gaining significant attention and rapid develop-
ment in both industry and academia.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

3 QUANTIFYING MEMBERSHIP LEAKAGE
RISKS

In this section, we quantify the privacy risks of multi-exit networks
through the lens of membership inference attacks. We start by defin-
ing the threat model. Then, we describe the attack methodology.
Finally, we present the evaluation results. Note that our goal here
is not to propose a novel membership inference attack, instead, we
aim to quantify the membership leakages of multi-exit networks.
Therefore, we follow the existing attacks and their threat models.

3.1 Threat Model
Here, we outline the threat models considered in this paper. There
are three existing categories of scenarios, i.e., white-box scenario,
black-box scenario, and label-only scenario.

Given a target model, we assume the adversary has an auxiliary
dataset (namely shadow dataset) that comes from the same distribu-
tion as the target model’s training set. The shadow dataset is used
to train a shadow model, the goal of which is to mimic the behavior
of the target model to perform the attack. Furthermore, we assume
the shadow model has the same architecture as the target model
following previous works [33, 35, 37, 42, 46, 49, 51]. In particular,
the exit placements of the shadow multi-exit model are also the
same as that of the target multi-exit model.

3.2 Attack Methodology
We leverage existing membership inference attacks, which are de-
signed for vanilla ML models, to multi-exit models.

Gradient-based Attacks. In gradient-based attacks [33, 42], the
adversary obtains all adversarial knowledge and has full access to
the target model. Given a shadow dataset Dshadow, the adversary
first splits it into two disjoint sets, i.e., shadow training set Dtrain

shadow
and shadow testing set Dtest

shadow. Then the adversary queries the
shadow model S on each data sample 𝑥 from Dtrain

shadow, and com-
putes the prediction score, the feature of the second to the last layer,
the loss in a forward pass, and the gradient of the loss with respect
to the last layer’s parameters in the backward pass. These compu-
tations, in addition to the one-hot encoding of the true label, are
concatenated into a flat vector and labeled as a member if 𝑥 is in the
shadow training set Dtrain

shadow, otherwise labeled as a non-member.
In this way, the adversary can derive all data samples of Dshadow
as an attack training data set. With the attack training dataset, the
adversary then trains the attack model, which is a binary classifier.
Once the attack model is trained, the adversary can perform the
attack to query the target model T to differentiate members and
nonmembers of the target dataset Dtarget.

Score-based Attacks. Score-based attacks [35, 46, 49, 51] need
to train the shadow model as well. Unlike gradient-based attacks,
score-based attacks do not require intermediate features or gradi-
ents of the target model, but only access to the output scores of
the model. The adversary also derives the attack training dataset
by querying the shadow model using the shadow training dataset
(labeled as members) and the shadow test dataset (labeled as non-
members). The adversary can then use the attack training set to
construct an attack model.

Label-only Attacks. Label-only attacks [11, 37] consider a more
restricted scenario where the target model only exposes the pre-
dicted label instead of intermediate features or gradients, or even
output scores. Thus, label-only attacks solely rely on the target
model’s predicated label as their attack model’s input. Similar to
previous attacks, this attack requires the adversary to train a shadow
model. The adversary queries the target model on a data sample
and perturbs it to change the model’s predicted labels. Then, the
adversary measures the magnitude of the perturbation and con-
siders the data samples as members if their magnitude is greater
than a predefined threshold, which can be derived by perturbing
the shadow dataset on the shadow model.

3.3 Experimental Settings

Datasets. We consider six benchmark datasets of different tasks,
sizes and complexity to conduct our experiments. Concretely, we
adopt three computer vision tasks, namely CIFAR-10 [3], CIFAR-
100 [3], TinyImageNet [4], and three non-computer vision tasks,
namely Purchases [5], Locations [6] and Texas [7]. In particular,
the latter three datasets are privacy-sensitive: Purchases dataset
relates to shopping preferences, Locations dataset relates to social
connections, and Texas dataset relates to health status. Details of
all six datasets can be found in our technique report [36].

Datasets Configuration. For a given dataset D, we randomly
split it into four disjoint equal parts: Dtrain

target, Dtest
target, Dtrain

shadow, and
Dtest

shadow. We use Dtrain
target to train the target model T and treat it

as the members of the target model. We treat Dtest
target as the non-

members of the target model. Similarly, we useDtrain
shadow to train the

shadow model S and treat it as the members of the shadow model.
We again treat Dtest

shadow as the non-members of the shadow model.
We feed all Dtrain

shadow and Dtest
shadow to the shadow model to create an

attack training dataset to train the attack models.

Attack Model. Here we establish three types of attack models and
each type for one attack.

• Gradient-based. This attack has five inputs for the attack
model, like the one used by Nasr et al. [42], including the
target sample’s prediction score, the feature of the second to
the last layer, classification loss, gradients of the last layer’s
parameters, and one-hot encoding of its true label. Each input
is fed into a different MLP (2 or 3 layers) and the resulting
embeddings are concatenated together as one vector to a
4-layer MLP.

• Score-based. The score-based attack utilizes the predicted
score as input to the attack model, which is constructed as a
4-layer MLP with one input component.

• Label-only. Here, the attack model is not a specific MLP,
but a decision function that measures the magnitude of the
perturbation and considers data samples as members if their
magnitude is larger than a predefined threshold, which can
be derived by perturbing the shadow dataset on shadow
model.

Target Model (Multi-Exit Model). For computer vision tasks,
we adopt four popular architectures as the backbone to construct

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

CIFAR-10 CIFAR-100 TinyImageNet Purchases Locations Texas
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Vanilla

Multi-Exit

(a) Classification Accuracy

CIFAR-10 CIFAR-100 TinyImageNet Purchases Locations Texas

10−2

10−1

100

G
op

s

(b) Computational Cost

Figure 2: The performance of original classification tasks and computational costs for both vanilla models and multi-exit
models. computer vision tasks are on VGG-16, and non-computer vision tasks are on FCN-18-1.

1 2 3 4 5 6
The Number of Exits

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

rfi
tt

in
g

L
ev

el

CIFAR-10

CIFAR-100

TinyImageNet

(a) VGG-16

1 2 3 4 5 6
The Number of Exits

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

rfi
tt

in
g

L
ev

el

(b) WideResNet-32

Figure 3: Comparison of overfitting levels between vanilla
and multi-exit model. Note that 1 exit represents the vanilla
model and 2-6 exits represent different multi-exit models.

multi-exit models, including VGG-16 [50], ResNet-56 [18], Mo-
bileNetV2 [47], and WideResNet-32 [59]. For non-computer vision
tasks, we designed four 18-layer fully connected networks (FCN-18)
with different numbers of hidden neural units (1024, 2048, 3072,
4096), named FCN-18-1/2/3/4 throughout the paper. See our tech-
nique report [36] for more details about these architectures. For
the exit placement, we follow the principle of Kaya et al. [29] by
attaching an additional lightweight classifier (2- or 3-layer MLP)
as an exit, i.e., exit placements are restricted to be at the output of
individual network blocks, following an approximately equidistant
workload distribution. In particular, for each backbone model, we
construct 5 different target models with the number of exits varying
from 2 to 6. Note that here we consider the backbone model’s own
classifier as the final exit point and count it in the total number of
exits. For early-exit threshold 𝜏 (0 ≤ 𝜏 ≤ 1), we manually search for
suitable 𝜏 value (among 0 to 1 in 0.05 steps) that achieve the same
or similar classification performance as vanilla (backbone) models
while gaining lower computational cost. To evaluate computational
cost, we calculate the number of mathematical operations (denoted
as ops) in the feedforward pass process by averaging over 10,000
images. The early-exit thresholds we set for multi-exit models can
be found in our technique report [36].

Baseline (Vanilla Model). To fully understand the membership
leakages of multi-exit models, we further use the vanilla model
as the baseline model. We train eight models from scratch for all
datasets, including both computer vision and non-computer vision
models. In all cases, including vanilla and multi-exit models, we
adopt cross-entropy as the loss function and Adam as the optimizer,
and train them for 100 epochs. Our code is implemented in Python
3.8 and PyTorch 1.8.1 and runs on an NVIDIA HGX-A100 server
with Ubuntu 18.04.

Metric. Following previous work, we adopt the accuracy, i.e., attack
success rate (denoted as ASR), as the attack model’s training and
testing datasets are both balanced with respect to membership
distribution. Note that we average the performance of different
multi-exit models with the number of exits varying from 2 to 6 and
report the mean and standard deviation.

3.4 Results

Classification Accuracy and Computational Cost. We first
show the performance of vanilla and multi-exit models on their
original classification tasks and computational costs in Figure 2. See
more results in our technique report [36]. We observe that the multi-
exit model performs at least on par with the vanilla model on the
classification task, but is much better in terms of computational cost.
For instance, the multi-exit VGG-16 trained on CIFAR-10 achieves
80.558% accuracy, which is better than 80.04% accuracy of vanilla
VGG-16. As for the computational cost, the multi-exit VGG-16
achieves 0.3125 Gops while the vanilla model achieves 0.6283 Gops.

Attack ASR Score. Regardingmembership inference against vanilla
and multi-exit models, we report ASR score on various datasets and
model architectures in Figure 4. See more results in our technique
report [36]. We can observe that all the multi-exit models have
lower ASR than the vanilla models. For example, score-based ASR on
vanilla VGG-16 trained on CIFAR-100 is 0.8738, while the mean ASR
on multi-exit VGG-16 is only 0.5914. Label-only ASR on vanilla FCN-
18-1 trained on Locations is 0.8866, while themean ASR onmulti-exit
VGG-16 is 0.7831. However, these results may lead to premature
claims of privacy. Section 4 presents that the membership leakage
risks stemming from our hybrid attack are much more severe than
shown by existing attacks.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Vanilla

Multi-Exit

(a) Gradient-based

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(b) Score-based

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(c) Label-only

Figure 4: The attack performance of original membership inference attacks again vanilla and multi-exit models. Computer
vision tasks are on VGG-16, and non-computer vision tasks are on FCN-18-1.

0 5 10 15 20
Classification Loss

100

101

102

103

104

N
um

b
er

s

(a) Vanilla

0 5 10 15 20
Classification Loss

100

101

102

103

104

N
um

b
er

s

(b) Multi-Exit

Figure 5: The distribution of loss with respect to original
classification tasks for member and non-member samples
between the vanilla VGG-16 and the 4-Exit VGG-16 onCIFAR-
10.

Overfitting Level. Here, we delve more deeply into the reasons for
the less vulnerability of multi-exit models. As almost all previous
works [20, 35, 37, 41, 46, 49, 51, 58] claim that the overfitting level
is the main factor contributing to the vulnerability of the model to
membership inference, i.e., a lower overfitting level leads to less
vulnerability to membership inference. Here, we also relate this to
the different overfitting levels of ML models. The overfitting level
of a given model is measured by calculating the difference between
its training accuracy and testing accuracy, i.e., subtracting testing
accuracy from training accuracy, which is adopted by previous
works. In Figure 3, however, we see that the overfitting level of
multi-exit models remains almost the same compared to the vanilla
model, especially in VGG-16 and WideResNet-32 trained CIFAR-10
dataset.

This observation which is contradictory to the previous con-
clusion inspires us to rethink the relationship between overfitting
levels and vulnerability to membership inference. More precisely,
we argue that the current calculation, i.e., subtracting test accu-
racy from training accuracy, is not the best way to characterize
overfitting level, which leads to no strong correlation between over-
fitting level and vulnerability to membership inference, at least for
multi-exit models.

Loss Distribution. To find a more appropriate way to characterize
the overfitting level and also to further investigate why the multi-
exit model is less vulnerable to membership inference, we analyze

0 1 2 3 4 5
Classification Loss

100

101

102

103

N
um

b
er

s

(a) Exit #0

0 1 2 3 4 5
Classification Loss

100

101

102

103

N
um

b
er

s

(b) Exit #3

Figure 6: The distribution of loss with respect to original
classification tasks for member and non-member samples of
4-Exit VGG-16 on CIFAR-10.

the loss distribution between members and non-members in both
vanilla and multi-exit models. Due to space limitations, we only
show the results of VGG-16 trained on the CIFAR-10 dataset in
Figure 5. A clear trend is that compared to the vanilla VGG-16,
the multi-exit VGG-16 has a much lower divergence between the
classification loss (cross-entropy) for members and non-members,
especially the classification loss of members becomes larger. Note
that in Figure 3a, the overfitting level calculated by subtracting test
accuracy from training accuracy is almost the same between vanilla
and multi-exit VGG-16 trained on CIFAR-10.

We further report the loss distribution and attack performance by
“exit taken”, i.e., specific exit depth of one certain multi-exit model.
Figure 6 shows the loss distribution for members and non-members
by “exit taken” for 4-exit VGG-16. We can see that the divergence
between the loss distribution for members and non-members is
becoming larger by exit depth. In other words, the early exits are
less overfitting while the latter exits are much more overfitting. We
further report the attack ASR score of original label-only attack
against vanilla, multi-exit, and multi-exit with one specific exit (i.e.,
“exit taken”) in Figure 7. We can find that latter exits are much more
vulnerable to membership leakages, which is consistent with the
trend in loss distribution of “exit taken”.

Based on the above observation, we believe that calculating
the divergence between the loss distribution of members and non-
members can better characterize the overfitting level. More con-
cretely, we leverage Jensen-Shannon (denoted as JS) divergence,

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Vanilla

Multi-Exit

Exit Taken

(a) CIFAR-10, VGG-16

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(b) CIFAR-100, ResNet-56

Figure 7: The attack performance of original label-only attack
against vanilla model and 6-exit model with one specific exit
(i.e., “exit taken”).

1 2 3 4 5 6
The Number of Exits

0.0

0.2

0.4

0.6

0.8

1.0

JS
D

iv
er

ge
nc

e

CIFAR-10

CIFAR-100

TinyImageNet

(a) VGG-16

1 2 3 4 5 6
The Number of Exits

0.0

0.2

0.4

0.6

0.8

1.0

JS
D

iv
er

ge
nc

e

(b) WideResNet-32

Figure 8: Comparison of JS divergence between vanilla and
multi-exit model. Note that 1 exit represents the vanilla
model and 2-6 exits represent different multi-exit models.

a widely used metric, to measure the distance of two probability
distributions [15]. In Figure 8, we display JS divergence between
the classification loss of members and non-members with respect to
the number of exits. We can see that the JS divergence of multi-exit
models is clearly lower than that of vanilla models. These results
show that JS divergence is indeed a better way to characterize the
overfitting level.

Effects of the Number of Exits. We further investigate the
effects of the number of exits attached to the backbone models.
More interestingly, in Figure 8, we can also find the model with
more number of exits leads to lower divergence. This indicates that
the number of exits is negatively correlated to the vulnerability to
membership leakages. The reason is that more exits attached to the
backbone model mean that more data samples leave the earlier exit
points than the final exit points, which makes the model less likely
to be overfitted.

Effects of the Depth of Exits. Here we investigate the effects
of the depth of exits attached to the backbone models. Given a
backbone model with 6 exits, we use the exit index (from 0 to 5)
to represent the depth of exits. We calculate the JS divergence
for members and non-members of each exit point separately. As
shown in Figure 9, we can see that the JS divergence increases with
the depth of exit. These results indicate that the depth of exits is

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

JS
D

iv
er

ge
nc

e

CIFAR-10

CIFAR-100

TinyImageNet

(a) VGG-16 (6 Exits)

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

JS
D

iv
er

ge
nc

e

(b) WideResNet-32 (6 Exits)

Figure 9: The JS divergence of classification loss with respect
to the depth of exits. The x-axis represents the depth of exit.
The y-axis represents the JS divergence.

positively correlated to the vulnerability to membership leakages,
i.e., the samples leaving from deeper exit points were easier to
distinguish between members and non-members. The reason for
this observation is that deeper exit points imply higher capacity
models, which are more likely to be overfitted to the training set.

4 HYBRID ATTACK
After quantifying membership leakages of multi-exit models, we
conclude that the multi-exit models are less vulnerable to member-
ship leakages and, more interestingly, we find that exit information
is highly correlated with attack performance. The latter motivates
us to present a new research question: Can extra exit information
(number and depth) of the multi-exit model leak more membership
information about the training set?. Before answering it, more im-
portantly, we need to answer these two-step questions first:

• how to obtain the exit information of target multi-exit mod-
els, especially in black-box and label-only scenarios.

• how to leverage the exit information to improve existing
membership inference attacks.

In the next section, we propose a novel hybrid attack that first
steals exit information and then exploits the exit information as
new knowledge for the adversary. In particular, we study three
different scenarios for hybrid attacks by starting with some strong
assumptions and gradually relaxing them to show that far more
broadly applicable attack scenarios are possible.

4.1 Adversary 1
In this section, we describe our first adversary considered for lever-
aging exit information to mount membership inference attacks.
For this adversary, we mainly make a strong assumption about
the adversary’s knowledge. In consequence, the research question
of whether extra exit information will leak more membership in-
formation can be investigated in a more effective and lower-cost
way. In the following, we start by defining the threat model, then
describe the adversary’s attack methodology. In the end, we present
a comprehensive experimental evaluation.

Threat Model. We assume that the adversary has direct access
to exit information, i.e., exit depth. More concretely, given a data
sample and a 6-exit model, the model outputs not only predictions

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Vanilla

Multi-Exit

Multi-Exit (adversary 1)

(a) Gradient-based

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(b) Score-based

CIFAR-10
CIFAR-100

TinyImageNet
Purchases

Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(c) Label-only

Figure 10: The attack performance of different membership inference attacks on all datasets. The blue and green bars indicate
the original attack on the vanilla and multi-exit models, while the red bar indicates our hybrid attack on the multi-exit model.
Computer vision tasks are on VGG-16, and non-computer vision tasks are on FCN-18-1.

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

6-Exit VGG-16

6-Exit ResNet-56

6-Exit MobileNet

6-Exit WideResNet-32

(a) CIFAR-10

0 1 2 3 4 5
The Depth of Exit (Index)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

6-Exit FCN-18-1

6-Exit FCN-18-2

6-Exit FCN-18-3

6-Exit FCN-18-4

(b) Purchases

Figure 11: Proportion of non-members in all samples leaving
at each exit.

(score or label) but also exit information, e.g., predictions from the
first exit point (exit 0) or the sixth exit point (exit 5). Note that here,
we directly consider the exit index as the exit depth. exit 0 means
the shortest path from the entry point to the first exit, while exit 5
means the longest path from the entry point to the final exit.

In addition, we make the same assumptions for other settings,
such as data knowledge, training knowledge, model knowledge,
and output knowledge.

Methodology. The methodology is organized into two stages:
hyperparameter stealing and enhanced membership inference.
Hyperparameter Stealing. The adversary first queries the target
model using a large number of data samples, which can come from
the shadow dataset or random data samples collected from the Inter-
net. They then count all exit indexes and sort them from smallest to
largest. Thus, the largest index implies the number of exits attached
to the backbone model.
Enhanced Membership Inference. According to the two different
types of attack models used in existing attacks, we propose different
methods for each attack model to exploit the exit information.

• MLP Attack Model. In gradient-based and score-based
attacks using MLP as the attack model, given the exit infor-
mation (number and depth), the adversary first converts it to
a one-hot encoding, which is the same as the one-hot encod-
ing of the true label used in the gradient-based attack. They

then provide the one-hot encoding of the exit information
and other existing information to the attack model.

• Decision Function. In the original label-only attack, the
adversary measures the magnitude of the perturbation and
treats the data samples as members if their magnitude is
larger than a predefined threshold. Here, instead of perform-
ing the above operation directly on all data samples, the
adversary first separates the data samples according to their
exit depths and then performs the above operation to distin-
guish members and non-members of each exit depth. The
thresholds are also derived in this way on the shadow model.

Experimental Setup. For the attack models in the gradient-based
and score-based attacks, the adversary has six inputs and two inputs,
respectively, where the extra one is the one-hot encoding of the exit
depths. Thus the new attack model has one more input component.
For the evaluation metric, we again use the attack success rate
(denoted as ASR). Note that in label-only attacks, we average ASR
scores across all exit depths, as ASR is independent of exit depths.

Results. Figure 10 depicts the performance of original attacks
and our hybrid attacks (see our technique report [36] for more
results). Note that, we also average the performance of multi-exit
models with the number of exits varying from 2 to 6 and report
the mean and standard deviation. Encouragingly, we can observe
that hybrid attacks achieve clearly higher ASR score than original
attacks, regardless of datasets, architectures and attack types. These
results convincingly demonstrate that extra exit information of the
multi-exit model leaks more membership information about the
training set, compared to original information only.

More interestingly, we also find that compared with gradient-
based attacks, the extra exit information used in score-based and
label-only attacks can significantly improve the performance of the
original attacks. Recall that gradient-based attacks are applicable
in white-box scenarios. This indicates that the original gradient-
based attack has already exploited almost all the information and
thus can achieve the attack performance close to the upper bound.
Therefore, in gradient-based attacks, extra exit information can not
lead to much higher attack performance gains. In contrast, we can
observe that in label-only attacks, extra exit information leads to
much higher attack performance gains.

The above results fully demonstrate the efficacy of our hybrid
attack. Here, we delve more deeply into the reasons for the success.

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

CIFAR-10 CIFAR-100 TinyImageNet Purchases Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Vanilla

Multi-Exit

Multi-Exit (adversary 1)

Multi-Exit (adversary 2)

(a) Score-based

CIFAR-10 CIFAR-100 TinyImageNet Purchases Locations Texas
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(b) Label-only

Figure 12: The attack performance of different membership inference attacks again vanilla and multi-exit models. The blue
and green bars indicate the original attack on the vanilla and multi-exit models, while the red and purple bars indicate our
hybrid attack on the multi-exit model. Computer vision tasks are on VGG-16, and non-computer vision tasks are on FCN-18-1.

0 1 2 3 4 5
Ground Truth Index of Exits (Depth)

2

4

6

8

10

12

In
fe

re
nc

e
T

im
e

(m
ill

is
ec

on
ds

)

(a) 6-Exit ResNet-56

2.5 5.0 7.5 10.0 12.5
Inference Time (milliseconds)

10−6

10−5

10−4

10−3

10−2

10−1

100

D
en

si
ty

(b) 6-Exit ResNet-56

Figure 13: The inference time with respect to ground truth
index of exit (a), and the density estimation by KDE based
on inference time (b). They are both obtained from the same
model, i.e., 6-exit ResNet-56 trained on TinyImageNet.

Our insight is that exit depth is a critical indicator for membership
inference. Figure 11 shows the proportion of non-members in all
samples leaving at each exit. We can see that members tend to
exit early, while non-members tend to exit late. In other words,
the later exit depth itself indicates that the samples leaving here
are likely to be non-members, in contrast to early exits where
the samples are likely to be members. Recall that Figure 9 shows
that the JS divergence of late exits is much larger than early exits,
which further contributes to our hybrid attack. Such separability
of members/non-members in terms of exit depth guarantees the
efficacy of our hybrid attack.

4.2 Adversary 2
In this section, we relax the assumption that the adversary has
direct access to exit information.

Threat Model. Different from the threat model in Section 4.1,
we remove the assumption that the adversary has direct access to
exit information, i.e., exit depth. This largely reduces the attack
capabilities of the adversary. Given a data sample, the multi-exit
model gives a prediction that includes only the score or label and
does not include any exit information. This is a more realistic but

also more challenging scenario. Note that we only focus on score-
based and label-only attacks, as in this scenario it is unlikely the
adversary can obtain gradients or features of target models.

Methodology. Recall that the goal of multi-exit models is to reduce
computational costs by allowing data samples to be predicted and
to exit at an early layer. Therefore, the inference time for data
samples inevitably varieswith the depth of the exit, i.e., data samples
leaving deeper exit points imply longer inference times, as shown
in Figure 13a. This renders us a new perspective to determine
the exit information, i.e., the magnitude of inference time actually
represents the different exit depths. We refer to this method as
time-based hyperparameter stealing.

The adversary first queries the target multi-exit model using a
large number of data samples and records the inference time of these
samples. These query samples can come from the shadow dataset,
or random data collected from the Internet or any source. The ad-
versary then sorts all recorded inference time as a one-dimensional
array. Note that a longer inference time indicates a deeper exit
point. Thus the adversary can partition this one-dimensional array
into different clusters. Here we leverage Kernel Density Estimation
(KDE)[45], an unsupervised statistical method for clustering one-
dimensional data. Figure 13b shows a set of records of inference
time, and we can see that KDE fits these records with a smoothed
line. Then, several minima of the smoothed line can be used to
partition them into different clusters. Thus the number of clusters
means the number of exits attached to the target model, and the
index of each cluster means the exit depth. The reason why we
adopt KDE is that we want to cluster one-dimensional arrays (i.e.,
recorded time), for which KDE is well suited, while other popular
techniques such as K-means [39], kNN [40] and DBSCAN [14] are
multidimensional clustering algorithms.

Experimental Setup. We use all the same setups as presented in
Section 3.3. All experiments are conducted on an NVIDIA HGX-
A100 server with 4-GPU deployed. We run 4 models simultaneously
at a time, each on a single GPU. Practically, in order to get a stable
inference time, we calculate the inference time by averaging the
time of each sample 10 times.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

Table 1: The prediction accuracy of exit depths when we run
4 models simultaneously at a time, each on a single GPU. We
averaged the performance with the number of exits varying
from 2 to 6 and report the mean and stand deviations.

Target Model CIFAR-10 CIFAR-100 TinyImageNet

VGG 0.9998±2e-4 0.9999±1e-5 0.9999±1e-4
ResNet 0.9999±2e-5 1.0±0.0 1.0±0.0

MobileNet 0.9998±8e-5 1.0±0.0 0.9998±2e-4
WideResNet 0.9996±2e-7 0.9999±1e-5 0.9999±1e-5

Table 2: The prediction accuracy of exit depths when we
run 16 models simultaneously at a time, every 4 on a single
GPU.We averaged the performance with the number of exits
varying from 2 to 6 and report themean and stand deviations.

Target Model CIFAR-10 CIFAR-100 TinyImageNet

VGG 0.8027±0.1485 0.9968±0.0019 0.7167±0.0799
ResNet 0.8966±0.2158 0.9118±0.1972 0.8279±0.1859

MobileNet 0.7062±0.4015 0.9008±0.1351 0.8059±0.1336
WideResNet 0.7500±0.3561 0.9622±0.0840 0.9441±0.1105

Results. First, we report the prediction accuracy of exit depth over-
all datasets and model architectures in Table 1. As we can see, our
proposed time-based hyperparameter stealing can achieve almost
100% accuracy. This indicates that the magnitude of inference time
indeed can represent the exit depth, i.e., a longer inference time
represents a deeper exit point and vice versa. Consequently, we can
observe that our two adversaries achieve very similar performance
for various datasets and model architectures in Figure 12. More
results can be found in our technique report [36]. These results
clearly demonstrate our hybrid attacks are very broadly applicable.

Recall that we run 4 target models simultaneously at a time, each
on a single GPU. We further investigate whether a more complex
system environment affects attack performance. To this end, we
increase the number of models running simultaneously from 4 to
16, and every 4 on a single GPU. We summarize the prediction
performance of exit depth in Table 2 and the attack performance in
Figure 14. Encouragingly, Figure 14 shows that our hybrid attack
still achieves better attack performance than the original attack,
albeit a bit worse than other adversaries. Moreover, we believe
that programs or models are more likely to run in simple or clean
environments, at least not as complex as ours, especially in some
real-time constrained applications, such as self-driving cars.

Next, we focus on the practicality of our hybrid attack against
remotely deployed models, i.e., Machine Learning as a Service
(MLaaS). This is a more challenging scenario where the communi-
cation channel can be very noisy. To simulate the complex commu-
nication channel, we assume that the noise 𝑧 in the channel follows
Gaussian distribution N(𝜇, 𝜎2). More specifically, we first measure
the clean inference time 𝑡 , then sample the noise 𝑧 from N(𝜇, 𝜎2),
and finally obtain the noisy inference time 𝑡 ′ = 𝑡 + 𝑧 (𝑧 > 0). Here,
the 𝑧 > 0 is to ensure that the noisy inference time 𝑡 ′ is larger
than the clean inference time 𝑡 . To obtain a stable inference time,

CIFAR-10 CIFAR-100 TinyImageNet
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Score-based

Score-based (Adversary 1)

Score-based (Adversary 2, 1perGPU)

Score-based (Adversary 2, 4perGPU)

(a) Score-based

CIFAR-10 CIFAR-100 TinyImageNet
0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

Label-only

Label-only (Adversary 1)

Label-only (Adversary 2, 1perGPU)

Label-only (Adversary 2, 4perGPU)

(b) Label-only

Figure 14: The attack performance of different membership
inference attacks against multi-exit models. 1perGPUmeans
one model running on a single GPU while 4perGPU means 4
models running on a single GPU.

we propose a simple method that computes the inference time by
averaging the noisy inference time 10 or more times, i.e., querying
the remote model multiple times for each sample. Figure 15 shows
the prediction and attack performance under the effect of variance
𝜎 of noise and query numbers for each sample. We can see that the
highest prediction accuracy and ASR scores can be achieved if the
number of queries is large enough, i.e., multiple queries can indeed
eliminate the effect of noise. Furthermore, as shown in Figure 15a,
we can find that even if the prediction accuracy of the exit depth
drops significantly, it still leads to high attack ASR scores.

Furthermore, we delve more deeply into the lower bound of
query numbers that can guarantee high attack performance. Con-
sider the noise follows N(𝜇, 𝜎2), and two clean inference time 𝑡1
and 𝑡2 from two adjacent exits exit #1 and exit #2, respectively. Thus,
the noisy inference time 𝑡 ′ actually follows N(𝑡 + 𝜇, 𝜎2). The re-
search question now is how many query numbers can guarantee
the averaged noisy inference time 𝑡 ′1 and 𝑡 ′2 can be distinguished
with high confidence. Here, we leverage Z-Test [8], a statistical
technique, to determine whether two population means 𝑡 ′1 and 𝑡

′
2

are significantly different. To this end, we first query the target
model with one certain sample many times (typically more than
100 times) to estimate the standard deviation 𝜎 . Then we calculate
the Z-Score by the following formula:

𝑍 =
𝑡 ′1 − 𝑡 ′2√︃
𝜎2
𝑛1

+ 𝜎2
𝑛2

=
(𝑡1 + 𝜇) − (𝑡2 + 𝜇)√︃

𝜎2
𝑁

+ 𝜎2
𝑁

=
(𝑡1 − 𝑡2)

𝜎

√︃
2
𝑁

(1)

where 𝑛1 and 𝑛2 represent the query numbers for 𝑡 ′1 and 𝑡 ′2, and
we consider the same query numbers 𝑁 for all samples, i.e., 𝑛1 =

𝑛2 = 𝑁 . Besides, as Figure 13 shows, we consider the minimal time
difference (ms) between two adjacent exit |𝑡1−𝑡2 | ∈ {3, 5, 7, 9, 11}. To
satisfy 𝑝 ⩽ 0.05, i.e., the average noise inference time 𝑡 ′1 and 𝑡 ′2 can
be distinguished with more than 95% confidence, we should ensure
that |𝑍 | ⩾ 1.96.2 Thus we can derive the relationship between 𝑁

and 𝜎 as shown in Figure 16. Given |𝑡1−𝑡2 | and 𝜎 , the corresponding
𝑁 denotes the lower bound of query numbers that can guarantee
to divide two adjacent exits with more than 95% confidence. Recall
2https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-
score-what-is-a-p-value.htm

https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0.05 0.1 0.3 0.5 0.7 1.0
Standard deviation σ

10

8

6

4

2

1

Q
ue

ry
N

um
b

er
s
N

0.6768 0.6767 0.6774 0.6740 0.6671 0.6541

0.6764 0.6764 0.6761 0.6727 0.6201 0.6213

0.6767 0.6764 0.6765 0.6703 0.6302 0.6240

0.6764 0.6770 0.6758 0.6558 0.6125 0.6187

0.6764 0.6764 0.6707 0.6243 0.6063 0.5986

0.6764 0.6762 0.6250 0.6252 0.5877 0.5827

0.5

0.6

0.7

(a) Exit Prediction Accuracy

0.05 0.1 0.3 0.5 0.7 1.0
Standard Deviation σ

10

8

6

4

2

1

Q
ue

ry
N

um
b

er
N

0.8937 0.8937 0.8937 0.8936 0.8913 0.8785

0.8937 0.8937 0.8937 0.8935 0.8877 0.7873

0.8937 0.8937 0.8938 0.8929 0.7711 0.7746

0.8937 0.8937 0.8937 0.8910 0.7760 0.7377

0.8937 0.8937 0.8922 0.7728 0.6987 0.7527

0.8937 0.8937 0.8304 0.7449 0.7463 0.7387

0.5

0.6

0.7

0.8

0.9

(b) ASR Score

Figure 15: The exit prediction and attack performance under
the effect of query numbers 𝑁 and standard deviation 𝜎 . The
model is MobileNet trained on CIFAR-100.

that as shown in Figure 15a, even if the prediction accuracy of the
exit depth drops significantly, it still leads to a high attack ASR score,
so the lower bound on the number of queries can also lead to high
attack ASR score.

4.3 Adversary 3
Previous work [20, 35, 37, 46, 49, 51] has focused on the setup where
the adversary trains a shadow model with the same architecture as
the target model. Here, we investigate whether the exit information
still leaks more membership information when we relax this as-
sumption. In addition, we also investigate the effect of the shadow
dataset when we relax the assumption that the shadow dataset and
target dataset are identically distributed.

Threat Model. To challenge our hybrid attack, we remove the
assumption that the adversary can build a shadow model with the
same architecture and exit placement as the target model, which
largely reduces the attack capabilities of the adversary. In addition,
we perform the evaluation of the gain of the exit to attack per-
formance by relaxing the assumption that the shadow and target
datasets are identically distributed.

Methodology. The strategy of the third adversary is very simi-
lar to the second adversary. The only difference is that the third
adversary uses a shadow model with a different architecture from
the target model, which further inevitably leads to a different exit
placement between shadow and target models. For example, given
a target model ResNet-56 with 6 exits, the adversary can only train
a different model, like VGG-16 with 6 exits, to perform membership
inference. In this case, the placement of these 6 exits attached to
the backbone model is different between ResNet-56 and VGG-16.

To relax the assumption on the same distribution between the
shadow and target datasets, we use different datasets, e.g., CIFAR-10
as the target dataset and TinyImageNet as the shadow dataset, to
launch our hybrid attack.

Experimental Setup. We use the same settings as described in
Section 4.2.

Results. Figure 17 shows the attack performance when the shadow
models are constructed by different architectures as the target mod-
els. First, we observe that the attack performance remains almost

0 200 400 600 800 1000
Standard Deviation σ

100

101

102

103

Q
ue

ry
N

um
b

er
N

|t1 − t2| (ms)

3

5

7

9

11

Figure 16: The relationship between query numbers 𝑁 and
standard deviation 𝜎 . The y-axis 𝑁 denotes the lower bound
of query numbers that can guarantee to divide two adjacent
exits 𝑡1 and 𝑡2 with more than 95% confidence.

the same in both the original attack and hybrid attack, respectively.
More encouragingly, we can also find that the attack performance
of our hybrid attack is clearly higher than that of the original at-
tack. For instance, when the target model is WideResNet-32 and
the shadow model is VGG-16, the ASR score of our hybrid attack is
0.7935, while that of the original attack is only 0.7205. This indicates
that we can relax the assumption that the shadow model has the
same model architecture and exit placement as the target model.

Furthermore, we investigate whether we can relax another as-
sumption of the same distribution between the shadow dataset
and target dataset. Figure 18 shows the attack performance on
MobileNet and FCN-18-1 when the shadow dataset is distributed
differently from the target dataset. We observe the performance of
our hybrid attack is still better than the original attack even when
the target and shadow datasets are different. Such observation hints
we can relax the assumption of a same-distribution shadow dataset.
See our technique report [36] for more results and the reason why
we can relax these two assumptions.

In conclusion, we show that adversary 3 can free the attacker
from knowing the target model (especially exit placements) and
target dataset, which further enlarges the scope of the hybrid attack.
These results convincingly show that the corresponding risks are
much more severe under the threats caused by our hybrid attack.
Furthermore, the fact that privacy risks are much more severe
shown by our hybrid attacks would hinder the process of green AI
that aims at fast inference and energy-efficient computing.

5 POSSIBLE DEFENSES
In this section, we explore the possible defense and empirically
conduct the evaluation. Recall that the adversary determines the
exit depths by observing the different magnitude of inference time,
thus the intuition of our defense is to hide the difference in inference
time for different exit points. We name our defense TimeGuard.

TimeGuard. The key point is that the multi-exit networks delays
giving predictions, rather than giving them immediately. One sim-
ple but naive defense mechanism is delaying giving predictions to

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

VGG ResNet MobileNet WideResNet

Target Model

W
id

eR
es

N
et

M
ob

ile
N

et
R

es
N

et
V

G
G

S
ha

do
w

M
od

el

0.6465 0.5449 0.6016 0.7189

0.6470 0.5452 0.6013 0.7069

0.6467 0.5454 0.6013 0.7209

0.6465 0.5450 0.6017 0.7205

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Score-based

VGG ResNet MobileNet WideResNet

Target Model

W
id

eR
es

N
et

M
ob

ile
N

et
R

es
N

et
V

G
G

S
ha

do
w

M
od

el

0.6765 0.5550 0.6176 0.7939

0.6774 0.5535 0.6166 0.7935

0.6771 0.5542 0.6169 0.7934

0.6758 0.5542 0.6182 0.7935

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Score-based (hybrid attack)

FCN-18-1 FCN-18-2 FCN-18-3 FCN-18-4

Target Model

F
C

N
-1

8-
4

F
C

N
-1

8-
3

F
C

N
-1

8-
2

F
C

N
-1

8-
1

S
ha

do
w

M
od

el

0.7730 0.7265 0.6867 0.6766

0.7722 0.7235 0.6829 0.6737

0.7713 0.7231 0.6827 0.6750

0.7733 0.7289 0.6874 0.6773

0.6

0.7

0.8

0.9

(c) Score-based

FCN-18-1 FCN-18-2 FCN-18-3 FCN-18-4

Target Model

F
C

N
-1

8-
4

F
C

N
-1

8-
3

F
C

N
-1

8-
2

F
C

N
-1

8-
1

S
ha

do
w

M
od

el

0.8410 0.8210 0.8028 0.7885

0.8415 0.8206 0.8038 0.7884

0.8417 0.8203 0.8037 0.7885

0.8417 0.8209 0.8038 0.7894

0.6

0.7

0.8

0.9

(d) Score-based (hybrid attack)

Figure 17: The attack performance when the shadow model has different architecture compared to the target model. These
computer vision models (a and b) are trained on CIFAR-100, and these non-computer vision models (c and d) are trained on
Purchases.

CIFAR-10 CIFAR-100 TinyImageNet
Target Dataset

T
in

yI
m

ag
eN

et
C

IF
A

R
-1

00
C

IF
A

R
-1

0
S

ha
do

w
D

at
as

et

0.5354 0.6472 0.6680

0.5351 0.6470 0.6686

0.5369 0.6468 0.6674

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Score-based

CIFAR-10 CIFAR-100 TinyImageNet
Target Dataset

T
in

yI
m

ag
eN

et
C

IF
A

R
-1

00
C

IF
A

R
-1

0
S

ha
do

w
D

at
as

et

0.5539 0.6763 0.7584

0.5541 0.6774 0.7590

0.5539 0.6765 0.7584

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Score-based (hybrid attack)

Purchases Locations Texas
Target Dataset

T
ex

as
L

o
ca

ti
on

s
P

ur
ch

as
es

S
ha

do
w

D
at

as
et

0.7737 0.7608 0.7160

0.7734 0.7610 0.7153

0.7733 0.7617 0.7157

0.6

0.7

0.8

0.9

(c) Score-based

Purchases Locations Texas
Target Dataset

T
ex

as
L

o
ca

ti
on

s
P

ur
ch

as
es

S
ha

do
w

D
at

as
et

0.8422 0.8428 0.7363

0.8419 0.8430 0.7368

0.8417 0.8438 0.7365

0.6

0.7

0.8

0.9

(d) Score-based (hybrid attack)

Figure 18: The attack performance when the shadow dataset comes from different distributions of the target dataset. The
computer vision model (a and b) we used is MobileNet, and the non-computer vision model (c and d) we used is FCN-18-1.

0 2 4 6 8 10 12 (MaxTime)

Inference Time (ms)

D
en

si
ty

DelayTime (ms)

Exit 0

Exit 1

Figure 19: An illustration of how TimeGuard works on a
multi-exit network with 3 exits. The y-axis represents the
density of samples leaving at a certain delaytime among all
samples at the same exit. These delaytimes follow the right
part of Gaussian distribution N(𝑡, 𝜎2).

the maximum inference time, i.e., a sample passes forward through
all the layers of the model, acting like a vanilla model without
any exit inserted. This behavior will make it impossible for the
adversary to determine the exit information by observing inference
time. However, this mechanism preserves privacy perfectly but is
less efficient because it destroys one of the core ideas of multi-exit
networks, which is to reduce the inference time for certain samples.

To achieve a better trade-off between privacy and efficiency, here
we propose a novel mechanism for TimeGuard with high efficiency.
See Figure 19 for an illustration of TimeGuard working on a 3-exit
network. More concretely, consider the clean inference time 𝑡 of one
certain exit, thus the delay inference times of all the samples leave
at this exit follow the right part of Gaussian distribution N(𝑡, 𝜎2).
See algorithm of TimeGuard in Algorithm 1. Here, we leverage
ImageHash [9] or Sha512 [12] to calculate the unique hash ℎ, and
leverage HKDF [31] to generate the secret seed for Gaussian noise.
In other words, we can obtain a fixed delay inference time 𝑡 ′ for
𝑥 since the hash ℎ is unique (line 1) regardless of the number of
queries. Thus, multiple queries on a data sample always give us the
same delayed inference time, which is different from the scenario
of noise variance reduction.

To further investigate the trade-off between privacy and effi-
ciency under the influence of the standard deviation, we report
attack performance and averaged inference time of each sample by
varying the standard deviation in Figure 20. We can observe that
as the standard deviation increases, the ASR score decreases, while
the averaged inference time increases. Since the ASR score of the
original attack is the lower bound of the attack performance in both
the original and hybrid attacks, the intersection of the two blue
lines shown in Figure 20 is the best defense scenario for the model.
In other words, the corresponding standard deviation is the optimal
setting for TimeGuard, which not only reduces the ASR score to the
lower bound, but also maintains fast inference.

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Algorithm 1: TimeGuard with high efficiency.
Input: a data sample 𝑥 , standard deviation 𝜎 , multi-exit

model M, a secret global seed 𝑆 .
Output: delay time 𝑡 ′ for 𝑥 .

1 calculate hash ℎ by Hash(𝑥); /* For images/non-images,

Hash(𝑥) means ImageHash/Sha512. */

2 set random seed by random.seed(HKDF(ℎ, 𝑆)); /* the seed

of Gaussian noise is secret. */

3 sample Gaussian noise 𝐼 by random.normal(𝑡 , 𝜎2, size=1);
/* 𝐼 is unique and repetitive for 𝑥. */

4 observe the exit depth where 𝑥 leaves by feeding 𝑥 toM;
5 obtain clean inference time 𝑡 of the exit;
6 calculate delay time 𝑡 ′ = 𝑡 + |𝑡 − 𝐼 | ;
7 return delay time 𝑡 ′;

6 RELATEDWORKS
6.1 Multi-exit Networks
Multi-exit architecture is first proposed by Teerapittayanon et
al. [54], which adds side branches to the backbone model and aims
to reduce inference run-time and energy by allowing some samples
to exit early. To make the design more customizable or generic, var-
ious modifications to the architecture are proposed, [26] presents
MSDNet, which can enable prediction at any time by multi-scale
feature maps and dense connectivity; [29] presents a general design,
called Shallow-Deep network (SDN), meanwhile identifying that
vanilla model are susceptible to overthinking. In addition to various
architectural designs, more efforts are focused on the training meth-
ods of the multi-exit models. Kaya et al. [29] conduct both joint
training and exit-only training; Phuong et al. [43] introduce knowl-
edge distillation [21, 44] into the training procedure, which makes
the early exit learn from the last exit; Wang et al. [55] take this a
step further by allowing each outlet to learn from all subsequent
outlets, while it supports adaptively learning the weights of each
distillation loss. More recently, more work has begun to investigate
the robustness of multi-exit models. Hu et al. [25] propose that
RDI-Nets achieve a “triple win” between high accuracy and low
inference cost and robustness to adversarial attacks [10, 16, 53];
Hong et al. [22] propose an attack called DeepSloth to eliminate the
computational savings provided by the multi-exit model; Dong et
al. [13] give a DNN fingerprint identification method based on infer-
ence time to protect the intellectual property of multi-exit models.
Besides, multi-exit networks are gaining significant attention and
rapid development in industry [2, 23, 61] that leverage multi-exit
networks to accelerate forward inference. There is also a growing
body of applications deployed with multi-exit architectures, such
as IoT scenarios and real-time systems [24, 27, 28, 34, 60].

6.2 Membership Inference Attacks
Currently, membership inference is one of the major methods of
evaluating privacy risks of machine learning models [17, 19, 33,
42, 46, 49, 52, 58]. Shokri et al. [49] propose the first membership
inference attack against ML models. They train multiple shadow
models and then construct a dataset to train multiple attack models.
These attack models take the posterior of the target sample as input

0 5 10 15 20
Standard Deviation σ

0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

4

5

6

7

8

A
ve

ra
ge

d
In

fe
re

nc
e

T
im

e
(m

s)

Score-based (Hybird Attack)

Score-based (Original Attack)

TimeGuard Time (ms)

Maximum Time (ms)

(a) TinyImageNet, WRNet-32

0 5 10 15 20
Standard Deviation σ

0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

5

6

7

8

9

10

11

12

A
ve

ra
ge

d
In

fe
re

nc
e

T
im

e
(m

s)

(b) Purchases, FCN-18-1

Figure 20: The attack performance and TimeGuard’s effi-
ciency under the effect of standard deviation used in Time-
Guard. Here, WRNet means WideResNet.

and predict its membership status, i.e., member or non-member.
Then Salem et al. [46] propose a model- and data-independent
membership inference attack by gradually relaxing the assumptions
of Shokri et al. [49]. Later, Nasr et al. [42] focus on the privacy risk in
centralized and federated learning scenarios and conduct extensive
experiments under both black-box and white-box settings. Song et
al. [52] investigate the relationship between adversarial samples
and privacy risks arising from member inference attacks. Li and
Zhang [37] and Choquette-Choo et al. [11] propose the label-only
membership inference attack by changing the predicted labels of
the target model, then measuring the magnitude of the perturbation.
If the magnitude of the perturbation is larger than a predefined
threshold, the adversary considers the data sample as a member
and vice versa.

7 CONCLUSION
In this paper, we take the first step to audit the privacy risk of
multi-exit networks through the lens of membership inference. We
conduct extensive experiments and find thatmulti-exit networks are
less susceptible to membership leakage and that exits (number and
depth) are highly correlated with attack performance. We further
propose a hybrid attack to improve the performance of existing
membership inference attacks by using exit information as new
adversary knowledge. We investigate three different adversarial
settings for different adversary knowledge and end up with a model-
free and data-free adversary, which shows that our hybrid attack is
broadly applicable and thus the corresponding risk is much more
severe than that shown by existing attacks. Finally, we present
a simple but effective defense mechanism called TimeGuard and
empirically evaluate its effectiveness.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive comments.
This work is partially funded by the Helmholtz Association within
the project “Trustworthy Federated Data Analytics” (TFDA) (fund-
ing number ZT-I-OO1 4).

REFERENCES
[1] https://greenai.cloud/.
[2] https://twitter.com/IntelAI/status/1089644305445208064.

https://greenai.cloud/
https://twitter.com/IntelAI/status/1089644305445208064

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zheng Li, et al.

[3] https://www.cs.toronto.edu/~kriz/cifar.html.
[4] https://www.kaggle.com/c/tiny-imagenet.
[5] https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data.
[6] https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
[7] https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm.
[8] https://en.wikipedia.org/wiki/Z-test.
[9] https://github.com/JohannesBuchner/imagehash.
[10] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine
Learning at Test Time. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD), pages 387–402.
Springer, 2013.

[11] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas
Papernot. Label-Only Membership Inference Attacks. In International Conference
on Machine Learning (ICML), pages 1964–1974. PMLR, 2021.

[12] Quynh H. Dang. Secure Hash Standard. Federal Information Processing Standard,
2015.

[13] Tian Dong, Han Qiu, Tianwei Zhang, Jiwei Li, Hewu Li, and Jialiang Lu. Fin-
gerprinting Multi-exit Deep Neural Network Models via Inference Time. CoRR
abs/2110.03175, 2021.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In
International Conference on Knowledge Discovery and Data Mining (KDD), pages
226–231. AAAI, 1996.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Annual Conference on Neural Information Processing Systems (NIPS), pages
2672–2680. NIPS, 2014.

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harness-
ing Adversarial Examples. In International Conference on Learning Representations
(ICLR), 2015.

[17] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LOGAN:
Evaluating Privacy Leakage of Generative Models Using Generative Adversarial
Networks. Privacy Enhancing Technologies Symposium, 2019.

[18] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. IEEE, 2016.

[19] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. Node-
Level Membership Inference Attacks Against Graph Neural Networks. CoRR
abs/2102.05429, 2021.

[20] Xinlei He and Yang Zhang. Quantifying and Mitigating Privacy Risks of Con-
trastive Learning. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 845–863. ACM, 2021.

[21] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the Knowledge in
a Neural Network. CoRR abs/1503.02531, 2015.

[22] Sanghyun Hong, Yigitcan Kaya, Ionut-Vlad Modoranu, and Tudor Dumitras.
A Panda? No, It’s a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural
Network Inference. In International Conference on Learning Representations
(ICLR), 2021.

[23] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dyn-
aBERT: Dynamic BERT with Adaptive Width and Depth. In Annual Conference
on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

[24] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic Adaptive DNN
Surgery for Inference Acceleration on the Edge. In IEEE Conference on Computer
Communications (INFOCOM), pages 1423–1431. IEEE, 2019.

[25] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple
Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-
Adaptive Inference. In International Conference on Learning Representations (ICLR),
2020.

[26] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and
Kilian Q. Weinberger. Multi-Scale Dense Networks for Resource Efficient Image
Classification. In International Conference on Learning Representations (ICLR),
2018.

[27] Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu
Shi, and Jingtong Hu. Achieving Super-Linear Speedup across Multi-FPGA for
Real-Time DNN Inference. Transactions on Embedded Computing Systems, 2019.

[28] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 615–629. ACM,
2017.

[29] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-Deep Networks:
Understanding andMitigating Network Overthinking. In International Conference
on Machine Learning (ICML), pages 3301–3310. PMLR, 2019.

[30] Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis, and Nicholas D.
Lane. Multi-Exit Semantic Segmentation Networks. CoRR abs/2106.03527, 2021.

[31] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). Request for Comments, 2010.

[32] Stefanos Laskaridis, Stylianos I. Venieris, Mário Almeida, Ilias Leontiadis, and
Nicholas D. Lane. SPINN: Synergistic Progressive Inference of Neural Networks
over Device and Cloud. In Annual International Conference on Mobile Computing
and Networking (MobiCom), pages 37:1–37:15. ACM, 2020.

[33] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model Memo-
rization for Calibrated White-Box Membership Inference. In USENIX Security
Symposium (USENIX Security), pages 1605–1622. USENIX, 2020.

[34] En Li, Zhi Zhou, and Xu Chen. Edge Intelligence: On-Demand Deep Learning
Model Co-Inference with Device-Edge Synergy. In ACM Special Interest Group
on Data Communication (SIGCOMM), pages 31–36. ACM, 2018.

[35] Jiacheng Li, Ninghui Li, and Bruno Ribeiro. Membership Inference Attacks and
Defenses in Classification Models. In ACM Conference on Data and Application
Security and Privacy (CODASPY), pages 5–16. ACM, 2021.

[36] Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang.
Auditing Membership Leakages of Multi-Exit Networks. CoRR abs/2208.11180,
2022.

[37] Zheng Li and Yang Zhang. Membership Leakage in Label-Only Exposures. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), pages
880–895. ACM, 2021.

[38] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju.
FastBERT: a Self-distilling BERT with Adaptive Inference Time. In Annual
Meeting of the Association for Computational Linguistics (ACL), pages 6035–6044.
ACL, 2020.

[39] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, 1982.

[40] Subhas C. Nandy, Sandip Das, and Partha P. Goswami. An Efficient K Nearest
Neighbors Searching Algorithm for A Query Line. Theoretical Computer Science,
2003.

[41] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine Learning with Mem-
bership Privacy using Adversarial Regularization. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 634–646. ACM, 2018.

[42] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analy-
sis of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In IEEE Symposium on Security and Privacy
(S&P), pages 1021–1035. IEEE, 2019.

[43] Mary Phuong and Christoph Lampert. Distillation-Based Training for Multi-Exit
Architectures. In IEEE International Conference on Computer Vision (ICCV), pages
1355–1364. IEEE, 2019.

[44] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. FitNets: Hints for Thin Deep Nets. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[45] Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density
Function. The Annals of Mathematical Statistics, 1956.

[46] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. ML-Leaks: Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In Network and Distributed
System Security Symposium (NDSS). Internet Society, 2019.

[47] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4510–4520. IEEE, 2018.

[48] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun.
of the ACM, 2020.

[49] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship Inference Attacks Against Machine Learning Models. In IEEE Symposium
on Security and Privacy (S&P), pages 3–18. IEEE, 2017.

[50] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR), 2015.

[51] Liwei Song and PrateekMittal. Systematic Evaluation of Privacy Risks of Machine
Learning Models. In USENIX Security Symposium (USENIX Security). USENIX,
2021.

[52] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy Risks of Securing Machine
Learning Models against Adversarial Examples. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 241–257. ACM, 2019.

[53] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks. In
International Conference on Learning Representations (ICLR), 2014.

[54] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. BranchyNet: Fast Infer-
ence via Early Exiting from Deep Neural Networks. In International Conference
on Pattern Recognition (ICPR), pages 2464–2469, 2016.

[55] Xinglu Wang and Yingming Li. Harmonized Dense Knowledge Distillation
Training for Multi-Exit Architectures. InAAAI Conference on Artificial Intelligence
(AAAI), pages 10218–10226. AAAI, 2021.

[56] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan M. Nguyen, Richard G.
Baraniuk, ZhangyangWang, and Yingyan Lin. Dual Dynamic Inference: Enabling
More Efficient, Adaptive, and Controllable Deep Inference. Journal of Selected
Topics in Signal Processing, 2020.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm
https://en.wikipedia.org/wiki/Z-test
https://github.com/JohannesBuchner/imagehash

Auditing Membership Leakages of Multi-Exit Networks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[57] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dy-
namic Early Exiting for Accelerating BERT Inference. In Annual Meeting of the
Association for Computational Linguistics (ACL), pages 2246–2251. ACL, 2020.

[58] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting. In IEEE Computer
Security Foundations Symposium (CSF), pages 268–282. IEEE, 2018.

[59] Sergey Zagoruyko andNikos Komodakis. Wide Residual Networks. In Proceedings
of the British Machine Vision Conference (BMVC). BMVA Press, 2016.

[60] Li Zhou, Hao Wen, Radu Teodorescu, and David H. C. Du. Distributing Deep
Neural Networks with Containerized Partitions at the Edge. In Hot Topics in Edge
Computing (HotEdge). USENIX, 2019.

[61] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu
Wei. BERT Loses Patience: Fast and Robust Inference with Early Exit. In Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Membership Leakages in Machine Learning Models
	2.2 Multi-Exit Networks

	3 Quantifying Membership Leakage Risks
	3.1 Threat Model
	3.2 Attack Methodology
	3.3 Experimental Settings
	3.4 Results

	4 Hybrid Attack
	4.1 Adversary 1
	4.2 Adversary 2
	4.3 Adversary 3

	5 Possible Defenses
	6 Related Works
	6.1 Multi-exit Networks
	6.2 Membership Inference Attacks

	7 Conclusion
	Acknowledgments
	References

