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ABSTRACT
Previous security research efforts orbiting around graphs have
been exclusively focusing on either (de-)anonymizing the graphs
or understanding the security and privacy issues of graph neural
networks. Little attention has been paid to understand the privacy
risks of integrating the output from graph embedding models (e.g.,
node embeddings) with complex downstream machine learning
pipelines. In this paper, we fill this gap and propose a novel model-
agnostic graph recovery attack that exploits the implicit graph
structural information preserved in the embeddings of graph nodes.
We show that an adversary can recover edges with decent accuracy
by only gaining access to the node embedding matrix of the origi-
nal graph without interactions with the node embedding models.
We demonstrate the effectiveness and applicability of our graph
recovery attack through extensive experiments.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Machine Learning Security and Privacy; Graph Embedding

ACM Reference Format:
Yun Shen, Yufei Han, Zhikun Zhang, Min Chen, Ting Yu, Michael Backes,
Yang Zhang, Gianluca Stringhini. 2022. Finding MNEMON: Reviving Mem-
ories of Node Embeddings. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3548606.3559358

∗Work partially done while the author was with NortonLifeLock.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3559358

1 INTRODUCTION
Many complex systems can be represented as graphs, e.g., social net-
works, communication networks, function call graphs, biomedical
graphs, and the World Wide Web [37, 44, 58]. Graph embedding al-
gorithms [6, 21, 79] have been long researched to obtain graph repre-
sentations to concisely represent these networks in low dimensional
Euclidean vectors. Upon such transformation, these embedding vec-
tors canmake graph analytics tasks efficient and facilitate numerous
solutions to real world problems, e.g., node classification [71], com-
munity detection [50], link prediction/recommendation [45], binary
similarity detection [20, 85, 88], malware detection [18, 54], fraud
detection [72], and bot detection [2].

It is well recognized that graphs contain sensitive and private
information about the nodes (e.g., node attributes, the relationships
among the nodes, etc.). Previous security research efforts orbiting
around graphs have been focusing on either (de-)anonymizing the
graphs [33, 47, 87] or understanding the security and privacy issues
of graph neural networks [11, 28, 64, 68, 73, 74, 82, 83]. Specifically,
graph anonymization methods [33, 47, 87] perturb the original
graph data to protect users’ privacy while preserving as much data
utility as possible. In contrast, graph de-anonymization methods
focus on unveiling sensitive private information from graphs. In
recent years, inspired by the membership inference attack [10, 65],
we have witnessed several successful link re-identification attacks
against graph neural networks that extract private links contained
in the training data via these GNN models [28, 73, 81, 82]. Note
that the node embeddings are not privacy preserving by design.
Yet, they are pervasively used in many graph analytics tasks as
aforementioned. To our surprise, understanding and quantifying
the privacy risks of integrating them with the complex ML pipeline
in a model-agnostic setting remains unexplored.

In this paper, we fill this gap and quantify the privacy risks
of integrating node embeddings with downstream data analyt-
ics/machine learning pipelines. Our attack’s application scenarios
(see Section 3.2) lie in the complex ML systems where raw graph
data is part of the learning process but cannot be directly obtained
by the attackers due to data segregation policy and/or privacy pol-
icy. Instead, the attackers only gain access to the transformed graph
data (i.e., the node embeddings of the original graph). They cannot
interact with the node embedding models since such pipelines usu-
ally operate in one direction. For instance, the data holder may have
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integrated with the malicious machine learning solution providers
(i.e., MLaaS providers) from the AWS Marketplace [49, 67], or the
data holder is part of a vertical federated learning environment in
an enterprise [73]. In both cases, the node embeddings are part of
the learning process and can be obtained by either the malicious
MLaaS providers [49, 67] or the insiders [73] in the pipeline.

Concretely, our study addresses two research questions - can
we recover the edges with decent accuracy from the node embedding
matrix and can we recover a graph structure that is similar to the orig-
inal graph with respect to the graph properties? - without knowledge
of and the interactions with the node embedding models. These
two research questions were discussed in the link re-identification
attacks [16, 28, 73]. They, however, follow the adversarial machine
learning methodology and assume the interaction with the target
model using shadow datasets and the supervision information from
the feedback. Our attack does not assume such capabilities (see
Section 3), which is more practical in the real world.
Our Contributions. In this paper, we proposeMNEMON - a joint
graph metric learning and self-supervised learning based graph
recovery attack - to tackle these two questions. MNEMON first
leverages the background information (i.e., the origin of the node
embedding matrix) to estimate the average node degree. It then
uses graph metric learning with a multi-head attention mechanism
to construct a data specific distance metric from a given node em-
bedding matrix. Coupling with graph metric learning,MNEMON
employs graph autoencoder framework to iteratively optimize a
graph structure through self-supervised graph regularization (i.e.,
the learning objectives are generated from the data itself). Upon
the termination of the process, the learned graph structure consti-
tutes the recovered graph from the node embedding matrix. We
stress that our goal is not perfectly recovering a graph from its
node embedding matrix. Rather, we focus on understanding and
quantifying the privacy risks of integrating them with the com-
plex ML pipeline. A successful graph recovery attack can lead
to severe consequences. For instance, in the context of social net-
works, MNEMON allows an adversary to gain direct knowledge
of sensitive and private social relationships. Also, certain graph
data is often expensive to obtain (e.g., protein interaction networks
collected from lab studies).MNEMON can pose a direct threat to
the intellectual property of the data holder as well. In summary, we
make the following contributions.

• We propose a novel model-agnostic graph recovery attack that
exploits the implicit graph structural information preserved in
the node embedding vectors. We show that the attacker can
unveil the private and sensitive graph structural information
with decent accuracy from the node embeddings.
• We systematically define the threat model to characterize an
adversary’s background knowledge and realistic application sce-
narios. Extensive evaluation of four popular node embedding
models using four benchmark graph datasets demonstrates the
efficacy of our attacks.
• We discuss a preliminarymitigationmechanism to defend against
the graph recovery attack. Our results demonstrate thatMNEMON
could be partially mitigated with some utility trade-off.

Table 1: Summary of the notations. We use lowercase letters
to denote scalars, bold lowercase letters to denote vectors
and bold uppercase letters to denote matrices.

Notation Description

G = (V, E,X) graph (network)
G𝑂 / G𝑅 original/recovered graph
𝑛 number of nodes
A ∈ R𝑛×𝑛 (weighted) adjacency matrix
X node features
𝑣,𝑢 node
𝑑 dimension of node embeddings
H ∈ R𝑛×𝑑 node embedding matrix
h𝑣 node embedding of node 𝑣
𝑡 𝑡-th iteration
𝑘 (estimated) average node degree
𝑓 node embedding model
𝜙 learnable embedding distance function
ℒ loss function

2 PRELIMINARIES
2.1 Notations
We denote an undirected, attributed graph as G = (V, E,X), where
V = {𝑣𝑖 }𝑛𝑖=1 represents the nodes, E ⊆ {(𝑣,𝑢) |𝑣,𝑢 ∈ V} denotes
the edges, and X = {x𝑖 }𝑛𝑖=1 denotes the node features, where x𝑖
represents the node feature of 𝑣𝑖 . |E| denotes the graph size (i.e.,
the number of edges). The original and the recovered graphs are
denoted as G𝑂 and G𝑅 respectively. Let A ∈ R𝑛×𝑛 represent the
(weighted) adjacency matrix. As such, G can also be represented
as G = (A,X). The notations introduced here and used in the
following sections are summarized in Table 1.

2.2 Node Embedding
Definition. In this paper, we focus on node embedding, which
plays a central role in graph embedding techniques. As the name
suggests, a node embedding model 𝑓 maps nodes to 𝑑-dimensional
vectors that capture their structural properties and node features
(if available). Formally, a node embedding model is defined as 𝑓 :
G→ H, whereH ∈ R𝑛×𝑑 represents node embedding matrix where
𝑑 denotes the dimension of the embeddings (𝑑 ≪ 𝑛) and h𝑣 ∈ H
denotes the node embedding vector of node 𝑣 . The node embeddings
of connected nodes maintain “approximate closeness” to each other
in the latent space (e.g., h𝑣 and h𝑢 should be close in the Euclidean
space if 𝑣 and 𝑢 are connected in the graph).
Overview. There exists abundant previous work on node embed-
ding models [6, 21, 79]. Broadly speaking, these techniques can be
grouped into two categories - matrix factorization based approaches
and deep learning based approaches.
• Matrix factorization based approaches. The essence of these ap-
proaches is treating node embedding as a dimensionality reduc-
tion problem and factorizing graph adjacency matrix or node
proximity/similarity matrix to obtain node embedding [34]. The
core idea of these approaches is that the graph property to be pre-
served can be interpreted as pairwise node similarities or node
proximity in a low dimensional space by matrix factorization.
In general, matrix factorization methods can be classified into
two categories - node proximity matrix factorization and graph
Laplacian eigenmaps factorization.



• Deep learning (DL) based approaches. The pioneer DL-based ap-
proaches include DeepWalk [55], Node2Vec [22], and their vari-
ants. These approaches first generate a set of truncated random
walk paths sampled from a graph, then apply deep learning tech-
niques (e.g., SkipGram) to the sampled paths, consequently learn-
ing node embeddings. In recent years, we also witnessed the rise
of Graph Neural Networks (GNNs). These GNN models are a
type of Neural Network which directly operates on the Graph
structure via message passing between the nodes of graphs, and
encoding the nodes into a low dimensional space (e.g., GCN [38],
GraphSAGE [25]). They can take node features into consideration
and do not need random walk paths.

We refer the audience to [6, 21, 79] for the overview of node embed-
ding techniques and other graph tasks (e.g., graph-level embedding,
graph-level classification, etc.).

3 THREAT MODEL
3.1 Attack Setting
We frame our attack in amodel agnostic setting. We assume that the
adversary only has access to the node embedding matrix H together
with the background information of the origin from which the em-
bedding matrix was leaked (see Section 3.2 for detailed application
scenario discussion). The attackers do not have any knowledge
of the node embedding model, and they cannot tamper with its
internals (e.g., model parameters, model architecture). We strictly
require that the attackers cannot interact with the target model,
and do not have the auxiliary data to train a shadow model using
the feedback from the target model.
Remarks. It is important to note that our attack setting is different
from the existing adversarial machine learning settings, whereas
the interaction with the target model (i.e., querying the target model
via publicly accessible API) and the availability of auxiliary data
(e.g., nodes with features and labels, etc.) are indispensable. Our
attack, however, assumes neither. That is, we strictly require that
the attackers cannot interact with the target model, and do not have
the auxiliary data to query a target model and use the query results
to train a shadow model. In other words, this setting eliminates the
supervise information from the target model and consequently ren-
ders the previous link re-identification attacks inapplicable, hence
the novelty of our attack. We provide a detailed discussion in Sec-
tion 7 to distinguish our attack from the existing ones.

3.2 Attack Scenarios
We consider our attack’s application scenarios lie in those complex
ML systems where graph data is part of the learning process but
cannot be directly obtained by the attackers due to data segregation
policy and/or privacy policy. As such, we discuss three real world
scenarios below.

• The first attack scenario is the insider threat in a complex enter-
prise ML environment. In this scenario, a company enforces rigid
data protection and segregation policies to guard the security of
raw data. As a result, one department may have sensitive user
private profile and relationship information (i.e., graph data with
node features), and another department has the user purchase
history. To train a joint model (e.g., a personalized recommender

system) that leverages the data from different departments, the
company needs to perform vertical federated learning [77]. In-
stead of supplying the graph data to the central model, the depart-
ment that holds the graph data may generate node embeddings
that preserve the utility (i.e., user closeness without disclosing
the exact edges) and facilitate the learning task. The insider then
obtains the node embeddings during this learning process and
leaks them to the attackers. This attack scenario is in line with
the setting recently discussed by Wu et al. [73].
• The second attack scenario is the malicious third-party provider
that is already part of the data holder’s data analytics or machine
learning pipeline. For example, the data holder may have inte-
grated with the malicious machine learning solution providers
(i.e., MLaas providers) from the AWS Marketplace. In this case,
the upstream data holder, without knowing the implications,
passes the node embedding matrix to the rouge provider for
downstream analytical tasks, such as data visualization, link pre-
diction, node classification, profiling, etc. The attackers can then
obtain the node embedding matrix from the data holder through
the rouge provider. This attack scenario is in line with the mali-
cious machine learning provider scenario discussed by Song et
al. [67] and Malekzadeh et al. [49].
• The third attack scenario is security misconfiguration in the
ML environment. For instance, researchers may leverage the free
computing resources (e.g., GPUs) offered by Colab, and connect it
to their private Github repository. Due to such misconfigurations,
the notebooks containing the node embeddings are leaked (i.e.,
wrongly using “anyone on the Internet with this link can view”
instead of “send to the specific users”). This attack scenario is
in line with the real world misconfigured S3 buckets leakage
discussed by Continella et al. [14].

Background Information Acquisition. Besides, given the first
two attack scenarios, the attackers can easily obtain the background
information of the origin of the embedding matrix (e.g., from which
companies the matrices come from). With fair reconnaissance ef-
forts (e.g., correlating the owner of Colab notebooks with Github
handles), the attacker may also infer the origin of the embedding
matrix in the third scenario. In summary, these three attack scenar-
ios are tangible and match our attack setting.

3.3 Attack Goals
The primary goal of the attackers is uncovering the edges with decent
accuracy from the node embedding matrix. Attaining this goal would
enable the attacker to expose private and sensitive relationships
among the nodes rather than the “approximate closeness” offered
by the node embeddings (see Section 2). Nevertheless, due to the
strict attack setting, it is impractical for the attackers to faultlessly
retrieve all the edges from the node embedding matrix. As a result,
the secondary goal of the attackers is recovering a graph structure
A𝑅 that is similar to the original graph A𝑂 with respect to the graph
properties. Achieving this goal would enable the attackers to gain
additional knowledge of the original graph as a whole and perform
graph mining tasks, which in turn violates the intellectual property
of the data holder or can facilitate advanced attacks, such as re-
identifying individuals [33], structural data de-anonymization [32],
etc. For example, recovering a graph with similar triangle counts



and joint degree distribution to the original graph would enable the
attacker to gain insights into the underlying user engagement in a
social network. This information itself is sensitive and proprietary.
Non-goals. Recall our attack setting in Section 3.1 that the at-
tackers only have the node embedding matrix and the background
information of the origin of the embedding matrix, and cannot in-
teract with the target model with auxiliary data. We thereby cannot
infer node features (i.e., attribute inference attack) since we do not
have any auxiliary data (i.e., we do not know the format of the
original node features). Similarly, we cannot steal the target model
(i.e., model extraction attack) nor can we understand the privacy
leakage from the target model itself as we do not interact with it.
Finally, our attack focuses on the node-level embeddings. We thus
do not attack the graph-level embeddings [6, 21, 79].

4 MNEMON: GRAPH RECOVERY ATTACK
4.1 Attack Overview
At a high level, MNEMON contains three main components.

• The first component (see Section 4.2) leverages the background
information (i.e., the origin of the node embedding matrix) to
estimate the average node degree. The goal is to estimate a rough
average node degree 𝑘 and the graph size (i.e., |E| = 𝑘×𝑛

2 ).
• The second component (see Section 4.3) leverages graph metric
learning (GML) to learn a data-specific distance function since
it is often difficult to choose a standard metric that fits all the
datasets. The goal is to learn multi-head attention weights and
tailor the distance function on a per node embedding matrix
basis.
• The third component (see Section 4.4) learns a graph structure
through Graph AutoEncoder (GAE) framework using self super-
vised graph regularization. The goal is to optimize the graph
structure and reduce the false positive edges incurred by the
learned metric from the second component.

We iteratively optimize the second and third components as they
are inter-connected. MNEMON’s workflow is outlined in Figure 1.
Specifically, GML learns a distance function to measure the close-
ness of two nodes and builds the input graph for GAE (𝑇 = 𝑡 in
Figure 1). GAE then learns to reconstruct this input graph. If GAE
finds certain parts of the input graph are hard to reconstruct, which
is reflected by the self supervised graph learning loss, it may be due
to the input graph built by GML partially capturing the graph struc-
ture. We then merge the graph structures by combining both the
input graph and output graph of GAE, which enables us to retain
the most confident edges (the transition from 𝑇 = 𝑡 to 𝑇 = 𝑡 + 1 in
Figure 1). The combined graph is then used to guide GML to update
its metric learning process in the next iteration. In the following
sections, we discuss the technical details of our attack.

4.2 Estimate the Average Node Degree
The only clue that the attackers have is the background information
about the origin of the node embedding matrix. For instance, in our
first attack scenario where the node embedding matrix is leaked by
an insider, it is trivial for the attackers to obtain such background
information. The attacker’s immediate task is thereby estimating
the average node degree 𝑘 . The rationale is straightforward. The
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Figure 1: Overview of MNEMON. At timestamp 𝑇 = 0,
MNEMON estimates the average node degree 𝑘 and initial-
izes the seed graph using Gumbel-Top-𝑘 trick. At timestamp
𝑇 = 𝑡 , it iteratively learns a data-specific graph distance
metric using GML and optimizes a graph structure in a self-
supervised way using GAE.

attackers already know the number of nodes from the embedding
matrix (i.e., 𝑛). Yet, due to the combinatorial nature of the graph,
there exist 𝑛(𝑛 − 1)2 possible edges. As such, if the attacker can
estimate the average node degree 𝑘 , they can obtain the estimated
size of the original graph (i.e., the number of edges) which is equiv-
alent to (𝑘 × 𝑛)/2. In this way, the estimated graph size enables
them to effectively learn the graph structure (see Section 4.3 and
Section 4.4).

Abundant previous work [15, 26, 27, 40, 43] has already exem-
plified that the graphs of similar origins may share similar graph
properties (e.g., node degree, graph density, small world phenom-
enon, local clustering coefficient, etc.). Our core idea is that the
attackers can estimate the average node degree from the graphs of
similar origins and transfer the estimated node degree from these
graphs to facilitate the attack. This alleviates the attackers from
stealing a sample training data from the data holder, which, in turn,
makes our attack realistic. For instance, if the attackers know that
the node embeddings come from a Facebook network, they can
leverage graph sampling methods to sample Facebook networks
publicly available in the Network Data Repository [61] and esti-
mate the average node degree of the network that they target (see
Section 5 for how we use graph sampling to sample real world
data). These graph sampling methods have been proven accurate in
estimating the average node degree [62]. In this paper, we use the
state-of-the-art spikyball sampling [43] implemented in the latest
Little Ball of Fur python library [62] to estimate the average node
degree. Additional details can be found in Section 5.2.
Notes. The graph sampling process does not interact with the orig-
inal node embedding models. It also does not need the supervision
information from the target models as required by previous re-
search [16, 28, 73]. We also stress thatMNEMON does not estimate
or require the precise average node degree. MNEMON can accom-
modate the inevitable estimation error. We provide a detailed study
in Section 5.5 to illustrate this capability. For instance, we show
that our attack can still achieve good performance even when the
estimated average node degree is twice the real average node degree
(see Section 5.5) thanks to graph metric learning (see Section 4.3)
and self-supervised graph structure learning (see Section 4.4).



4.3 Graph Metric Learning
Upon estimating the average node degree, the common approach
to recover a graph from the node embedding matrix is using 𝑘NN
algorithm. 𝑘NN builds a graph in which two nodes 𝑣 and 𝑢 are
connected by an edge if the distance between the embedding vectors
ℎ𝑣 and ℎ𝑢 is among the 𝑘-th smallest distances. The drawback of
𝑘NN algorithm is that it requires a manually predefined distance
function for neighbor selection. However, it is often difficult to
choose a standard metric that fits all the datasets and tasks of
interest. Take a barbell graph for example, which consists of two
dense cliques connected by a long chain. Reflected in the latent
space, the node embedding vectors from two dense cliques are close
to each other (i.e., dense regions), while those from the long chain
are relatively farther to each other (i.e., sparse regions). A standard
distance function, such as Eucliean or cosine distance, used by 𝑘NN
may not recover the edges from the long chain as the distances
among them are inevitably large. Yet, they are equally connected
from a graph perspective. As such, we propose to leverage graph
metric learning in the node embedding space to learn a data-specific
distance function and automatically adjust for both the dense and
sparse regions in the node embedding matrix.
Graph Initialization with Gumbel-Top-𝑘 Trick. We follow the
approach discussed by Kazi [36] to initialize a seed graph. We first
generate a fully connected graph with edge normalized distance
score using Equation 1.

𝑝𝑣𝑢 = 𝑒−𝜏𝛿 (ℎ𝑣 ,ℎ𝑢 ) ,∀𝑣,𝑢 ∈ V (1)

Here 𝛿 is a distance function and 𝜏 is a temperature parameter
controlling the smoothness of the distance scores between node
embedding vectors. Instead of using the Euclidean distance function
adopted by Kazi [36], we opt for cosine distance as the distance
function 𝛿 , i.e., 𝛿 (ℎ𝑣, ℎ𝑢 ) = 1 − 𝑐𝑜𝑠 (ℎ𝑣, ℎ𝑢 ). Note that most of the
node embeddings are normalized to facilitate downstream tasks.
In this case, Euclidean distance is proportional to cosine distance,
given a well normalized value range of the node embeddings. When
node embeddings are not normalized, our framework can also be
adjusted to Euclidean distance. Let P = {𝑝𝑣𝑢 } denote the edge
probability matrix. We then leverage Gumbel-Top-𝑘 trick [41] to
sample from P, which generalizes Gumbel-Max trick [24] to draw
an ordered sample of size 𝑘 without replacement from a categorical
distribution by taking the indices of the 𝑘 largest perturbed log-
probabilities. That is, we perturb each 𝑝𝑣𝑢 by adding a Gumbel
random variate 𝜗𝑣𝑢 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1). We then select the indices of
the 𝑘 largest perturbed log-probabilities without replacement. This
process makes the sampling a stochastic relaxation of 𝑘NN [36].
This sampled adjacency matrix (denoted as A0) constitutes our seed
graph structure. Note that 𝛿 is used for sampling purposes only
and is not part of our learning targets. This corresponds to 𝑇 = 0
in Figure 1.
Learnable Distance Function (𝜙). Due to the stochastic nature
of Gumbel-Top-𝑘 trick, we inevitably obtain an initial noisy graph
structure from the above graph initialization process. That is, an
edge (𝑣,𝑢) in A0 may not exist in the original graph G𝑂 , i.e., a
false positive edge. To reduce such false positives, we propose a
learnable distance function 𝜙 to learn a better graph structure. The
core idea is that, instead of using a predefined distance function,

we leverage metric learning [75] to learn a distance metric for the
input space of data (i.e., the node embedding matrix H) from the
adjacency matrix A that preserves the node relationships (i.e., A
is used to supervise the distance learning). In this paper, we adopt
a weighted cosine distance (defined in Equation 2) [8, 86] as our
learnable distance function 𝜙 .

𝜙 (h𝑣, h𝑢 ) = 1 − 𝑐𝑜𝑠 (w ◦ h𝑣,w ◦ h𝑢 ) (2)

Here w is a learnable weight vector that is the same dimension as
h𝑣 and h𝑢 , and ◦ denotes the Hadamard product. Following the
procedure discussed in [12, 70], we further extend Equation 2 to a
multi-head version as in Equation 3 to increase the expressiveness
and stablize the learning process.

𝜙 (h𝑣, h𝑢 ) = 1 − 1
𝑚

𝑚∑
𝑖=1

𝑐𝑜𝑠 (w𝑖 ◦ h𝑣,w𝑖 ◦ h𝑢 ) (3)

Here𝑚 refers to the number of attention heads. In this way, we can
learn the distance function from multiple perspectives. Note that all
node embeddings share the same metric parameters W = {w𝑖 }𝑚𝑖=1.
Graph Sparsification. We plug 𝜙 into Equation 1 (i.e., replacing
𝛿) and use the aforementioned Gumbel-Top-𝑘-based sampling trick
to extract an adjacency matrix. Our graph sparsification method
is different from the 𝜖-neighborhood approach used by [12] which
cannot easily control the graph size (i.e., 𝜖 is fixed and may lead to
different graph sizes as the learned weighted adjacency matrix also
evolves during the learning process).

4.4 Self-Supervised Graph Structure Learning
Having introduced how we apply the graph metric learning tech-
nique to tune a data-specific distance function in the previous
section, we move on to discuss how we optimize a graph struc-
ture and learn the graph distance metric jointly via self-supervised
learning. The core idea is that we refine the initial noisy graph
structure through self-supervised graph regularization. To this end,
we propose to use Graph AutoEncoder [39] (GAE) with an adaptive
graph structure combination mechanism to iteratively refine the
graph structure learned from the node embedding matrix.
Graph Autoencoder (GAE). Given the adjacency matrix roughly
estimated using the multi-headed distance metric in Eq.3 and the
node embedding vectors as the input, GAE learns to refine the
adjacency matrix as the output. The initial input of our GAE is
G0 = (A0,H0). Here H0 represents the node embedding matrix
obtained by the attackers. A0 represents the initialized seed graph.
In this way, we treat H0 as the node features X of G0. Note that we
add a superscript for ease of description of the following iterative
learning process.
• Encoder. The encoder is a 𝑍 -layer graph convolutional network
(GCN) [38]. At the 𝑡-th iteration, its input is a graph G𝑡 =

(A𝑡 ,H𝑡 ). The encoder (see Equation 4) learns a latent represen-
tation H𝑡+1 ∈ R𝑛×𝑑 where each row represents a node 𝑣 ’s latent
representation after encoding.

H𝑡+1 = 𝐺𝐶𝑁 (A𝑡 ,H𝑡 ) (4)

• Decoder.We use an inner-product decoder in this paper [38]. The
adjacency matrix can be reconstructed using Equation 5, where



Algorithm 1: Graph recovery attackMNEMON

Input :Node embedding matrix H0, background
information 𝐵, maximum iteration 𝑇 ,
hyperparameters 𝜏, 𝛼 , 𝛽 , 𝜂,𝑚

Output :Learned graph structure A𝑇 (i.e., G𝑅 )
1 𝑘 ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑣𝑔𝐷𝑒𝑔𝑟𝑒𝑒 (𝐵)
2 A0 ← Apply Gumbel-Top-𝑘 trick on the fully connected

probabilistic graph P with 𝜏 (Equation 1) to generate the
initial seed graph

3 for 𝑡 ← 0 to 𝑇 − 1 do
4 A𝑡 ← 𝐺𝑀𝐿(A𝑡 ,H𝑡 ,𝑚)
5 A𝑡+1,H𝑡+1 ← 𝐺𝐴𝐸 (A𝑡 ,H𝑡 )
6 ℒ← ℒ𝑙𝑎𝑝 (A𝑡+1,H0) + ℒ𝑠𝑝𝑎 (A𝑡+1, 𝛼, 𝛽)
7 + ℒ𝑟𝑒𝑐 (A𝑡+1,A𝑡 )
8 Backpropagate ℒ
9 A𝑡+1 ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (A0,A𝑡+1, 𝜂)

10 A𝑡+1 ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒 (A𝑡+1)
11 end
12

GAE

𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) and the output A𝑡+1 is a weighted adjacency
matrix.

A𝑡+1 = 𝜎 (H𝑡+1H𝑡+1𝑇 ) (5)

Note that GAE is a generic framework. We follow the design by
Kipf et al. [39] and use GCN as the encoder and inner-product as the
decoder. This design allows us to use linear GCN [63] to accelerate
the computation and compare to our baseline [16] in Section 5. The
adversary can plug in other GNNmodels into GAE framework. The
audience can use different architectures as encoders and decoders.
Self-Supervised Graph Regularization. MNEMON cannot in-
teract with the target model (i.e., the node embedding model). We
therefore rely on several graph regularization objectives to guide
the above GAE-based learning process in a self-supervised way.

• Graph Laplacian regularization (ℒ𝑙𝑎𝑝 ) [4]. A graph Laplacian reg-
ularization assumes that the learned weighted adjacency matrix
is smooth with respect to a set of node features. In our case, the
weighted adjacency matrix is A𝑡+1 and the set of node features is
the node embedding matrix H0. Note that our goal is to optimize
the graph structure (i.e., A𝑡+1). As we can see in Equation 6, we
stress that we always force that the learned weighted adjacency
matrix A𝑡+1 is smooth with respect to the initial node embed-
ding matrix H0. As such, graph Laplacian regularization can be
interpreted that two connected nodes in the learned graph struc-
ture should be close enough in the latent node embedding space
defined by H0.

ℒ𝑙𝑎𝑝 (A𝑡+1,H0) = 1
2𝑛2

∑
𝑣,𝑢

A𝑡+1
𝑣𝑢 ∥ℎ0𝑣 − ℎ0𝑢 ∥ =

1
2
tr(H0𝑇 L𝑡+1H0) (6)

where tr denotes trace of matrix, L𝑡+1 = D𝑡+1 −A𝑡+1 and D𝑡+1 =∑
𝑣 A𝑡+1

𝑣𝑢 .

• Graph sparsity regularization (ℒ𝑠𝑝𝑎) [35]. In the real world, the
graphs are normally sparse. We use graph sparsity regulariza-
tion proposed by Kalofolias et al. [35] to learn graphs that meet
such expectations. As we can see in Equation 7, graph sparsity
regularization encourages that each node connects to at least
another node in the first term, and penalizes large degrees in the
second term naturally arising from the first term. Graph sparsity
regularization can be interpreted as using 𝛼 to force the graph
degrees to be positive and 𝛽 to control the graph sparsity.

ℒ𝑠𝑝𝑎 (A𝑡+1, 𝛼, 𝛽) = −𝛼1𝑇 𝑙𝑜𝑔(A𝑡+11) + 𝛽

2
∥A𝑡+1∥ (7)

where 𝛼 > 0 and 𝛽 ≥ 0 are two controlling hyperparameters.
• Graph reconstruction loss (ℒ𝑟𝑒𝑐 ) [39]. Graph reconstruction loss
forces GAE to learn a latent representation H𝑡+1 to faithfully
rebuild the input adjacency matrixA𝑡 . In this paper, we adopt the
link prediction as the way to interpret the reconstruction loss [46]
and minimize the binary cross entropy loss between negative (i.e.,
non-existing edges) and positive samples (i.e., existing edges).
The loss function can be found in Equation 8.

ℒ𝑟𝑒𝑐 =
1
2𝑛2
∥A𝑡◦𝑙𝑜𝑔(𝐴𝑡+1) + (1 − A𝑡 )◦𝑙𝑜𝑔(1 − A𝑡+1)∥2𝐹 (8)

where ◦ is elementwise product and 1 is an all-ones matrix.
To summarize, ℒ𝑟𝑒𝑐 forces GAE to learn simultaneously the up-
dated latent representationH𝑡+1 and a graph adjacency matrixA𝑡+1

decoded from H𝑡+1 to faithfully rebuild the input adjacency matrix
A𝑡 . ℒ𝑙𝑎𝑝 and ℒ𝑠𝑝𝑎 makes the learned graph smooth and sparse.
Note that all these three supervisory signals are from the data itself.
Learning Objective. Equation 9 summarizes the objective func-
tion of the self-supervised graph structure learning.

ℒ = ℒ𝑙𝑎𝑝 + ℒ𝑠𝑝𝑎 + ℒ𝑟𝑒𝑐

W∗, A∗ = arg min
W, A

ℒ(W,A,H0) (9)

By minimizing Equation 9, we can jointly refine the graph structure
and the graph metric function 𝜙 . The learning process is executed
with two alternating steps. First, we refine the distance metric 𝜙 by
updating the multi-heads parameters w𝑖=1...𝑚 , given the current
estimation of the graph structure (Section 4.3). Second, we estimate
the graph structure using the current distance metric 𝜙 (Section 4.4).
The two steps are complementary to each other and boost the
overall accuracy of graph structure recovery. It is worth noting that
all three loss functions are empirically comparable in magnitude in
our evaluation. The adversary can weigh the losses to accommodate
their specific attack targets in Equation 9.
AdaptiveGraph StructureCombination. The learnedweighted
graph structure A𝑡+1 is then combined with the input graph struc-
ture A0 using Equation 10. This structure combination step can be
interpreted as a denoising function to reduce false positive edges
incurred by the initial adjacency matrix A0. That is, GAE learns to
reconstruct a graph structure A𝑡+1 given its structure A𝑡 and node
featureH𝑡 . The edges reconstructed with high confidence are likely
to appear the original graph. we use 𝜂 in Equation 10 to control
the update rate of A0 using A𝑡+1, and iteratively filter out the false
positive edges from the initial graph structure.



Table 2: Summary of datasets.

Dataset Category |V| |E| |X| ⌈|E|/|V|⌉ Density

Cora Citation 2,708 5,429 1,433 4 0.0014
Citeseer Citation 4,230 5,358 602 3 0.0006
Actor Co-Occurrence 7,600 33,544 931 9 0.0011
Facebook Social 4,039 88,234 1,283 43 0.011

A𝑡+1 = (1 − 𝜂)A0 + 𝜂A𝑡+1 (10)

Note that A𝑡+1 remains a weighted adjacency matrix after combi-
nation. At the end of each iteration, however, we need to obtain
the learned graph structure in a binary form to guide graph metric
learning in the next iteration. To this end, we first apply an entry-
wise clipping function, 𝑐𝑙𝑖𝑝 (𝑥) = 𝑚𝑖𝑛(𝑚𝑎𝑥 (0, 𝑥), 1), to A𝑡+1. We
then use the same Bernoulli binarization strategy outlined in [9] to
obtain the binary adjacency matrix A𝑡+1. Specifically, we treat each
element of the weighted adjacency matrix A𝑡+1 as the parameter
of a Bernoulli distribution and sample independently to produce
the final binary adjacency matrix.
Summary. We summarize the whole learning process (i.e., Sec-
tion 4.2, Section 4.3 and Section 4.4) in Algorithm 1.

5 EVALUATION
5.1 Experimental Setup
Datasets. We use 4 public benchmark datasets to evaluate the per-
formance of our graph reconstruction attack, including Cora [78],
Citeseer [78], Actor [53], and Facebook [51]. Cora and Citeseer
are citation networks with nodes representing publications and
edges indicating citations among these publications. Actor is the
actor-only induced subgraph of the film-director-actor-writer net-
work used in [53]. Each node corresponds to an actor, and the edge
between two nodes denotes co-occurrence on the same Wikipedia
page. Facebook is a social network where nodes represent Facebook
users and edges are friendships. We use these datasets to verify the
efficacy of our attack given graphs with different characteristics
(e.g., origin, graph size, density, node feature size, etc.). For example,
Facebook is a social network, it has a well known small world phe-
nomenon and tight community structures among the nodes while
the other networks are relatively sparse. Statistics of these datasets
are summarized in Table 2.
Node Embedding Models (𝑓 ). We use four popular node embed-
ding models - network embedding as sparse matrix factorization
(NetSMF) [56], Deepwalk (abbreviated as DW) [55], Node2Vec (ab-
breviated as N2V) [22] and graph convolutional network (GCN) [38]
- to generate node embeddings for our evaluation. These four node
embedding models are representative of the existing node embed-
ding model families. Network embedding as sparse matrix factoriza-
tion (NetSMF) [56] improves NetMF [57] and represents the state-
of-the-art matrix factorization based approach to generate node
embeddings. Deepwalk and Node2Vec are two well known shal-
low neural network-based (i.e., a neural network with one hidden
layer) node embedding techniques. Graph convolutional network
(GCN) is a widely used deep neural network based approach for
graph representation learning. Note that NetMF, Deepwalk, and

Node2Vec generate node embedding using graph structural infor-
mation only, while GCN considers both node feature and graph
structure. As such, these models also cover different real world use
cases whereas node embeddings can be generated with different
inputs. For reproducibility purposes, we outline their details below.

• NetSMF. We use the Pytorch implementation by the original
authors [7]. The window size of approximate matrix is 10. The
number of negative nodes in sampling is 1. We run the path
sampling algorithm for 100 iterations.
• Deepwalk. We use the DGL implementation of Deepwalk. The
learning rate is set to 0.1. The number of negative nodes in sam-
pling is 5. The random walk length is fixed at 80, and we run 10
random walks per node.
• Node2Vec.We also use the DGL implementation of Node2Vec.
The number of negative nodes in sampling is 5. The random walk
length is fixed at 50, and we run 100 random walks per node. 𝑝
and 𝑞 are set to 0.25 and 4 respectively by default.
• Graph Convolutional Network (GCN). We use the Pytorch
Geometric implementation of GCN. Our GCN model consists
of 2 layers as suggested by the original authors. For the first
hidden layer, we set the hidden unit size to twice the size of input
vectors. For the second layer, we set the hidden unit size to the
embedding size. We use ReLU as the activation function between
layers. Node embeddings are generated using link prediction as
the objective function. We train the GCN model for 400 epochs.

For all node embedding models, we set their output embedding
size (i.e., 𝑑) to 64, 128, and 256 for our evaluation. These sizes are
commonly used in the real world practices balancing between the
expressiveness of the node embeddings and the computational
complexity of the downstream tasks. Besides, we use the largest
connected components from all four datasets to accommodate these
node embedding models in our evaluation.
Competitors. We implement three baseline methods detailed be-
low for comparison study.

• Direct Recovery. This baseline computes the pairwise similar-
ity matrix from the embeddings of the original graph and recon-
structs the graph by choosing the top 𝑘 × 𝑛/2 pairs (i.e., edges)
of the largest pairwise similarity scores. It is a straightforward
attack strategy that can be leveraged by the adversaries since
the embeddings of similar nodes should be close in the latent
spaces (see Section 2). Note that our implementation of direct
recovery is identical to the decoder used by Duddu et al. [16] to
reconstruct graphs.
• 𝑘NN Graph. We employ the widely used 𝑘NN algorithm (see
Section 2) as the second baseline. 𝑘NN builds a graph in which
two nodes 𝑣 and 𝑢 are connected by an edge if the distance
between ℎ𝑣 and ℎ𝑢 is among the 𝑘-th smallest distances. We use
cosine similarity as the distance function.
• Invert Embedding [9]. We adapt the optimization algorithm
(Algorithm 2&3 in Chanpuriya et al. [9]) as our third baseline
to recover a graph from the node embeddings. Since the attack-
ers cannot obtain the real eigenvalues from the PPMI matrix
in a model agnostic setting, we thereby use a random diagonal
eigenvalue matrix together with the node embedding matrix to
generate the low-rank approximation matrix. We set the other



hyperparameters as outlined in Chanpuriya et al. [9]. Additional
discussion about invert embedding can be found in Section 7.

The graph size (i.e., the number of edges) of all baselines are set
to 𝑘 × 𝑛/2. We detail how we estimate 𝑘 in Section 5.2 and how 𝑘

influences the graph recovery performance in Section 5.5.
HyperparamterConfigurations. We set the number of attention
heads𝑚 to 16. The temperature 𝜏 , graph sparsity hyperparameters𝛼
and 𝛽 , and the update rate 𝜂 are set to 1, 0.3, 0.1 and 0.5 respectively.
We set the maximum iteration 𝑇 to 400. We use a linear graph
autoencoder (i.e.,𝑍 is set to 1) proposed by Salha et al. [63], which is
an effective alternative to multilayer GCNs. These hyperparameter
values offer consistent performance across different datasets and
models in our evaluation.
Evaluation Metrics. Recall that the attackers have two main
goals. Their primary goal is uncovering the edges with decent
accuracy from the node embeddingmatrix, and their secondary goal
is recovering a graph structure that is similar to the original graph
with respect to the graph properties. Bearing them in mind, we use
two categories of metrics to evaluateMNEMON’s performance.
• Edge Metrics. We first use four edge related metrics - precision
(P), recall (R), F1 score (F1), and joint degree distribution (JDD) -
to measure howMNEMON attains the primary goal. Precision,
recall, and F1 are commonly used, and we apply them to mea-
sure the overall capability of MNEMON recovering the exact
edges. The joint degree distribution is a metric relating to the
edge distribution and provides an additional measurement about
1-hop neighborhoods around a node. It examines each pair of
connected nodes and notes their respective nodal degrees. It is
defined as 𝑃 (𝑘1, 𝑘2) = 𝜇 (𝑘1, 𝑘2) ×𝑚(𝑘1, 𝑘2), where 𝜇 (𝑘1, 𝑘2) = 1
if 𝑘1 = 𝑘2 otherwise 2, and𝑚(𝑘1, 𝑘2) denotes the number of edges
connecting nodes of degree 𝑘1 and 𝑘2. We use SecGraph [31] to
calculate the Jaccard similarity among two JDDs. For all edge
metrics, values close to 1 are the best.
• Global Metrics. We then employ three global metrics - relative
Frobenius error, relative triangle error, and relative average clus-
tering coefficient error - to measure how MNEMON achieves
its secondary goal. The relative error is defined as the absolute
error (i.e., the difference between the measured value and ground
truth value) divided by the ground truth value. It gives an indica-
tion of how good a measurement is relative to the ground truth
value, or in other words, how much the observed value deviates
from actual value. We use the relative Frobenius error, which
measures the difference between the adjacency matrix A𝑂 and
A𝑅 , i.e., ∥A𝑂 − A𝑅 ∥𝐹 /∥A𝑂 ∥𝐹 . Similarly, we count the absolute
difference between the number of triangles (respectively average
clustering coefficient) of G𝑅 and that of G𝑂 , then divided by the
number of triangles (respectively average clustering coefficient)
of G𝑂 to calculate the relative triangle error (the relative average
clustering coefficient error). For all global metrics, values close
to 0 are the best. Similar relative error metrics are also used in
Chanpuriya et al. [9].

In practice, the audience could potentially leverage Narayanan-
Shmatikov’s attack [52] (and other appropriate de-anonymization
attacks) to measure, to what extent, the recovered graph can as-
sist the graph de-anonymization task given different graphs and
different levels of background knowledge.
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Figure 2: Distribution of estimated average node degrees.
The mean and standard deviation of our estimated average
node degree of the citation/co-occurrence graphs (Figure 2a)
are 4.6 and 0.8. The respective values of social networks (Fig-
ure 2b) are 45.7 and 8.4.
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Figure 3: F1 scores and relative triangle error scores of all
basesline methods andMNEMON when given different node
embedding sizes (i.e., 64, 128 and 256). We use Node2Vec to
generate node embedding matrices.

Runtime Configuration. All the experiments in this paper are
repeated 5 times. For each run, we follow the same experimental
setup laid out before. We report the mean and standard deviation
of each metric to evaluate the attack performance. In this way,
we can delineate objective performance results without reporting
opportunistically optimal results.

5.2 How to Estimate the Average Node Degree?
Recall that the only clue that the attackers have is the background
information about the origin of the node embedding matrix. In this
section, we exemplify how the attackers can estimate the average
node degree 𝑘 from the graphs of similar origins by leveraging
state-of-the-art graph sampling methods. Note that the attackers
can estimate the graph size (i.e., the number of edges) which equals
to 𝑘 × 𝑛/2. We use the state-of-the-art spikyball sampling [60] to
estimate the average node degree for our evaluation. It generalizes
several exploration-based sampling schemes (e.g., Snowball sam-
pling, Forest Fire sampling, graph-expander sampling etc.), and can
be applied to any large graphs due to its flexibility [60].

Specifically, for citation/co-occurrence graphs (e.g., Cora, Cite-
seer, and Actor), we use the publicly available citation graphs -
Pubmed and DBLP - to estimate the average node degree. For each
graph, we use spikyball sampling to sample 30% of the whole graph
then estimate the average node degree from the sampled graph.
This process is repeated 300 times. We calculate the mean aver-
age node degree as our final estimation of citation/co-occurrence
graphs. For social network graphs (e.g., Facebook), we randomly
select six graphs (e.g., socfb-BU10, socfb-Carnegie49, socfb-JMU79,



socfb-Lehigh96, socfb-Maine59 and socfb-UCSC68) from the pub-
licly available FB100 dataset [59] plus one Twitter graph [51] from
SNAP. We also sample 30% of each graph to estimate the average
node degree and repeat this process 300 times per graph. This strat-
egy enables the adversary to sample enough graphs to cover a wide
spectrum of graph properties.

The estimation results are shown in Figure 2. What can be seen
in Figure 2 is that the estimated average node degrees may not
exactly match the real values but are roughly within the same order
of magnitude. For instance, the mean and standard deviation of our
estimated average node degree of the citation/co-occurrence graphs
(Figure 2a) are 4.6 and 0.8, while the mean and standard deviation
of our estimated average node degree of social networks are 45.7
and 8.4 respectively. Comparing to the real values in Table 2, the
estimated values are not precise. For instance, the above graph
sampling process overestimates the average node degree for the
Cora and Citeseer datasets, while underestimating the average node
degree of the Actor dataset. However, they can offer the attackers a
reasonable starting point to estimate the graph sizes. We use these
estimated values (i.e., 5 for citation/co-occurrence graphs and 46
for social network graphs) in the rest of our evaluation. We provide
a detailed study on howMNEMON can attain good performance
even when the estimated average node degree is almost twice the
ground truth value in Section 5.5.
Takeaways. When only having the background information about
the origin of the node embedding matrix, our sampling process
represents a feasible way that the attackers take to estimate the
average node degree. The estimated average node degrees are in
the vicinity of the ground truth values but not exactly matching
them.

5.3 Is MNEMON Better than the Baselines?
In this section, we aim at studying whether MNEMON is effective
to recover a graph from the node embedding matrix, or whether
the existing baseline methods would be enough for the task at hand.
To address this research question, we compare MNEMON to the
baseline methods discussed in Section 5.1. All methods use the
estimated average node degrees outlined in Section 5.2. The node
embedding size is fixed to 256. Due to space limitations, we only
report the attack results on the Cora dataset.
Performance. The performance comparison results are shown in
Table 3. Overall, direct graph recovery and invert embedding graph
recovery cannot recover graphs from the node embedding matrices
given all four node embedding models. For instance, the F1 scores
of these two methods are no greater than 0.027, indicating that they
cannot attain the attacker’s primary goal. At the same time, the
global metrics of these two baselines are equally underwhelming.
Our results show that such optimization based approach is less
effective in a model agnostic setting. 𝑘NN algorithm represents a
de facto approach to recover the edges from node embeddings. Our
results show that 𝑘NN graph can partially recover the edges from
the node embedding matrix. For example, it can recover the edges
from the node embeddings generated by Node2Vec with a 0.438 F1
score. As we can see in Table 3,MNEMON outperforms all baseline
methods. Take the node embeddings generated by Node2Vec for
example, MNEMON achieves 0.529 F1 score, which is 0.091 higher

than that of 𝑘NN graph recovery. In other words,MNEMON’s F1
score relatively improves that of 𝑘NN graph recovery by 0.208 (i.e.,
0.091/0.438=0.208). If we take the edges recovered by 𝑘NN graph as
the upper bound of the existing privacy risk assessment,MNEMON
empirically improves this upper bound by 0.208 per our evaluation
results. Given the combinatorial nature of graph edges (i.e., n(n-
1)/2 possibilities) and our strict attack setting (i.e., no interaction
with the node embedding models), such 0.208 relative improvement
by MNEMON is substantial. Practically speaking, if we position
MNEMON in the privacy risk assessment framework, it would lead
to 0.208 increase of the estimated privacy loss than the de facto risk
assessment using 𝑘NN algorithm.
Impact of Node Embedding Size. We use two metrics - F1 score
and relative triangle error - to understand the impact of node em-
bedding size on both baselines andMNEMON. We use Node2Vec
to generate node embedding matrices. The results are shown in
Figure 3. It is straightforward to see that MNEMON consistently
performs better than the baselines given different node embedding
sizes.
Takeaways. The proposed learnable distance function and adap-
tive graph structure combination can reduce a reasonable amount
of false edges. They, in turn, enable MNEMON to recover better
graph structure from the node embedding matrix given different
node embedding models and embedding sizes. Besides, 𝑘NN graph
remains a viable approach to recover edges from the node embed-
ding matrix. However, due to its non-learning-based nature, 𝑘NN
graph is outperformed byMNEMON.

5.4 How Effective isMNEMON?
In this section, we evaluate MNEMON on all four datasets to un-
derstand its overall performance. The results are summarized in
Table 4. Due to space limitations, we only show the results when
the node embedding size is fixed to 256.
Edge Metrics. Recall that the primary goal of the attackers is
uncovering the edges with decent accuracy from the node embed-
ding matrix. We thereby use edge metrics outlined in Section 5.1 to
measure MNEMON’s performance. Besides, 𝑘NN graph remains a
viable approach to recover edges from the node embedding matrix
as we explicate in Section 5.3. We also show the relative improve-
ment scores in Table 4 to demonstrate to what extentMNEMON can
relatively improve from 𝑘NN graph. We add a positive sign (+) next
to the relative improvement score to highlight the improvement. As
we can see from Table 4, MNEMON can enable the adversary to re-
cover edges from all node embedding matrices generated by all four
node embedding models with good precision and recall. Take the
Cora dataset and the node embedding matrix generated by NetMF
for example.MNEMON achieves 0.579 precision, 0.640 recall and
0.608 F1 scores. These scores relatively improve 0.235, 0.113, and
0.176 from those of 𝑘NN graph recovery. Similarly, take the Actor
dataset and the node embedding matrix generated by Deepwalk
for example,MNEMON achieves 0.687 precision, 0.435 recall, and
0.533 F1 scores. These scores relatively improve 0.222, 0.088, and
0.138 from those of 𝑘NN graph recovery. The other datasets given
all node embedding models follow similar patterns. At the same
time, MNEMON overwhelmingly outperforms 𝑘NN graph given
joint degree distribution similarity metric. Given the above two



Table 3: Comparison of all baseline methods andMNEMON. We use the Cora dataset and the node embedding size is 256.

Graph
Reocvery
Method

𝑓
Edge Metric Global Metric

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Direct
Recovery

DW 0.001±0.000 0.002±0.000 0.001±0.000 0.000±0.000 1.647±0.000 6.867±0.000 0.753±0.000
N2V 0.003±0.000 0.006±0.000 0.004±0.000 0.000±0.000 1.645±0.000 7.559±0.000 0.759±0.000

NetSMF 0.013±0.000 0.022±0.000 0.016±0.000 0.311±0.000 1.647±0.000 0.621±0.000 0.228±0.000
GCN 0.001±0.000 0.002±0.000 0.002±0.000 0.000±0.000 1.647±0.000 6.391±0.000 0.653±0.000

Invert
Embedding

DW 0.007±0.005 0.012±0.010 0.009±0.007 0.667±0.092 1.660±0.010 0.866±0.661 0.198±0.008
N2V 0.021±0.008 0.037±0.014 0.027±0.010 0.665±0.030 1.645±0.008 1.869±0.160 0.148±0.005

NetSMF 0.003±0.001 0.005±0.003 0.004±0.002 0.462±0.064 1.676±0.007 0.842±0.789 0.221±0.011
GCN 0.015±0.003 0.026±0.006 0.019±0.004 0.675±0.004 1.657±0.005 0.255±0.158 0.188±0.005

𝑘NN
Graph

DW 0.401±0.000 0.492±0.000 0.442±0.000 0.340±0.000 1.114±0.000 3.029±0.000 0.286±0.000
N2V 0.397±0.000 0.487±0.000 0.438±0.000 0.338±0.000 1.119±0.000 2.185±0.000 0.276±0.000

NetSMF 0.469±0.000 0.575±0.000 0.517±0.000 0.334±0.000 1.037±0.000 2.379±0.000 0.325±0.000
GCN 0.378±0.000 0.463±0.000 0.416±0.000 0.333±0.000 1.140±0.000 2.172±0.000 0.286±0.000

MNEMON

DW 0.492±0.004 0.578±0.003 0.531±0.003 0.840±0.011 1.010±0.005 1.118±0.036 0.215±0.006
N2V 0.506±0.001 0.554±0.003 0.529±0.001 0.724±0.007 0.993±0.001 0.973±0.027 0.228±0.004

NetSMF 0.579±0.002 0.640±0.003 0.608±0.003 0.732±0.006 0.908±0.003 1.263±0.019 0.288±0.004
GCN 0.462±0.002 0.506±0.001 0.483±0.001 0.753±0.006 1.040±0.003 0.864±0.032 0.230±0.005

Table 4: The performance results of MNEMON using all four datasets. We fix the node embedding size to 256. We show the
relative improvement scores in edge metrics to demonstrate to what extentMNEMON can relatively improve from 𝑘NN graph.
We add a positive sign (+) next to the relative improvement score to highlight the improvement. We also show the relative
error reduction scores in global metrics to demonstrate to what extentMNEMON can relatively reduce errors incurred by 𝑘NN
graph. We add a negative sign (-) next to the relative error reduction score to highlight the difference.

Dataset 𝑓
Edge Metrics Global Metrics

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Cora

DW 0.492±0.004 (+0.226) 0.578±0.003 (+0.174) 0.531±0.003 (+0.201) 0.840±0.011 (+1.471) 1.010±0.005 (-0.104) 1.118±0.036 (-1.911) 0.215±0.006 (-0.071)
N2V 0.506±0.001 (+0.276) 0.554±0.003 (+0.137) 0.529±0.001 (+0.208) 0.724±0.007 (+1.143) 0.993±0.001 (-0.126) 0.973±0.027 (-1.212) 0.228±0.004 (-0.048)

NetSMF 0.579±0.002 (+0.235) 0.640±0.003 (+0.113) 0.608±0.003 (+0.176) 0.732±0.006 (+1.191) 0.908±0.003 (-0.129) 1.263±0.019 (-1.116) 0.288±0.004 (-0.037)
GCN 0.462±0.002 (+0.223) 0.506±0.001 (+0.092) 0.483±0.001 (+0.162) 0.753±0.006 (+1.260) 1.040±0.003 (-0.100) 0.864±0.032 (-1.308) 0.230±0.005 (-0.056)

Citeseer

DW 0.403±0.002 (+0.193) 0.555±0.005 (+0.149) 0.467±0.003 (+0.174) 0.617±0.011 (+1.635) 1.125±0.003 (-0.085) 1.877±0.075 (-2.651) 0.341±0.009 (-0.080)
N2V 0.445±0.001 (+0.271) 0.575±0.002 (+0.149) 0.502±0.001 (+0.217) 0.506±0.007 (+1.137) 1.069±0.002 (-0.127) 1.734±0.039 (-1.665) 0.357±0.005 (-0.059)

NetSMF 0.530±0.002 (+0.229) 0.672±0.001 (+0.091) 0.592±0.001 (+0.168) 0.461±0.005 (+1.048) 0.961±0.002 (-0.133) 2.001±0.056 (-1.419) 0.432±0.003 (-0.056)
GCN 0.414±0.003 (+0.206) 0.529±0.002 (+0.080) 0.465±0.001 (+0.153) 0.527±0.011 (+1.344) 1.105±0.004 (-0.099) 1.467±0.057 (-1.734) 0.330±0.004 (-0.067)

Actor

DW 0.687±0.001 (+0.222) 0.435±0.002 (+0.088) 0.533±0.002 (+0.138) 0.417±0.001 (+0.587) 0.874±0.001 (-0.081) 0.203±0.009 (-0.105) 0.229±0.002 (-0.017)
N2V 0.465±0.001 (+0.356) 0.313±0.000 (+0.282) 0.374±0.000 (+0.312) 0.473±0.003 (+0.293) 1.023±0.001 (-0.083) 0.179±0.007 (-0.387) 0.176±0.001 (-0.035)

NetSMF 0.562±0.002 (+0.240) 0.366±0.001 (+0.136) 0.443±0.001 (+0.179) 0.457±0.003 (+0.406) 0.959±0.001 (-0.074) 0.147±0.013 (-0.758) 0.285±0.002 (-0.025)
GCN 0.373±0.001 (+0.226) 0.263±0.000 (+0.211) 0.308±0.001 (+0.218) 0.505±0.003 (+0.446) 1.086±0.001 (-0.045) 0.280±0.008 (-0.349) 0.153±0.002 (-0.049)

Facebook

DW 0.441±0.001 (+0.028) 0.471±0.001 (+0.066) 0.456±0.001 (+0.046) 0.519±0.006 (+1.745) 1.061±0.001 (-0.009) 0.494±0.002 (+0.213) 0.077±0.001 (+0.006)
N2V 0.468±0.000 (+0.018) 0.487±0.001 (+0.026) 0.477±0.001 (+0.022) 0.444±0.002 (+1.581) 1.033±0.001 (-0.007) 0.545±0.001 (+0.499) 0.090±0.001 (+0.050)

NetSMF 0.454±0.001 (+0.022) 0.502±0.002 (+0.098) 0.476±0.001 (+0.059) 0.457±0.002 (+0.570) 1.050±0.001 (-0.006) 0.424±0.007 (+0.418) 0.081±0.001 (+0.041)
GCN 0.342±0.001 (+0.061) 0.364±0.001 (+0.100) 0.352±0.001 (+0.078) 0.371±0.004 (+1.026) 1.157±0.001 (-0.012) 0.452±0.002 (+0.380) 0.056±0.001 (-0.031)

examples, JDD similarity scores ofMNEMON respectively improve
1.191 and 0.587 from those of 𝑘NN graph. Our results demonstrate
thatMNEMON can recover a graph in which each pair of connected
nodes share similar 1-hop neighborhood as they are in the original
graph.
Global Metrics. Recall that the secondary goal of the attackers is
recovering a graph structure that is similar to the original graph
with respect to the graph properties. We use the global metrics
outlined in Section 5.1 to understand MNEMON’s performance.
Similar to the above edge metrics, we also compareMNEMON to
𝑘𝑁𝑁 graph. We show the relative error reduction scores in Table 4
to demonstrate to what extent MNEMON can relatively reduce er-
rors incurred by 𝑘NN graph. We add a negative sign (-) next to the
relative error reduction score to highlight the difference between
MNEMON and 𝑘NN graph. As we can see from Table 4, MNEMON

can incur relatively low error scores given all three global metrics.
Take the Actor dataset and the node embedding matrix generated
by GCN for example. MNEMON’s relative triangle error is 0.280.
This indicates that the graph recovered by MNEMON contains a
similar number of triangles to that of the original graph. At the
same time, this score reduces the relative error made by 𝑘NN graph
for 0.349. Note that the estimated average node degree (i.e., 5) is
larger than the ground truth values of both Cora and Citeseer. This
leads to higher relative triangle errors. However, combined with the
edge metrics, we can assert that such error is due to a combination
of reorientation of the specific edges between the true and the re-
covery networks, and extra edges incurred by the overestimation of
𝑘 . Besides, we compareMNEMONwith the invert embedding using
the overlapping Citeseer dataset and its 256-dimensional NetSMF
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Figure 4: F1 scores and relative average clustering coefficient error scores ofMNEMON given all four datasets. We fix the node
embedding size to 256.
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Figure 5: F1 scores and relative average clustering coefficient error scores of MNEMON given all four datasets and various
average node degrees. We fix the node embedding size to 256. The vertical bar indicates the actual average node degree.

node embeddingmatrix.MNEMON can achieve 0.908 relative Frobe-
nius error score which is close to that of the invert embedding (see
Figure 4 in [9]). Note that the invert embedding in [9] is under the
white box setting whileMNEMON is under the black box setting. In
summary, our performance results demonstrate thatMNEMON can
also recover a graph that is structurally similar to the original graph
with respect to the global graph properties. Note that the clustering
coefficient of a node 𝑐𝑣 is defined as 𝑐𝑣 =

2∗𝒩 (𝑣)
𝑑𝑒𝑔 (𝑣) (𝑑𝑒𝑔 (𝑣)−1) where

𝒩 (𝑣) represents the number of edges between the neighbors of
𝑣 and 𝑑𝑒𝑔(𝑣) represents the degree of 𝑣 . The average clustering
coefficient of the whole graph 𝑐G is defined as 𝑐G = 1

𝑛

∑𝑛
𝑣=1 𝑐𝑣 . A

smaller 𝑘 may lead to the increasing possibility that the number of
triangles recovered from a graph drops closer to 0. We therefore
use different relative errors to objectively evaluate the performance
from multiple perspectives.
Impact of Node Embedding Size. We use two metrics - F1 score
and relative average clustering coefficient error - to understand the

impact of node embedding size MNEMON across all four datasets.
The results are shown in Figure 4. As we can see in the figure,
MNEMON can offer stable graph recovery performance given dif-
ferent embedding sizes and all embedding models. We only observe
a marginal F1 score decrease given the Deepwalk node embedding
model in Cora and Citeseer datasets. Overall, our results imply that
reducing the embedding size (a common defense mechanism) may
not work for MNEMON. More details can be found in Section 6.
Stability. We runMNEMON 5 times on a given node embedding
matrix. Such runtime configuration enables us to measure how
widely all those metric values are dispersed from the average value
(i.e., standard deviation). At the same, it eliminates the chance of
reporting opportunistically good results. A low standard deviation
indicates low volatility. As we can observe in Table 4, the stan-
dard deviation values are low in all cases. The results show that
MNEMON can recover graphs from node embedding matrices with
statistically stable performance.



Table 5: Ablation study on the impact of GML toMNEMON’s
performance. We use Citeseer dataset and fix the node em-
bedding size to 256.

Method Precision Recall F1

𝑘NN 0.338 0.483 0.398
MNEMON w/o GML 0.391 0.511 0.443

MNEMON 0.404 0.557 0.468

Ablation Study. We also carry out an ablation study to understand
the impact of GML on the performance of MNEMON. To this end,
we customizeMNEMON and remove GML from the optimization.
Specifically, we initialize a graph using Gumbel-Top-𝑘 trick and
run GAE once. We use edge metrics in this study and summarize
the results in Table 5. We observe thatMNEMON performs better
given all edge metrics. The results exemplify that jointly optimizing
GAE and GML enables us to learn more information from the node
embedding matrix and further reduce noise from the recovered
graph.

Takeaways. We can observe that MNEMON achieves good per-
formance on all datasets. Such results demonstrate that jointly opti-
mizing the learnable distance function and adaptive graph structure
combination is effective for recovering graphs from node embed-
dings.

5.5 How does 𝑘 Affect the Attack Performance?
Recall that the attackers use the graph sampling algorithms to esti-
mate the average node degree from the graphs of similar origins
and transfer the estimated node degree from these graphs to facili-
tate the attack (see Section 4.2). We show that the adversary cannot
obtain the precise average node degree in Section 5.2. However,
the estimated average node degree 𝑘 directly affects the graph size
of the recovered graph G𝑅 . More importantly, our attack uses this
estimated 𝑘 to seed the initial graph using the Gumbel-Top-k trick
and iterative graph structure optimization during the learning pro-
cess. It is therefore essential to study the impact of the estimated
average node degree 𝑘 on the graph recovery performance. To this
end, we run MNEMON 5 times on every 𝑘 that falls within at least
one standard deviation of the estimated average node degree in
Section 5.2. For instance, the mean and standard deviation of our
estimated average node degree of the Facebook dataset are 45.7 and
8.4 respectively. In this case, we runMNEMON 5 times for every
value between 38 and 52. We use two metrics - F1 score and relative
average clustering coefficient error - to understand the impact of 𝑘
across all four datasets. Due to space limitations, we only show the
attack results when the node embedding size is fixed to 256.
Performance. The results are shown in Figure 5. We show a verti-
cal line in each figure to mark the ground truth value of the average
node degree for each dataset (see Table 2). In general, we can see
thatMNEMON can accommodate the inevitable estimation error.
Take the Citeseer dataset and the node embedding matrix generated
by NetSMF for example. The ground truth average node degree is 3,
and the estimated average node degree is 5. The F1 scores achieved
by MNEMON are respectively 0.592 and 0.605. This means that,
even though our estimated 𝑘 is almost twice the ground truth value,
MNEMON can still deal with such estimation error and attain good

Figure 6: Trade-off between node embedding utility (average
link prediction precision) and MNEMON’s graph recovery
performance (F1 score). We use the Cora dataset and GCN
as the node embedding model. The node embedding size is
fixed to 256.

results (i.e., the F1 score difference is only 0.013). Similar to the F1
score metric, we can see that MNEMON can also achieve low rela-
tive average clustering coefficient error. Take the Citeseer dataset
and the node embedding matrix generated by NetSMF for instance,
the relative average clustering coefficient errors ofMNEMON are
0.432 and 0.332. The difference is approximately 0.100.
Observations. We observe that the node embedding matrices
generated by GCN are relatively harder to recover than those by
the other three models. Two factors make the graph recovery task
difficult. First, GCN considers both node features and graph struc-
ture to generate node embeddings while the other three models
only use graph structures. Second, we use ReLU as the activation
function between layers. This non-linear, element-wise function
outputs the input directly if it is positive, otherwise, it outputs zero.
It is computationally efficient but leads to sparse representation,
making the graph recovery harder.
Takeaways. Our evaluation results show thatMNEMON can ac-
commodate the inevitable estimation error of 𝑘 . The root cause
of the moderate decrease (increase) of F1 scores (relative average
clustering coefficient error) in Figure 5 is due to the increasing
graph size. However, given the real world application scenarios
outlined in Section 3.2, we show that the estimated average node
degrees can be in the vicinity of the real values as shown in Sec-
tion 5.2. Combining with the adaptive learning process outlined in
Section 4.4,MNEMON remains practical to recover graphs in the
wild as exemplified by the results in Figure 5.

6 DEFENSE
In this section, we discuss node embedding perturbation as a tenta-
tive defense mechanism and empirically evaluate its effectiveness.
Embedding Perturbation. One possible defense of MNEMON is
adding perturbations (i.e., noise) to the original node embeddings
H𝑂 . As such, the data holder only passes on a noisy but usable ver-
sion H̃𝑂 to the ML pipeline. Formally, H̃𝑂 = H𝑂 + Δ(𝜇, 𝑏) where Δ
denotes the Laplace distribution, 𝜇 is a location parameter and𝑏 > 0
is a scale parameter. However, adding noise inevitably distorts the
information contained in the node embeddings and can lead to util-
ity loss. We therefore focus on evaluating the trade-off between the
utility and the defense in this section. Similar defense mechanisms
were also discussed in the previous literature [28, 82, 84].



Table 6: Difference between our attack and the close work.

Method Supervision from
Auxiliary data

Shadow
model

Interaction w/
target model

Attack
setting

Chanpuriya et al. [9] ✓ ✗ N/A whitebox

Link reidentification [16, 28, 73] ✓ ✓ ✓ blackbox

Zhang et al. [82] ✓ ✓ ✓ blackbox

MNEMON ✗ ✗ ✗ model-agnostic

Experimental Setup. We use the Cora dataset and the 256 dimen-
sional node embeddingmatrix generated by GCN for our evaluation.
We fix 𝜇 to 0 and choose 10 evenly distributed values between 0
and 1 for 𝑏. We use average link prediction precision as the utility
metric and F1 score as the attack performance metric.
Results. The results are shown in Figure 6. As we can see in the
figure, adding perturbations could work with noticeable utility loss.
For instance, when 𝑏 = 0.2, the average link prediction precision
using the perturbated node embedding matrix drops from 0.881
to 0.761. In turn, we can see that the MNEMON’s F1 score drops
from 0.486 to 0.088. This result shows that the data holder might
choose the noise level to defend againstMNEMONwhile preserving
some utility. However, it is a delicate process. For instance, if the
data holder chooses 𝑏 = 0.1, the average link prediction precision
drops from 0.881 to 0.868. In this case, MNEMON’s F1 score drops
from 0.486 to 0.401. In short, our results show that the trade-off is
inevitable if using added perturbations to defend againstMNEMON.
We plan to explore such research direction in the future.
Notes. The node embedding size affects the expressiveness of the
node embeddings. As such, another prospective defense mecha-
nism is to reduce the dimension of the node embedding. Its core
idea is reducing the knowledge that the attackers can obtain and
consequently lessening the capability of the graph recovery attack.
However, we show that MNEMON achieves stable graph recovery
performance given different embedding sizes and all embedding
models in Figure 4. Our results indicate that reducing the embed-
ding size may not work for MNEMON. We plan to expand such
research direction in the future.

7 RELATEDWORK
Graph Theory Based Graph Restoration. Graph restoration
algorithms in the graph theory realm restore a hidden graph by
repeatedly querying an oracle for certain types of information about
the graph structure [42]. Depending on the algorithm, different
types of information can be revealed by the oracle, including node
betweenness [1], distance or shortest path between nodes [29],
edge counting [5], edge detection [3], etc. The common goal among
these research is identifying strategies that recover the graph with
low worst-case query complexity. However, those approaches are
not learning-based and require the existence of an oracle knowing
the structural information of the original graph. They cannot be
adapted to reconstruct graphs from the node embeddings.
Graph Completion. Graph completion [13, 23] infer the unob-
served part of the network (i.e., missing edges and nodes) given the
partially observed network. Link prediction algorithms (see [17, 48]
for an overview) have been successfully applied to identify miss-
ing edges [69, 80]. Probabilistic and deep learning models [30, 66]
have also been investigated to deduce the missing nodes. However,

these algorithms require the graphs to be substantially observed
and high-quality attributes provided. Our attack assumes neither.
Deep Graph Structure Learning for Robust Representations.
This line of research centers on Graph Structure Learning (GSL)
that jointly learns an optimized graph structure and corresponding
representations [89]. The goal of GSL is to generate node represen-
tations robust to noisy graph structures. GSL methods assume the
availability of node features, incomplete graph structure, and node
labels. Different approaches then leverage metric learning [12],
probabilistic modeling [19], direct optimization [76], etc. to learn
an adjacency matrix as well as the corresponding node representa-
tions. In contrast to GSL, our attack does not assume the availability
of node features and node labels. Besides the goal difference, our
attack is self-supervised while GSL approaches use node labels to
supervise the learning process.
CloseWork. To our best knowledge, there exist five pieces of close
work to our attack [9, 16, 28, 73, 82]. The closest work is Chanpuriya
et al. [9] presenting two optimization algorithms to recover a graph
from its node embeddings generated by NetMF [57]. Their algo-
rithms assume the knowledge of the NetMF algorithm (i.e., the
target model), window size 𝑇 , the low-ranking approximation of
the finite-𝑇 PPMI matrix, and the exact degree of each node, hence
a white-box attack against NetMF. Another closely related work is
link reidentification attack [16, 28, 73]. In theory, those attacks can
be used to reconstruct a graph upon querying the target model 𝑛2
times. However, they train a shadowmodel using auxiliary data and
their posterior scores obtained from the target model. Our attack
assumes the attackers can not interact with the target model using
auxiliary data, which renders this link stealing attack infeasible in
our setting. In addition to link re-identification attacks using node-
level information, Zhang et al. [82] also introduce a reconstruction
attack to rebuild a graph from its graph-level embedding within the
context of graph classification. This attack suffers from the same
pitfalls of the link re-identification attacks, and cannot be used in
our setting. Our attack is fundamentally different from the existing
work by removing the assumptions of the availability of supervi-
sion information from auxiliary data, the shadow model, and the
interaction with the target model. (see Table 6 for the summary).

8 CONCLUSION
In this paper, we presented a model-agnostic attack that uses the
node embedding matrices to recover graphs. Extensive experiments
show that an adversary can recover graphs with decent accuracy
by only gaining access to the node embeddings of the original
graph. Our results highlight the need for the data holders to rethink
the privacy implications when integrating node embeddings for
downstream analysis, even when the third party has extremely
limited knowledge of the data.
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