
Membership Inference Attacks Against Recommender Systems

Minxing Zhang1,2∗ Zhaochun Ren1∗† Zihan Wang1∗ Pengjie Ren1
Zhumin Chen1 Pengfei Hu1 Yang Zhang2†

1Shandong University 2CISPA Helmholtz Center for Information Security

ABSTRACT
Recently, recommender systems have achieved promising perfor-
mances and become one of the most widely used web applications.
However, recommender systems are often trained on highly sen-
sitive user data, thus potential data leakage from recommender
systems may lead to severe privacy problems.

In this paper, we make the first attempt on quantifying the pri-
vacy leakage of recommender systems through the lens of member-
ship inference. In contrast with traditional membership inference
against machine learning classifiers, our attack faces two main dif-
ferences. First, our attack is on the user-level but not on the data
sample-level. Second, the adversary can only observe the ordered
recommended items from a recommender system instead of pre-
diction results in the form of posterior probabilities. To address
the above challenges, we propose a novel method by representing
users from relevant items. Moreover, a shadow recommender is
established to derive the labeled training data for training the at-
tack model. Extensive experimental results show that our attack
framework achieves a strong performance. In addition, we design a
defense mechanism to effectively mitigate the membership infer-
ence threat of recommender systems.1

CCS CONCEPTS
• Information systems→ Recommender systems; • Security
and privacy;

KEYWORDS
membership inference attack, recommender system, membership
leakage
ACM Reference Format:
Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie Ren, Zhunmin Chen,
Pengfei Hu, Yang Zhang. 2021. Membership Inference Attacks Against
Recommender Systems. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3460120.3484770

∗These authors contributed equally to this work.
†Corresponding author.
1Our code is available at https://github.com/minxingzhang/MIARS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484770

Recommender
System

Posterior Probability

Black Box

Recommendations

Historical
Behaviors

Observable

User

Figure 1: An example of recommender systems.

1 INTRODUCTION
As one of the most prevalent services in current web applications,
recommender systems have been applied in various scenarios, such
as online shopping, video sharing, location recommendation, etc. A
recommender system is essentially an information filtering system,
relying on machine learning algorithms to predict user preferences
for items. One mainstream method in this space is collaborative
filtering, which is based on traditional methods such as matrix
factorization and latent factor model, predicting a user’s prefer-
ence from their historical behaviors combined with other users’
similar decisions [19, 41]. Another is the content-based recom-
mendation [35, 51]. This approach aims to distinguish users’ likes
from dislikes based on their metadata (such as descriptions of the
items and profiles of the users’ preferences). Recent advancement
of deep learning techniques further boosts the performance of rec-
ommender systems [16].

The success of recommender systems lies in the large-scale user
data. However, the data in many cases contains sensitive informa-
tion of individuals, such as shopping preference, social relation-
ship [1], and location information [44]. Recently, various research
has shown that machine learning models, represented by machine
learning classifiers, are prone to privacy attacks [6, 8, 10, 18, 22, 28–
32, 34, 37, 39, 43, 45]. However, the privacy risks stemming from
recommender systems have been left largely unexplored.

1.1 Our Contributions
In this paper, we take the first step quantifying the privacy risks
of recommender systems through the lens of membership infer-
ence. Compared to previous membership inference attacks against
machine learning classifiers [39, 43], our attack faces two main
differences. First, the goal of our attack is to determine whether
a user’s data is used by the target recommender. This indicates
our attack is on the user-level while most of the previous attacks
focus on the sample-level [39, 43]. Unlike sample-level membership
inference, user-level membership inference has a broader scope
as mentioned in previous works [45], and it can help us gain a
comprehensive understanding of recommender systems’ privacy
risks. Second, from the adversary’s perspective, only ranking lists

https://doi.org/10.1145/3460120.3484770
https://doi.org/10.1145/3460120.3484770
https://github.com/minxingzhang/MIARS
https://doi.org/10.1145/3460120.3484770

of items are available from the target recommender which raises
several technical challenges:

• In our attack, as Figure 1 depicts, the adversary can only
observe lists of items, even though recommender systems
have already calculated posterior probabilities before mak-
ing decisions. This setting is prevalent in the real world, such
as the service provided by Amazon or Netflix. Besides, ex-
posing less information can protect the intellectual property
of recommendation service providers [39]. On the contrary,
in classical membership inference attacks against classifiers,
posterior probabilities used for decisions can be accessed by
the adversary [31, 37, 39, 43].

• Several recent membership inference attacks against classi-
fiers focus on the decision-only (i.e., label-only) scenario [10,
28]. However, these studies either rely on the target model to
label a shadow dataset [28] or use adversarial examples [10,
28], which are not practical when targeting recommender
systems in the real world. Therefore, we aim for a new
method to extract information from decision results for the
attack model.

• Unlike classical classifiers, the outputs of recommender sys-
tems are ranking lists of items other than unordered labels.
In that case, the order information plays an important role,
and can substantially facilitate user preference predictions.
Therefore, it is necessary for our attack model to capture
order information from recommended items, which is still
ignored by previous membership inference attack methods.

Threat Model. The goal of the adversary is to conduct a mem-
bership inference attack against the target recommender system,
inferring whether a target user’s data is used to train the target
recommender or not. However, such attacks can lead to severe se-
curity and privacy risks. Specifically, when a recommender system
is trained with data from people with certain sensitive information,
such as health status, knowing a user’s data being part of the rec-
ommender’s training data directly leaks their private information.
Moreover, membership inference also gains the adversary infor-
mation about the target recommender’s training data, which may
jeopardize the recommender’s intellectual property, since collecting
high-quality data often requires a large amount of efforts [18, 27].
From a different angle, a user can also use membership inference as
a tool to audit whether their data is used by the target recommender.

We assume the adversary has black-box access to the target rec-
ommender, the most difficult setting for the adversary [43]. Instead
of posterior probabilities for recommendations, only relevant items
for users are available, such as rating or purchase and recommended
items. Due to the knowledge, a shadow recommender is established
to derive labeled training data, for the attack model better inferring
membership status in the target recommender.
Attack Method. For user-level membership inference, we need
to summarize each user’s feature vector, based on interactions be-
tween the target recommender and them, as the input to the attack
model. However, compared to the previous work of membership
inference against classifiers, the adversary can only observe the
recommended items from a recommender system instead of poste-
rior probabilities as prediction results. Thus, in the first step, the
adversary constructs a user-item matrix for ratings with a dataset

used to generate feature vectors. Then, they factorize this matrix
into two low-dimensional matrices, namely user matrix and item
matrix. Each item’s feature vector can be represented by the corre-
sponding row vector in the itemmatrix. For each user, the adversary
extracts two sets of items (one set contains items the user is rec-
ommended and the other contains the items the user interacted
with) and calculates these two sets’ center vectors, respectively. The
difference between these two center vectors for each user describes
how accurate the recommender is for this user. In that case, lower
difference indicates a user’s data is more likely to be used to train
the recommender. Therefore, we use this difference as the input to
the attack model, i.e., user feature vector. The adversary generates
all the labeled training dataset for their attack model with the help
of the shadow recommender. To launch the attack, the adversary
generates the target user’s feature vector following the same steps
and obtains the prediction from the attack model.

Evaluation. To evaluate our attack, the adversary is assumed
to have a shadow dataset that comes from the same distribution
as the target recommender’s training data, and know the target
recommender’s algorithm. These assumptions are gradually relaxed
based on our empirical evaluation.

Our experiments are performed on three benchmark recommen-
dation datasets, i.e., the Amazon Digital Music (ADM) [15], Lastfm-
2k (lf-2k) [4], andMovielens-1m (ml-1m) [13]. The recommendation
algorithms we focus on include Item-Based Collaborative Filtering
(Item), Latent Factor Model (LFM), and Neural Collaborative Filter-
ing (NCF). Evaluation results demonstrate that our attack is able to
achieve an excellent performance.

• In general, when the adversary knows the distribution of
the target dataset and the target recommender’s algorithm,
the attack performance is extremely strong. For instance,
when the target recommender uses NCF on the ADM dataset,
our attack achieves an AUC of 0.987. Also, when the target
algorithm is Item or NCF, our attack achieves better perfor-
mances.

• When the adversary is not aware of the target recommender’s
algorithm, attack performances are reduced but still strong.
For instance, on the lf-2k dataset, when the target recom-
mender uses Item and the shadow recommender uses NCF,
the attack performance decreases from an AUC of 0.929 to
an AUC of 0.827. On the other hand, in some cases, the at-
tack performances even increase. For instance, on the ml-1m
dataset, when the target recommender uses Item and the
shadow recommender uses LFM, the attack’s AUC increases
from 0.871 to 0.931.

• We further relax the assumption of the shadow dataset. Eval-
uation shows that even under such a scenario, our attack still
achieves good performances in general. Note that, in some
cases, when the adversary knows less about the target recom-
mender, the attack even performs better. This demonstrates
the good generalization ability of our attack.

In conclusion, the experimental results show the effectiveness of our
attack, indicating that recommender systems are indeed vulnerable
to privacy attacks.

Defense. To mitigate the recommender’s privacy risk, we propose
a defense mechanism, namely Popularity Randomization. Popu-
larity Randomization is deployed when the target recommender
recommends items to its non-member users. The normal strategy
in such case is to provide non-member users with the most popular
items. However, to defend the attack, we enlarge the set of popular
items, and randomly select a subset of them for recommendation.
Intuitively, while preserving the recommendation performance for
non-member users, this approach enriches the randomness of the
recommendation.

Experimental results show that Popularity Randomization can
effectively mitigate membership inference. For instance, Popularity
Randomization (with a 0.1 ratio of recommendations to candidates)
decreases the attack performances by more than 12%, 33%, and
41% when the target algorithm is Item, LFM or NCF respectively.
Through analyses, we observe that Popularity Randomization has
the greatest impact on the attack targeting on NCF.

2 METHOD
In this section, we first present some necessary definitions in Sec-
tion 2.1, and then introduce the threat model for the membership
inference attack against recommender systems in Section 2.2. Next,
we give overviews for recommender systems in Section 2.3 and
our attack model in Section 2.4. Finally, we detail the proposed
membership inference attack methods in Section 2.5.

2.1 Definitions
We present the following definitions for the attack process:

• Target Recommender, trained on the Target Dataset, is
the recommender system attacked by the adversary.

• Shadow Recommender, trained on the Shadow Dataset,
is a recommender system built to infer themembership status
of the target recommender and generate training data for
the attack model.

• Members are the users whose data is used to train the rec-
ommender, while Non-Members are the ones whose data
is not used.

• Personalized Recommendation Algorithms learn mem-
bers’ preferences from historical behaviors (such as pur-
chases or ratings), which are also called Interactions. Non-
Personalized Recommendation Algorithms are based
on the predetermined rule, such as selecting the most popu-
lar or highest-rated items. According to different recommen-
dation methods, members and non-members are provided
with recommended items, which are also calledRecommen-
dations.

• Feature Vectors show the latent features, indicating item
attributes or user preferences.

• Attack Model is used to infer whether the target user is
a member, and trained on the dataset generated from the
shadow recommender.

2.2 Threat Model
Adversary’s Goal. The adversary aims to infer whether a user’s
data is used by a target recommender. In fact, knowing a certain
user’s data being used by a recommender system directly leaks

their private information. Besides, knowing a user being part of the
dataset can also allow the adversary to gain extra information of the
target recommender’s dataset. This directly violates the intellectual
property of the target recommender, since it is very expensive
to collect high-quality training data. Alternatively, membership
inference can also be used as an auditing tool by a user to find out
whether their data is used by the target recommender.
Adversary’s Knowledge. We assume an adversary has only black-
box access to the target recommender. That is, adversary can only
observe the items recommended to a target user (i.e., recommenda-
tions), and the user’s history (i.e., interactions), such as rating and
purchase, instead of posterior probabilities for recommendation
predictions. In that case, the adversary needs to profile users by
their interactions and recommendations. Meanwhile, a shadow rec-
ommender is built to generate labeled data for the attack model,
since ground truth membership is unavailable from the target rec-
ommender.

2.3 Recommender Systems
In this section, the framework of recommender systems is briefly
introduced.

Recommendation algorithms output recommended items based
on the information learnt from input. In the paper, two types of
recommendation algorithms are mainly involved: personalized and
non-personalized recommendation algorithms. For members, items
are recommended according to the preferences of members. Mean-
while, lacking non-members’ data, non-personalized recommen-
dation algorithms are conducted, and provide most popular items
for non-members. Specifically, Item-Based Collaborative Filtering
(Item) [40], Latent Factor Model (LFM) and Neural Collaborative
Filtering (NCF) [16] are adopted as the personalized recommen-
dation algorithms for members. As for the non-personalized rec-
ommendation algorithm, the most popular items are provided to
non-members, which is also called the popularity recommendation
algorithm in the paper. We briefly introduce the above algorithms
as follows:

• Item calculates the similarity between items aiming to find
the ones which are closed to users’ likes.

• LFM builds a latent space to bridge user preferences and
item attributes.

• NCF combine the deep learning technology with collabora-
tive filtering to enhance the recommendation performances.

• Users are provided with the most popular items by the pop-
ularity recommendation algorithm.

In general, a recommender system A𝑅𝑆 learns user preferences
from the interactions, sometimes with the external knowledge (such
as gender and location information) for users. According to the
predicted preferences, the recommender system provides users with
multiple items. This procedure can be formulated as:

A𝑅𝑆 : (I𝑅𝑆 ,K𝑅𝑆) → R𝑅𝑆 ,

where A𝑅𝑆 is a recommender system learning the preferences of
users from their interactions I𝑅𝑆 and the external knowledge K𝑅𝑆 .
And R𝑅𝑆 denotes recommended items to users. In the paper, we
mainly use the interactions of users. Thus, we define a recommender

Target
Recommender

Shadow
Recommender

Recommendations

Rtarget Trained
Attack Model

Attack Model
 Establishment

Training
Labels

Labeled Data Generation
Inference

Parameter
Optimization

Training
Set

Dtrain

User Features

Zshadow

Recommendation
Features

Vshadow

Interaction
Features

Ushadow

Recommendations

Rshadow

Interactions

Ishadow

I
Interactions

Itarget

Interaction
Features

Utarget

User Features

Ztarget

Test
Set

Dtest

Recommendation
Features

Vtarget

533Test
Labels

Unobservable
For Attack Model

Figure 2: The framework of the membership inference at-
tack against a recommender system.

system as:
A𝑅𝑆 : I𝑅𝑆 → R𝑅𝑆 ,

where I𝑅𝑆 is a set of lists of interactions for users and R𝑅𝑆 is a set
of ordered lists of recommendations for users. Concretely, I𝑅𝑆 =

{𝐿𝑛
𝐼
}𝑁𝑢

𝑛=1 and R𝑅𝑆 = {𝐿𝑛
𝑅
}𝑁𝑢

𝑛=1, where 𝐿
𝑛
𝐼
is the list of interactions

and 𝐿𝑛
𝑅
is the ordered list of recommendations for the 𝑛𝑡ℎ user, and

𝑁𝑢 is the number of users.

2.4 Attack Overview
In this section, we give an overview of our attack. As Figure 2
demonstrated, the attack process follows three steps: Labeled Data
Generation, Attack Model Establishment, and Parameter Optimiza-
tion.
Labeled Data Generation. To represent items, an item matrix
is derived, by factorizing a user-item rating matrix. Due to the
black-box access to the target recommender for the adversary, a
shadow recommender is built to generate labeled training data for
the attack model. Moreover, we represent interactions and recom-
mendations of users using corresponding feature vectors. After
that, a user is profiled by the difference between two centers of
their interactions and recommendations. And each user is labeled
with 1 or 0, indicating they are a member or non-member.
Attack Model Establishment. Inspired by [39], a two-hidden-
layer Multi-Layer Perceptron (MLP) is utilized as the attack model
𝐴𝑎𝑡𝑡𝑎𝑐𝑘 to infer membership status. Each hidden layer is followed
by a ReLU activation layer. And a softmax function is used as the
output layer to predict the probability of the membership.
Parameter Optimization. After Labeled Data Generation and
Attack Model Establishment, as shown in Figure 2, the adversary
updates parameters of the attack model. In the inference stage, the
test dataset for target users are established following the same steps
as training data generation. The membership status for target users
is inferred by the trained attack model.

2.5 Membership Inference Attack
In this section, we detail our proposed membership inference attack
against a recommender system. As mentioned before, the whole

attack consists of three steps to achieve the adversary’s goal: La-
beled Data Generation, Attack Model Establishment, and Parameter
Optimization.
Labeled Data Generation. Training data is required during the
A𝑎𝑡𝑡𝑎𝑐𝑘 optimization process. However, the adversary cannot ob-
tain membership status directly from the target recommender
A𝑡𝑎𝑟𝑔𝑒𝑡 . To address this problem, a shadow recommenderA𝑠ℎ𝑎𝑑𝑜𝑤

is developed to mimic the dataset and recommendation algorithm
of the target recommender.

As mentioned in Section 1.1, only recommended item lists from
target recommender systems can be observed. Inspired by the pre-
vious works [17, 24],matrix factorization is adopted to project users
and items into a shared latent space. Specifically, a 𝑝 × 𝑞 user-item
matrix M𝑓 is built using ratings of users to items, where 𝑝 and 𝑞
are the number of users and items respectively. Values inM𝑓 are
ratings ranging from 1 to 5, indicating how much users prefer these
items. Then,M𝑓 is factorized into two low-dimensional matrices,
namely latent user matrix M𝑢𝑠𝑒𝑟 ∈ R𝑝×𝑙 and latent item matrix
M𝑖𝑡𝑒𝑚 ∈ R𝑞×𝑙 , where we denote 𝑙 as the dimension of the latent fea-
ture space. We apply matrix factorization to find optimized M𝑢𝑠𝑒𝑟

andM𝑖𝑡𝑒𝑚 by minimizing the loss function 𝐿𝑀𝐹 :

𝐿𝑀𝐹 =

M𝑓 − M̂𝑓

2

𝑤ℎ𝑒𝑟𝑒 M̂𝑓 = M𝑖𝑡𝑒𝑚 ·M𝑢𝑠𝑒𝑟 T,

where M̂𝑓 is a predicted user-item matrix which contains the
predicted scores of users rating items. Besides, M𝑢𝑠𝑒𝑟 and M𝑖𝑡𝑒𝑚

present the predicted preferences of users and the predicted at-
tributes of items, respectively. Each row of the item matrix M𝑖𝑡𝑒𝑚

represents the feature vector of the corresponding item. Note that,
sinceM𝑢𝑠𝑒𝑟 may not cover all users in the shadow and target rec-
ommenders,M𝑢𝑠𝑒𝑟 is not used to represent users.

To this end, training data for the attack model can be generated
from A𝑠ℎ𝑎𝑑𝑜𝑤 . The shadow dataset D𝑠ℎ𝑎𝑑𝑜𝑤 are split into two
disjoint sets for members and non-members, which are denoted by
D𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤
and D𝑜𝑢𝑡

𝑠ℎ𝑎𝑑𝑜𝑤
, respectively. These datasets are composed

of 3-tuples in the form of (𝑢𝐼𝐷, 𝑖𝐼𝐷, 𝑠𝑐𝑜𝑟𝑒), indicating scores rated
by users to items. For instance, a 3-tuple (2, 3, 4) in datasets means
that the 2𝑛𝑑 user rates the 3𝑟𝑑 item a score of 4. Ratings inD𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤

and D𝑜𝑢𝑡
𝑠ℎ𝑎𝑑𝑜𝑤

can be seen as interactions of users to items, and sets
of interaction lists for members and non-members can be obtained,
denoted as I𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤
and I𝑜𝑢𝑡

𝑠ℎ𝑎𝑑𝑜𝑤
, respectively. In that case, each

user has a list of interactions. For example, if a user rates the 2𝑛𝑑 , 4𝑡ℎ ,
6𝑡ℎ and 8𝑡ℎ items, the corresponding interaction list is {2, 4, 6, 8}.

Next, A𝑠ℎ𝑎𝑑𝑜𝑤 is established to mimic A𝑡𝑎𝑟𝑔𝑒𝑡 , and provides
users with recommendations according to their preferences. The
sets of recommendation lists for members and non-members are
denoted by R𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤
and R𝑜𝑢𝑡

𝑠ℎ𝑎𝑑𝑜𝑤
, respectively. Similar as inter-

actions, each user is associated with a list of recommendations.
However, R𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤
and R𝑜𝑢𝑡

𝑠ℎ𝑎𝑑𝑜𝑤
are sets of ordered lists of recom-

mendations. Formally, the recommendation process can be formu-
lated as follows:

A𝑠ℎ𝑎𝑑𝑜𝑤 : 𝑓𝑝𝑒𝑟 (I𝑖𝑛
𝑠ℎ𝑎𝑑𝑜𝑤

) = R𝑖𝑛
𝑠ℎ𝑎𝑑𝑜𝑤

A𝑠ℎ𝑎𝑑𝑜𝑤 : 𝑓𝑝𝑜𝑝 (I𝑖𝑛
𝑠ℎ𝑎𝑑𝑜𝑤

) = R𝑜𝑢𝑡
𝑠ℎ𝑎𝑑𝑜𝑤

,

where 𝑓𝑝𝑒𝑟 performs a personalized recommendation algorithm
based on the behaviors ofmembers.Meanwhile, since non-members’

data is unavailable to A𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑓𝑝𝑜𝑝 performs the popularity rec-
ommendation algorithm (a non-personalized recommendation al-
gorithm) based on the statistical results from I𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤
. Besides,

I𝑖𝑛
𝑠ℎ𝑎𝑑𝑜𝑤

is a set of lists of interactions for members, and R𝑖𝑛
𝑠ℎ𝑎𝑑𝑜𝑤

and R𝑜𝑢𝑡
𝑠ℎ𝑎𝑑𝑜𝑤

are sets of ordered lists of recommended items for
members and non-members respectively.

Using item feature representations, we can vectorize the interac-
tion and recommendation sets as follows:

I𝑠ℎ𝑎𝑑𝑜𝑤
𝑣𝑒𝑐−→ U𝑠ℎ𝑎𝑑𝑜𝑤

R𝑠ℎ𝑎𝑑𝑜𝑤
𝑣𝑒𝑐−→ V𝑠ℎ𝑎𝑑𝑜𝑤 ,

whereU𝑠ℎ𝑎𝑑𝑜𝑤 andV𝑠ℎ𝑎𝑑𝑜𝑤 are sets of lists of the feature vectors
for the corresponding items in I𝑠ℎ𝑎𝑑𝑜𝑤 and R𝑠ℎ𝑎𝑑𝑜𝑤 .

Given that each user has a list of interactions and is provided
with an ordered list of recommendations, the adversary is able to
represent users by their relevant items. To be specific, for the 𝑖𝑡ℎ
user, the representation is generated with the following two steps:

1) Center vectors of the interactions’ and recommendations’
feature vectors of the 𝑖𝑡ℎ user are calculated:

U𝑖 =
∑
𝑗

U𝑖, 𝑗/𝑁 𝑖𝑛𝑡
𝑖

V𝑖 =
∑
𝑗

V𝑖, 𝑗/𝑁 𝑟𝑒𝑐
𝑖 ,

whereU𝑖 andV𝑖 are the center vectors of the feature vectors
for the interactions and recommendations of the 𝑖𝑡ℎ user,
and 𝑁 𝑖𝑛𝑡

𝑖
and 𝑁 𝑟𝑒𝑐

𝑖
are the corresponding quantities. Besides,

U𝑖, 𝑗 andV𝑖, 𝑗 are the feature vectors for the 𝑗𝑡ℎ interaction
and recommendation of the 𝑖𝑡ℎ user, respectively.

2) The difference between the two center vectors are obtained:

z𝑖 = U𝑖 −V𝑖 .

In the paper, we employ z𝑖 as the feature vector for the 𝑖𝑡ℎ
user, which takes not only the user’s history but also the
predicted preference into consideration.

Meanwhile, each user is assigned a label of 1 or 0, indicating their
membership (i.e., 1 means member and 0 means non-member). The
training dataset D𝑡𝑟𝑎𝑖𝑛 = {(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖)}𝑁𝑖=1 contains feature
vectors and labels of all users, where the pair (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖)
denotes the feature vector and label for the 𝑖𝑡ℎ user.
Attack Model Establishment. Inspired by [39], a MLP is estab-
lished as the attack model A𝑎𝑡𝑡𝑎𝑐𝑘 . The output of A𝑎𝑡𝑡𝑎𝑐𝑘 is a
2-dimension vector representing probabilities for the membership
status. For the 𝑖𝑡ℎ user, the prediction can be formulated as follows:

h1 = ReLU(W1zi + b1)
h2 = ReLU(W2h1 + b2)

y𝑖 = softmax(h2),
where z𝑖 is the input of A𝑎𝑡𝑡𝑎𝑐𝑘 as well as the 𝑖𝑡ℎ user’s feature
vector in our attack. And W1, W2, b1 and b2 are the parameters
updated in the training process. ReLU(·) is an activation function
working on the outputs of two hidden layers, and softmax(·) is
used for normalization which is required by the cross-entropy loss.
Besides, h1 and h2 are the results of two hidden layers after ReLU(·).
And y𝑖 is the predicted result for the input z𝑖 , which is a 2-dimension

vector indicating the possibilities of z𝑖 belonging to members and
non-members, respectively.
Parameter Optimization. In this section, the parameter optimiza-
tion process for the attack model is described. Stochastic gradient
descent is adopted to update parameters, aiming to minimize the
cross-entropy loss function 𝐿𝑀𝐿𝑃 :

𝐿𝑀𝐿𝑃 = −
𝑁𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

(y∗𝑖 logy
′
i + (1 − y∗i)log(1 − y′i)),

where y∗
𝑖
is the ground truth label for the 𝑖𝑡ℎ target user. And y′

𝑖
is

the predicted possibility of the 𝑖𝑡ℎ target user belonging to members.
Besides, 𝑁𝑡𝑟𝑎𝑖𝑛 is the size of training data.

Test data D𝑡𝑒𝑠𝑡 for the attack model is generated from the
target recommender in the same way as the training data. The
trained attack model A ′

𝑎𝑡𝑡𝑎𝑐𝑘
conduct a prediction given a target

user feature vector z𝑡𝑎𝑟𝑔𝑒𝑡 , i.e., A ′
𝑎𝑡𝑡𝑎𝑐𝑘

(z𝑡𝑎𝑟𝑔𝑒𝑡) = y𝑡𝑎𝑟𝑔𝑒𝑡 , where

y𝑡𝑎𝑟𝑔𝑒𝑡 =

(
𝑎

𝑏

)
is a 2-dimension vector, and the values of 𝑎 and

𝑏 indicate the probabilities that the target user belongs to non-
members and members respectively. According to the predicted
results, the adversary infers the membership status of the target
user. Concretely, when 𝑎 < 𝑏, the target user is predicted to be a
member. Otherwise, they are predicted to be a non-member.

3 EXPERIMENTS
In this section, we first demonstrate experimental setup, including
recommendation methods, datasets, preprocessing process, evalua-
tion metrics, implementation details, and notations in Section 3.1.
Then, we evaluate the performances of original recommender sys-
tems in Section 3.2. Moreover, we investigate membership inference
attacks against recommender systems in Section 3.3 and conduct de-
tailed analyses on the influences of hyperparameters in Section 3.4.
Finally, we present extensive analysis to comprehensively investi-
gate the attack model in Section 3.5.

3.1 Experimental Setup
Recommendation Methods. Personalized recommendation al-
gorithms are adopted for members, including Item-Based Collabo-
rative Filtering (Item) [40], Latent Factor Model (LFM) and Neural
Collaborative Filtering (NCF) [16]. Meanwhile, due to the lack of
non-members’ data, a recommender system provides non-members
with the most popular items, which is named the popularity recom-
mendation algorithm in our paper.
Datasets. We utilize three real-world datasets in our experiments,
including Amazon Digital Music (ADM) [15], Lastfm-2k (lf-2k) [4],
and Movielens-1m (ml-1m) [13], to evaluate our attack strategies.
All these datasets are commonly-used benchmark datasets for evalu-
ating recommender systems. Note that only ratings in these datasets
are used for our evaluation in the experiments. Scores range from 1
to 5, which indicates how much users like musics (ADM and lf-2k)
or movies (ml-1m).
Preprocessing. For each dataset, we divide it into three disjoint
subsets, i.e. a shadow dataset, a target dataset and a dataset for
extracting item features. Then, the following processing methods
are implemented to these subsets:

• To generate feature vectors for users, the dataset for item
feature should contain all items of the target and shadow
recommenders.

• For the shadow or target dataset, we further divide it into
two disjoint parts, which are used to conduct recommenda-
tions to members and non-members, respectively. Moreover,
following the previous work [16], we filter out the users who
have less than 20 interactions.

In our experiments, recommender systems conduct recommen-
dations based on implicit feedback. We assign values of 1 to the
user-item pairs when there exist interactions between these users
and items. And other user-item pairs are assigned 0. In LFM and
NCF, recommender systems require both positive and negative in-
stances. We randomly sample negative user-item pairs from the
pairs scoring 0 and regard the pairs assigned 1 as positive instances.
We keep the same number of negative samples as positive samples
for the dataset balance.

Evaluation Metrics. We use AUC (area under the ROC curve) as
the metric to evaluate attack performances. Following the definition
of the attack, we regard members as positive data points and non-
members as negative data points. AUC indicates the proportion of
the prediction results being positive to negative. For example, if
the attack model utilizes Random Guess to conduct a membership
inference, the AUC is close to 0.5.

Implementation Details. We build a MLP with 2 hidden layers
as the attack model. The first hidden layer has 32 units and the
second layer has 8 units, both followed by a ReLU layer. And we
utilize a softmax layer as the output layer. For the optimizer, we
employ Stochastic Gradient Descent (SGD) with a learning rate of
0.01 and a momentum of 0.7. Besides, we use cross entropy as the
loss function and the model is trained for 20 epochs.

In the paper, members are recommended by Item, LFM and NCF
while non-members are recommended by the popularity recom-
mendation algorithm. Note that, Item and the popularity recom-
mendation algorithm do not need the iterative process of updating
parameters. The detailed model configurations of LFM and NCF are
shown as follows:

• LFM. We adopt the SGD algorithm to update parameters
with a learning rate of 0.01 and conduct LFM with a regular-
ization coefficient of 0.01 to enhance the model’s generaliza-
tion ability. Then we train the model for 20 epochs.

• NCF. We use Adam as the optimizer with a learning rate of
0.001. And we build the MLP part with 3 hidden layers con-
taining 64, 32 and 16 hidden units respectively. Meanwhile,
the embedding size of the Generalized Matrix Factorization
(GMF) part is 8 [16]. In addition, the number of negative sam-
ples corresponding to per positive sample is set to 4. Then
we train the model for 20 epochs with a batch size of 256.

Notations. To clarify the experimental settings, notations are
demonstrated in Table 1, where “∗” stands for any algorithm or
dataset used to construct or train the shadow or target model. For ex-
ample, “A∗” could be the combination of “ADM+Item”, “ADM+LFM”
or “ADM+NCF”. Note that, not all possible combinations are listed
due to the space limit.

Table 1: Notations for different settings. “∗” stands for any
algorithm or dataset used to construct or train the shadow
or target model.

Notation Illustrations

A∗ Trained on the ADM dataset.
L∗ Trained on the lf-2k dataset.
M∗ Trained on the ml-1m dataset.
∗I Implemented by Item algorithm.
∗L implemented by LFM algorithm.
∗N implemented by NCF algorithm.

AI∗∗ The shadow recommender is implemented
by Item algorithm on the ADM dataset.

∗∗AI The target recommender is implemented
by Item algorithm on the ADM dataset.

AIMN

The shadow recommender is implemented
by Item algorithm on the ADM dataset, and
the target recommender is implemented by
NCF algorithm on the ml-1m dataset.

AIA
I

ALA
L

AN
AN

LI
LI

LL
LL

LN
LN

M
IM

I

M
LM

L

M
N

M
N

0.0

0.2

0.4

0.6

0.8

1.0
A

U
C

Our Attack

Random Guess

Figure 3: The attack performances under the assumption I.

In the experiments, there are two kinds of combinations in the
paper (i.e., 2-letter and 4-letter combinations). For the 2-letter combi-
nations, the first letter, i.e., “A,” “L” or “M”, indicates the shadow (or
target) dataset, and the second letter, i.e., “I,” “L” and “N”, indicates
the recommendation algorithm. For the 4-letter combinations, the
first two letters represent the dataset and algorithm of the shadow
recommender and the last two letters denote the dataset and algo-
rithm of the target recommender. For instance, “AIMN” means that
the adversary establishes a shadow recommender with Item on the
ADM dataset to attack a target recommender implemented by NCF
on the ml-1m dataset.

3.2 Recommendation Performance
We adopt HR@𝑘 as the metric to evaluate the recommendation
performance, where 𝑘 = 100 is consistent with the experimental
setting and Hit Rate (HR) presents the proportion of recommen-
dations including the ground truth. We can see from the results
in Table 2 that, in general, recommender systems achieve the best

Table 2: The HR@100 of the shadow and target recom-
menders.

ADM Item LFM NCF
shadow 0.222 0.119 0.116
target 0.224 0.204 0.123
lf-2k Item LFM NCF
shadow 0.652 0.478 0.625
target 0.650 0.468 0.637
ml-1m Item LFM NCF
shadow 0.943 0.856 0.721
target 0.951 0.860 0.713

Table 3: The AUC of the attack model against the ADM
dataset, under the assumption II.

Shadow Target Algorithm
Algorithm Item LFM NCF
Item 0.926 0.885 0.750
LFM 0.843 0.775 0.554
NCF 0.513 0.494 0.987

Table 4: The AUC of the attack model against the lf-2k
dataset, under the assumption II.

Shadow Target Algorithm
Algorithm Item LFM NCF
Item 0.939 0.796 0.793
LFM 0.732 0.777 0.774
NCF 0.827 0.809 0.916

Table 5: The AUC of the attack model against the ml-1m
dataset, under the assumption II.

Shadow Target Algorithm
Algorithm Item LFM NCF
Item 0.998 0.792 0.706
LFM 0.931 0.871 0.670
NCF 0.976 0.914 0.998

performance on the ml-1m dataset. Specifically, the shadow recom-
mender obtains a hit rate of 0.856 when using LFM on the ml-1m
dataset.

3.3 Attack Performance
Weperform experiments on theADM, lf-2k andml-1m datasets with
three typical recommendation algorithms, including Item, LFM and
NCF. Experimental results show that our method is able to achieve
strong attack performances. We draw the following conclusions:
Assumption I. First of all, the target recommender’s dataset

distribution and algorithm are available. And, in the paper, these
information is the most knowledge that the adversary can gain from
the target recommender. The complete results are shown in Figure 3,
in which we compare our attack with Random Guess. Then, data
points (members and non-members) are visualized in a 2-dimension
space by t-distributed Stochastic Neighbor Embedding (t-SNE) [50].
Figure 4 shows the results of the shadow and target distributions
for two datasets, where the red points represent members and the
blue points represent non-members. According to the attack and
visualization results, we conclude that:

• In general, under the assumption that the shadow recom-
mender knows the algorithm and dataset distribution of the
target recommender, our attack is very strong. There are
two main reasons for the effectiveness. First, data points
of members and non-members are tightly clustered sepa-
rately. Due to the different recommendation methods for
members and non-members, generally, the interactions and
recommendations of members are more relevant. In that case,
the intra-cluster distance of members and non-members is
much smaller than the inter-cluster distance between them,
so that members can be easily distinguished. Second, as
the adversary has the most knowledge of the target recom-
mender, the shadow recommender can well mimic the target
recommender. Thus the attack model, which is trained on
the ground truth membership generated from the shadow
recommender, is able to conduct a membership inference
accurately.

• When the target recommender uses Item or NCF, our attack
performs considerably better on all datasets. Specifically, an
average AUC of the attack aiming at Item or NCF is 18%
and 20% higher respectively. Compared to the visualization
result of LFM, the dissimilarity of the shadow and target
distributions of Item or NCF is smaller. Thus the attackmodel
can easily deal with the data points which are similar to
its training data. Besides, our attack performs better when
the target dataset is the ml-1m dataset. This is because the
user-item matrix of the ml-1m dataset is the densest among
all three datasets, which enormously facilitates the item
vectorization and attack model training.

Assumption II. To this end, we relax the assumption so that the
adversary only has a shadow dataset in the same distribution as the
target dataset. The experimental results are shown in Table 3, Ta-
ble 4 and Table 5, where the attack results of the previous assump-
tion are listed at the diagonals. Then we depict the visualization
results of data points in the shadow and target distributions by t-
SNE to show the relationship between members and non-members.
In Figure 5, the red points are members and the blue points are
non-members, which are all from the lf-2k dataset. We can see from
the attack performances as well as the comparisons between the
shadow and target distributions that:

• When the adversary only gains the knowledge about the
target dataset distribution, the attack performances drop
as expected but are still strong. For instance, on the ADM
dataset, when the target recommender uses Item but the
shadow recommender uses LFM, the attack performance
drops from an AUC of 0.926 to an AUC of 0.843. Decreases

members

non-members

members

non-members

(a) ADM_NCF_shadow (left) and ADM_NCF_target (right)

members

non-members

members

non-members

(b) ADM_LFM_shadow (left) and ADM_LFM_target (right)

members

non-members

members

non-members

(c) lf-2k_Item_shadow (left) and lf-2k_Item_target (right)

members

non-members

members

non-members

(d) lf-2k_LFM_shadow (left) and lf-2k_LFM_target (right)

Figure 4: Visualization results by t-SNE, where red points denote members and blue points represent non-members. For the
ADM dataset, visualization results, (a) when the shadow and target recommenders are implemented by NCF, and (b) when
LFM is used as the shadow and target recommenders, are demonstrated. For the lf-2k dataset, visualization results, (c) when
the shadow and target recommenders are implemented by Item, and (d) when LFM is adopted as the shadow and target recom-
menders, are shown.

members

non-members

(a) lf-2k_LFM_shadow

members

non-members

(b) lf-2k_LFM_target

members

non-members

(c) lf-2k_Item_shadow

Figure 5: Visualization results by t-SNE, where red points aremembers and blue points are non-members. For the lf-2k dataset,
visualization results, (a) when the shadow recommender is implemented by LFM, (b) when LFM is employed as the target
recommender, and (c) when Item is used as the shadow recommender, are demonstrated.

also appear on the lf-2k dataset and the ml-1m dataset. That
is to say, even with different recommendation methods, the
attack model can still benefit from the similar distributions of
the target and shadow datasets to conduct the memebership
inference accurately.

• An interesting finding is that, the attack on theml-1m dataset
achieves the best overall performance (i.e., 0.873 in terms
of average AUC), and the attack performance on the ADM
dataset is the worst (i.e., 0.747 in terms of average AUC).
This is because the user-item matrix built from the ml-1m

dataset is the densest while the matrix from the ADM dataset
is the sparsest. Intuitively, the attack model can learn more
information from a denser user-item matrix, leading to a
better attack performance.

In addition, we do acknowledge that, in some cases, the attack
performances are not ideal. For instance, the attack model against
LFM achieves a poor performance (see Table 3). Comparing to
the other two recommendation algorithms, LFM has higher model
complexity, which makes it harder for the adversary to build a
similar shadow model.

AI AL AN LI LL LN MI ML MN
Target

MN

ML

MI

LN

LL

LI

AN

AL

AI

S
ha

do
w

0.549 0.504 0.537 0.547 0.506 0.523 0.976 0.914 0.998

0.608 0.578 0.510 0.546 0.525 0.624 0.931 0.871 0.670

0.583 0.590 0.498 0.445 0.413 0.539 0.998 0.792 0.706

0.522 0.609 0.558 0.827 0.809 0.916 0.747 0.710 0.658

0.619 0.614 0.588 0.732 0.777 0.774 0.503 0.505 0.554

0.467 0.529 0.415 0.939 0.796 0.793 0.515 0.619 0.584

0.513 0.494 0.987 0.525 0.499 0.495 0.502 0.500 0.512

0.843 0.775 0.554 0.547 0.535 0.499 0.510 0.510 0.501

0.926 0.885 0.750 0.564 0.540 0.487 0.525 0.524 0.516

AUC

0.5

0.6

0.7

0.8

0.9

Figure 6: The attack performances under the assumption III.
The 𝑥-axis indicates the target recommender’s datasets (the
first letter, i.e., “A,” “L” and “M”) and algorithms (the second
letter, i.e., “I,” “L” and “N”), and similarly the 𝑦-axis repre-
sents the shadow recommender’s datasets and algorithms.

members

non-members

members

non-members

(a) ml-1m_LFM_shadow (left) and ADM_Item_target (right)

members

non-members

members

non-members

(b) ADM_LFM_shadow (left) and lf-2k_Item_target (right)

Figure 7: The visualization results of MLAI v.s. ALLI

Assumption III. Finally, we further conduct evaluations when the
adversary neither has a shadow dataset in the same distribution as
the target dataset nor knows the target algorithm. All experimental
results are shown in Figure 6. Note that, the attack results of the
assumption I are listed at the back-diagonal and the attack perfor-
mances of the assumption II are shown in the three 3 × 3 block

back-diagonal matrices. Analysing the results, we draw conclusions
that:

• Even under the minimum assumption, our attack can still
achieve strong performances in most cases. For instance,
when the target recommender is established by LFM on the
ml-1m dataset and the adversary uses NCF to build a shadow
recommender on the lf-2k dataset, our attack achieves an
AUC of 0.710.

• In some cases, when the adversary knows less information
about the target recommender, the attack even achieves bet-
ter performances. For instance, when the adversary builds a
shadow recommender by NCF on the lf-2k dataset to mimic
the target recommender which uses Item on the ml-1m
dataset, our attack achieves an AUC of 0.747. Meanwhile,
with the knowledge that the target dataset is the ml-1m
dataset, the adversary uses LFM to establish a shadow rec-
ommender when the target recommender uses NCF, our
attack only achieves an AUC of 0.670. To explain this, we
adopt the t-SNE algorithm to visualize user feature vectors
for the “MLAI” and “ALLI” attacks. The visualization results
in Figure 7 show that the distributions of feature vectors
generated by the shadow model “ML” and target model “AL”
are more similar than the distributions generated by “Al” and
“LI”. Therefore, the “MLAI” attack performs better than the
“ALLI” attack.

In summary, our attack can effectively conduct a membership infer-
ence against recommender systems, even with the limited knowl-
edge.

3.4 Hyperparameters
In this section, we analyse the influences of hyperparameters, in-
cluding the number of recommendations 𝑘 , the length of vectors 𝑙
and the weights of recommendations. Figure 8 shows the experi-
mental results.
The Number of Recommendations 𝑘 . We evaluate our experi-
ments with different values of 𝑘 from 10 to 100, in order to explore
the influence of 𝑘 on the attack. Figure 8a shows the attack perfor-
mance against the number of recommendations. When the number
of recommendations is less than 50, the attack performance im-
proves with the increase of 𝑘 . Then the performance maintains
stable when 𝑘 goes beyond 50. These results show that the attack
model gains more information when the number of recommen-
dations increases. However, the attack model cannot gain more
information infinitely when the number of recommendations is
large enough.
The Length of Vectors 𝑙 . We evaluate our experiments with dif-
ferent values of 𝑙 from 10 to 100, in order to explore the influence of
𝑙 on the attack. Figure 8b shows the attack performance against the
length of vectors. Similar to Figure 8a, when the length of vectors
is less than 50, the attack performance improves with the increase
of 𝑙 . Then, in general, no obvious improvement of the performance
is observed when 𝑙 goes beyond 50. These results show that the
representation power of the attack model becomes stronger, as a
larger length of vectors can provide more dimensional perspectives.
However, the attack model cannot improve its representation power
infinitely when the length of vectors is large enough.

10 20 30 40 50 60 70 80 90 100
The number of recommends

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
U

C

AIAI

LILI

MIMI

(a) The attack performances against the
number of recommendations 𝑘 .

10 20 30 40 50 60 70 80 90 100
The length of vectors

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
U

C

AIAI

LILI

MIMI

(b) The attack performances against the
length of vectors 𝑙 .

AIA
I

AIA
L

AIA
N

LI
LI

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

equal

ordered

(c) The attack performances against the
weights of recommendations.

Figure 8: The attack performances of analysing the influences of hyperparameters.

10 20 30 40 50 60 70 80 90 100
The length of vectors

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

MIMI k=20

MIMI k=50

MIMI k=100

(a) The attack performances with different 𝑙 , when 𝑘 = 20,
𝑘 = 50 and 𝑘 = 100.

10 20 30 40 50 60 70 80 90 100
The length of vectors

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
MIMI l=20

MIMI l=50

MIMI l=100

(b) The attack performances with different 𝑘 , when 𝑙 = 20,
𝑙 = 50 and 𝑙 = 100.

Figure 9: The attack performances to investigate “which is more important, 𝑘 or 𝑙?”

The Weights of Recommendations. We evaluate our experi-
ments with different designs for the weights of recommendations.
In the real world, the items recommended to a user are provided in
the form of an ordered sequence. And, compared to the items at the
back of the sequence, the ones in front of the sequence are more
likely to be preferred by the user. Thus we evaluate two methods
of assigning weights to items at different positions in the sequence.
One is that all items are assigned the same weight of 1

𝑘
. And the

other is to assign a weight of 𝑘−𝑖+1∑𝑘
𝑛=1 𝑛

to the 𝑖𝑡ℎ item in the sequence.
Same as mentioned above, we denote 𝑘 as the number of recommen-
dations. As shown in Figure 8c, we find that considering the order
of recommendations can obviously promote attack performances.

3.5 Extensive Analysis
In this section, we study five interesting questions and give further
results in order to comprehensively investigate our attack method.
Which Is More Important, the Length of Feature Vector 𝑙 or
the Number of Recommendations 𝑘? In addition to the anal-
yses about hyperparameters in Section 3.4, we also investigate
“which is more important, 𝑘 and 𝑙?”. Two more experiments are
conducted on the “MIMI” attack, with different 𝑙 when 𝑘 is set to
20, 50 and 100 (see Figure 9a), and with different 𝑘 when 𝑙 is set to
20, 50 and 100 (see Figure 9b). As the results show, both the number
of recommendations (𝑘) and the length of vectors (𝑙) influence at-
tack performances substantially. Specifically, when 𝑘 reduces from

100 to 20, the AUC score drops from 0.998 to 0.764. Similarly, as 𝑙
reduces from 100 to 20, the AUC score descends from 0.998 to 0.817.

What Is the Impact of the Dataset Size? Considering the size
of the training dataset imposes huge impacts on machine learning
models, we conduct evaluations regarding the size of the shadow
dataset. Specifically, the size of the shadow dataset is reduced to
90%, 80%, and 70% of the original size. Note that, the ratio of mem-
bers to non-members keep unchanged for the dataset balance. For
the “LLLL” attack, the AUC scores of the attack performances are
decreased to 0.633, 0.714, and 0.746, respectively, when the size of
the shadow dataset is 70%, 80%, and 90% of the original size. Com-
paring to the original AUC of 0.777, we can conclude that a larger
shadow dataset usually leads to a better-trained attack model.

Why Use an MLP as the Attack Model? To demonstrate the
effectiveness of our attackmodel, we evaluate the attacks utilizing K-
Means to distinguish non-members from members on the lf-2k and
ml-1m datasets. The results are shown in Table 6 and Table 7, where
Item, LFM, and NCF in the first column are shadow algorithms
for our attack, and K-Means is used to cluster non-members and
members. Since there are only two classes, i.e., members and non-
members, the number of classes 𝐾 for K-Means is set to 2. From
the results, we can conclude that our attack outperforms K-Means
largely, indicating the validity of our attack model. For instance,
when the K-Means algorithm infers the membership status from

Table 6: The AUC of the K-Means algorithm on the lf-2k
dataset.

Target Algorithm
Item LFM NCF

Item 0.939 0.796 0.793
LFM 0.732 0.777 0.774
NCF 0.827 0.809 0.916

K-Means 0.649 0.717 0.730

Table 7: The AUC of the K-Means algorithm on the ml-1m
dataset.

Target Algorithm
Item LFM NCF

Item 0.998 0.792 0.706
LFM 0.931 0.871 0.670
NCF 0.976 0.914 0.998

K-Means 0.805 0.720 0.719

AIA
I

AIA
L

AIA
N

LI
LI

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C Origin

Concat10

Concat20

Concat100

Hadamard

Similarity

Figure 10: The attack performances with different user fea-
ture generation methods

the target recommender “LI”, the performance is much worse than
our attack (0.649 v.s. 0.939).
Which Is the Best User Feature Generation Method? To fur-
ther verify the effectiveness of our attack, we adopt different aggre-
gationmethods to generate user feature vectors. Besides the method
used in our attack, Origin, we evaluate 5 user feature generation
methods.

• Concat10 concatenates feature vectors of the first 10 inter-
actions and the first 10 recommendations for each user.

• Concat20 concatenates feature vectors of the first 20 inter-
actions and the first 20 recommendations for each user.

• Concat100 concatenates feature vectors of the first 20 inter-
actions and all the recommendations (i.e., 𝑘 = 100) for each
user.2

2As the number of interactions for different users are different, using all interactions
for concatenation will result in different lengths of user feature vectors. Therefore,

Ite
m

LFM NCF
Orig

in

Concat10

Concat20

Concat100

Hadamard

Similarity
0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Content-Based

Item

LFM

NCF

Figure 11: The attack performances for the content-based
recommender system on the ml-1m dataset.

• Hadamard respectively conducts Hadamard products on
feature vectors of all the interactions and recommendations
to obtain two vectors for each user. Afterwards, following
the similar steps in Section 2.5, we use the difference of these
two vectors as the user feature vector.

• Similarity first conducts dot products between feature vec-
tors of each recommendation and all interactions, then con-
catenates the average of dot product results for each recom-
mendation into the user feature vector.

The results are shown in Figure 10. We find that our method
outperforms all the other aggregation methods. For instance, on the
settings of AIAI, our method outperforms Concat10 and Similarity
by 5% and 63%. These results demonstrate the effectiveness of our
user feature generation method in the attack process.
Is It Possible to Generalize Our Attacks to Content-Based
Recommender Systems? To further verify the effectiveness of
our attack, we conduct evaluations on the membership inference
attacks against a content-based recommender system. Different
from the recommendation algorithms used in the previous attacks,
a content-based recommender system aims to distinguish users’
likes from dislikes based on their metadata (such as description of
items and profiles of users) [51]. The evaluation is conducted on the
ml-1m dataset with information about items and users, under the
assumption I, i.e., the target recommender’s algorithm and dataset
distribution are available.

The results are depicted in Figure 11. We conclude that our attack
achieves a strong performance against a content-based recommen-
dation algorithm (i.e., 0.986 in terms of AUC), indicating a high
generalization ability of our attack model. Furthermore, we evaluate
this attack using different feature generation methods mentioned
above. Results show that our aggregation method also outperforms
other baselines on a content-based recommendation system.

3.6 Summary
The experimental results show that our attack can conduct an effec-
tive membership inference against recommender systems. When
the adversary knows the algorithm and dataset distribution of the

we only take the first 20 interactions into consideration since the least number of
interactions in datasets is 20.

target recommender, the attack achieves the strongest performance.
Later in the experiments, we gradually relax the assumptions and
show that our attack can still effectively conduct the membership
inference, demonstrating that our attack has a good generalization
ability.

Furthermore, we explore the influences of hyperparameters.
With the increase of the number of recommendations 𝑘 and the
length of vectors 𝑙 , the attack performance improves or maintains
stable, however, the cost continuously increases. In that case, we
are able to find a balance, where the attack performance is strong
and the cost is affordable. And the exploration of the weights of
recommendations shows that the more information is available, the
more powerful the attack is.

4 DEFENSE
The above experiments show the effectiveness of our attack. Mean-
while, to defend the membership inference against recommender
systems, we also propose a countermeasure, named Popularity
Randomization, to mitigate the attack risk. In the original setting
in Section 2.5, non-members are provided with the most popular
items. As a result, feature vectors of non-members are extremely
similar and easily distinguished from members. To address this
problem, we increase the randomness of non-members’ recom-
mendations. Specifically, we first select candidates from the most
popular items. Then, a random selection is conducted on the candi-
dates, i.e., we randomly pick 10% of candidates as recommendations
for non-members. The detailed methodology is demonstrated in
Appendix A.1.

To evaluate the effectiveness of the defense mechanism, we con-
duct experiments under the assumption that the dataset distribution
and algorithm of the target recommender are available. Figure 12
shows the attack performances before and after deploying the de-
fense mechanism. The blue bar denotes the attack performances
with the original setting, i.e., the popularity recommendation algo-
rithm. And the orange bar represents the attack performances with
the defense mechanism, i.e., Popularity Randomization. From the
results, we conclude that Popularity Randomization considerably
decreases the performance of our attack. Specifically, the defense
mechanism decreases the AUC scores of the attack model by more
than 12%, 33% and 41% respectively when the target recommender
uses Item, LFM or NCF. With the defense strategy, attacking the
target recommender using LFM achieves the lowest AUC score on
all three datasets. When the target recommender using LFM, our
attack with the defense mechanism only achieves 0.513, 0.501, and
0.500 AUC scores on the ADM dataset, the lf-2k dataset and the ml-
1m dataset, respectively (detailed explanations are demonstrated in
Appendix A.2). Besides, as Figure 12 shows, the attack performances
against NCF decrease most hugely. For instance, the AUC score of
the attack against NCF on the ADM dataset drops from 0.987 to
0.576. In contrast, the attack with Popularity Randomization against
Item can still achieve strong performances. For instance, on the
ADM dataset, the attack with Popularity Randomization can attain
0.812 in terms of AUC when the target algorithm is Item. Compared
to the attack with the original setting, the defense mechanism only
achieves a 12% drop in the attack performance. Item is the simplest
one among the three recommendation methods, which makes it

AIA
I

ALA
L

AN
AN

LI
LI

LL
LL

LN
LN

M
IM

I

M
LM

L

M
N

M
N

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Original Setting

Defense Mechanism

Figure 12: Comparisons of attack performances before and
after deploying the defense mechanism.

easier for the adversary to build a similar shadow recommender
with the target recommender. This leads to a stronger attack but
more ineffective defense. In contrast, the other two recommender
systems have more complex model structures, leading to substantial
decreases in attack performances with the defense strategy.

In addition, visualization results and impacts on recommendation
performances are comprehensively analyzed in Appendix A.2 and
Appendix A.3, respectively.

5 RELATEDWORK

Membership Inference. The goal of membership inference is to
infer whether a target data sample is used to train a machine learn-
ing model [6, 22, 26, 28, 30, 39, 42, 43, 52]. Shokri et al. [43] propose
the first membership inference attack in this domain. The authors
have made several key assumptions for the adversary, such as mul-
tiple shadow models and a shadow dataset which comes from the
same distribution as the target model’s training datasset. Salem et
al. [39] gradually relax these assumptions and broaden the scenarios
of membership inference attacks. Later, Nasr et al. [31] conduct a
comprehensive membership privacy assessment in both centralized
and federated learning setting. In particular, they propose the first
membership inference when the adversary has white-box to the
target model. Other research has shown that membership inference
is effective under other machine learning settings, such as genera-
tive models [14], federated learning [8, 29], and natural language
models [45]. Besides, a plethora of other attacks have been proposed
against machine learning models [3, 5, 7, 12, 20, 21, 33, 48, 49].
Item-Based Recommendation Algorithms. Item-based recom-
mendation techniques have been applied in various scenarios [11,
23, 40]. Sarwar et al. [40] explore item-based collaborative filter-
ing (CF) techniques which enhance the scalability and quality of
the CF-based algorithms. Besides, Deshpande and Karypis [11, 23]
present item-based top-𝑁 recommendation algorithms to promote
the efficiency and performance.
Latent Factor Models. LFM aims to find some latent factors and
is commonly implemented by Matrix Factorization (MF) [24, 25,
36, 38]. Polat et al. [36] combine SVD-based Collaborative Filter-
ing with privacy to achieve accurate predictions while preserving

privacy. Later, Salakhutdinov et al. [38] propose the Probabilis-
tic Matrix Factorization which scales linearly with the number of
observations and performs well on very sparse and imbalanced
datasets. Koren [24] presents an integrated model that combines
the neighborhood and LFM, which optimizes a global cost function
and integrates implicit feedback into the model. Furthermore, Ko-
ren [25] presents a methodology for modeling time drifting user
preference in the context of recommender systems.
Neural Collaborative Filtering. With the advancement of deep
learning techniques, recommendation algorithms with neural net-
works has been in blossom [2, 9, 16, 46, 47]. He et al. [16] propose the
first framework for collaborative filtering based on neural networks
to model latent features of users and items. They show that MF can
be interpreted as a specialization of NCF and utilize a MLP to endow
NCF modelling with a high level of non-linearities. Later, Bai et
al. [2] present a model which integrates neighborhood information
into NCF, namely Neighborhood-based Neural Collaborative Filter-
ing. Another recent work is that Chen et al. [9] design a Joint Neural
Collaborative Filtering model which enables deep feature learning
and deep user-item interaction modeling to be tightly coupled and
jointly optimized in a single neural network.

6 DISCUSSION
In the previous evaluations, our attack shows its effectiveness as
well as strong generalization ability. Moreover, the proposed de-
fense mechanism, Popularity Randomization, can also mitigate the
attack performances considerably. Furthermore, to obtain a com-
prehensive understanding of membership inference attacks, in this
section, we focus on three important factors that largely influence
attack performances: the choice of datasets, the selection of recom-
mendation algorithms, and distributions of generated user features.
The detailed explanations are demonstrated as follows:
The Choice of Datasets. The dataset with a denser user-item ma-
trix leads to better attack performances. The richer information in
a denser user-item matrix considerably facilitates the process of the
item vectorization and attack model training. From the results and
analyses under the assumption II in Section 3.3, we can see that the
attack on the ml-1m dataset achieves the best overall performance
(i.e., 0.873 in terms of average AUC) as the user-item matrix built
from this dataset is the densest.
The Selection of Recommendation Algorithms. It is easier
for the adversary to attack against a recommender system with
a simpler model structure. As the results (see Table 3) under the
assumption II show, the attack against LFM achieves poor perfor-
mances. Comparing to the other two recommendation algorithms,
LFM has higher model complexity, which makes it harder to attack.
Meanwhile, defending a simpler recommender system is more diffi-
cult. As the evaluations of the defense (see Figure 12) in Section 4
show, attacks against Item perform strongly even with the defense
mechanism. This is because Item has the simplest structure among
the three recommendation algorithms. In short, a recommender
system established by a simple algorithm structure is usually more
vulnerable to membership inference attacks.
Distributions of Generated User Features. The combination of
the dataset and recommender algorithm also matters. Higher attack
performances can be obtained, when the distribution of user feature

vectors generated by the shadow recommender system is more simi-
lar to the distribution generated by the target recommender system.
Trained with samples from a similar distribution, attack models are
able to conduct an accurate inference. Specifically, in Figure 6, the
attack of “MLAI” achieves a better performance than the one of
“ALLI” (0.608 v.s. 0.547). And we see from the visualization results
in Figure 7 that the above advantage comes from the smaller dif-
ference of feature distributions between the shadow recommender
“ML” and the target recommender “AI” than the one between “AL”
and “LI”. In summary, training data with distributions similar to
the target data can boost the attack performances.

7 CONCLUSION
Recommender systems have achieved tremendous success in real-
world applications. However, data used by recommender systems is
highly sensitive. In that case, successfully inferring a user’s member-
ship status from a target recommender may lead to severe privacy
consequences.

In this paper, to investigate the privacy problem in recommender
systems, we design various attack strategies of membership in-
ference. To the best of our knowledge, ours is the first work on
the membership inference attacks against recommender systems.
Comparing to membership inference attacks on data sample-level
classifiers, for recommender systems, our work focuses on the user-
level membership status, which cannot be directly obtained from
the system outputs. To address these challenges, we propose a novel
membership inference attack scheme, the core of which is to obtain
user-level feature vectors based on the interactions between users
and the target recommender, and input these feature vectors into
attack models. Extensive experiment results show the effectiveness
and generalization ability of our attack. To remedy the situation,
we further propose a defense mechanism, namely Popularity Ran-
domization. Our empirical evaluations demonstrate that Popularity
Randomization can largely mitigate the privacy risks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback.
This work was supported by the Natural Science Foundation of
China (61902219, 61972234, 62072279, 62102234), the Helmholtz
Association within the project “Trustworthy Federated Data Ana-
lytics” (TFDA) (funding number ZT-I-OO1 4), the National Key R&D
Program of China with grant No. 2020YFB1406704, the Key Scien-
tific and Technological Innovation Program of Shandong Province
(2019JZZY010129), Shandong University multidisciplinary research
and innovation team of young scholars (No. 2020QNQT017), and
the Tencent WeChat Rhino-Bird Focused Research Program (JR-
WXG2021411). All content represents the opinion of the authors,
which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

REFERENCES
[1] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang. walk2friends:

Inferring Social Links from Mobility Profiles. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1943–1957. ACM, 2017.

[2] Ting Bai, Ji-Rong Wen, Jun Zhang, and Wayne Xin Zhao. A Neural Collaborative
Filtering Model with Interaction-based Neighborhood. In ACM International
Conference on Information and Knowledge Management (CIKM), pages 1979–1982.
ACM, 2017.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine
Learning at Test Time. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD), pages 387–402.
Springer, 2013.

[4] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Second Workshop on Infor-
mation Heterogeneity and Fusion in Recommender Systems (HetRec2011). In
ACM Conference on Recommender Systems (RecSys), pages 387–388. ACM, 2011.

[5] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The
Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Net-
works. InUSENIX Security Symposium (USENIX Security), pages 267–284. USENIX,
2019.

[6] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson,
Alina Oprea, and Colin Raffel. Extracting Training Data from Large Language
Models. CoRR abs/2012.07805, 2020.

[7] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of
Neural Networks. In IEEE Symposium on Security and Privacy (S&P), pages 39–57.
IEEE, 2017.

[8] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. GAN-Leaks: A Taxonomy
of Membership Inference Attacks against Generative Models. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 343–362.
ACM, 2020.

[9] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. Joint Neural Collab-
orative Filtering for Recommender Systems. ACM Transactions on Information
Systems, 2019.

[10] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas
Papernot. Label-Only Membership Inference Attacks. CoRR abs/2007.14321, 2020.

[11] Mukund Deshpande and George Karypis. Item-Based Top-N Recommendation
Algorithms. ACM Transactions on Information Systems, 2004.

[12] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Grag. Badnets: Identifying Vul-
nerabilities in the Machine Learning Model Supply Chain. CoRR abs/1708.06733,
2017.

[13] F. Maxwell Harper and Joseph A Konstan. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems, 2015.

[14] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LOGAN:
Evaluating Privacy Leakage of Generative Models Using Generative Adversarial
Networks. Symposium on Privacy Enhancing Technologies Symposium, 2019.

[15] Ruining He and Julian McAuley. Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering. In The Web Conference
(WWW), pages 507–517. ACM, 2016.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural Collaborative Filtering. In International Conference on World Wide
Web (WWW), pages 173–182. ACM, 2017.

[17] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast Matrix
Factorization for Online Recommendationwith Implicit Feedback. In International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 549–558. ACM, 2016.

[18] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.
Stealing Links from Graph Neural Networks. In USENIX Security Symposium
(USENIX Security). USENIX, 2021.

[19] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining Collabo-
rative Filtering Recommendations. In ACM Conference on Computer Supported
Cooperative Work (CSCW), pages 241–250. ACM, 2000.

[20] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas
Papernot. High Accuracy and High Fidelity Extraction of Neural Networks. In
USENIX Security Symposium (USENIX Security), pages 1345–1362. USENIX, 2020.

[21] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. Manipulating Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning. In IEEE Symposium on Security and Privacy (S&P),
pages 19–35. IEEE, 2018.

[22] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang
Gong. MemGuard: Defending against Black-Box Membership Inference At-
tacks via Adversarial Examples. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 259–274. ACM, 2019.

[23] George Karypis. Evaluation of Item-Based Top-N Recommendation Algorithms.
In ACM International Conference on Information and Knowledge Management
(CIKM), pages 247–254. ACM, 2001.

[24] Yehuda Koren. Factorization Meets the Neighborhood: a Multifaceted Collab-
orative Filtering Model. In ACM Conference on Knowledge Discovery and Data
Mining (KDD), pages 426–434. ACM, 2008.

[25] Yehuda Koren. Collaborative Filtering with Temporal Dynamics. In ACM Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 447–456. ACM,
2009.

[26] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model Memo-
rization for Calibrated White-Box Membership Inference. In USENIX Security
Symposium (USENIX Security), pages 1605–1622. USENIX, 2020.

[27] Zheng Li, ChengyuHu, Yang Zhang, and ShanqingGuo. How to Prove YourModel
Belongs to You: A Blind-Watermark based Framework to Protect Intellectual
Property of DNN. In Annual Computer Security Applications Conference (ACSAC),
pages 126–137. ACM, 2019.

[28] Zheng Li and Yang Zhang. Membership Leakage in Label-Only Exposures. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2021.

[29] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE
Symposium on Security and Privacy (S&P), pages 497–512. IEEE, 2019.

[30] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine Learning with Mem-
bership Privacy using Adversarial Regularization. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 634–646. ACM, 2018.

[31] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analy-
sis of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In IEEE Symposium on Security and Privacy
(S&P), pages 1021–1035. IEEE, 2019.

[32] Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, and Nicholas
Carlini. Adversary Instantiation: Lower Bounds for Differentially PrivateMachine
Learning. In IEEE Symposium on Security and Privacy (S&P). IEEE, 2021.

[33] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. SoK:
Towards the Science of Security and Privacy in Machine Learning. In IEEE
European Symposium on Security and Privacy (Euro S&P), pages 399–414. IEEE,
2018.

[34] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-
war, and Úlfar Erlingsson. Scalable Private Learning with PATE. In International
Conference on Learning Representations (ICLR), 2018.

[35] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation Systems.
In The AdaptiveWeb, Methods and Strategies ofWeb Personalization, pages 325–341.
Springer, 2007.

[36] Huseyin Polat and Wenliang Du. SVD-based Collaborative Filtering with Privacy.
In ACM Symposium on Applied Computing (SAC), pages 791–795. ACM, 2005.

[37] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and
Hervé Jégou. White-box vs Black-box: Bayes Optimal Strategies for Membership
Inference. In International Conference on Machine Learning (ICML), pages 5558–
5567. PMLR, 2019.

[38] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic Matrix Factorization. In
Annual Conference on Neural Information Processing Systems (NIPS), pages 1257–
1264. NIPS, 2007.

[39] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. ML-Leaks: Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In Network and Distributed
System Security Symposium (NDSS). Internet Society, 2019.

[40] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-
Based Collaborative Filtering Recommendation Algorithms. In International
Conference on World Wide Web (WWW), pages 285–295. ACM, 2001.

[41] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative
Filtering Recommender Systems. In The Adaptive Web, Methods and Strategies of
Web Personalization, pages 291–324. Springer, 2007.

[42] Virat Shejwalkar and Amir Houmansadr. Membership Privacy for Machine
Learning Models Through Knowledge Transfer. In AAAI Conference on Artificial
Intelligence (AAAI). AAAI, 2021.

[43] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship Inference Attacks Against Machine Learning Models. In IEEE Symposium
on Security and Privacy (S&P), pages 3–18. IEEE, 2017.

[44] Reza Shokri, Georgios Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre
Hubaux. Quantifying Location Privacy. In IEEE Symposium on Security and
Privacy (S&P), pages 247–262. IEEE, 2011.

[45] Congzheng Song and Vitaly Shmatikov. Auditing Data Provenance in Text-
Generation Models. In ACM Conference on Knowledge Discovery and Data Mining
(KDD), pages 196–206. ACM, 2019.

[46] Peijie Sun, Le Wu, and Meng Wang. Attentive Recurrent Social Recommenda-
tion. In International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 185–194. ACM, 2018.

[47] Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang Hong, and Meng Wang. Dual
Learning for Explainable Recommendation: Towards Unifying User Preference
Prediction and Review Generation. In The Web Conference (WWW), pages 837–
847. ACM, 2020.

[48] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble Adversarial Training: Attacks and Defenses. In
International Conference on Learning Representations (ICLR), 2017.

[49] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In USENIX Security
Symposium (USENIX Security), pages 601–618. USENIX, 2016.

[50] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 2008.

[51] Bogdan Walek and Vladimir Fojtik. A Hybrid Recommender System for Rec-
ommending Relevant Movies Using An Expert System. Expert Systems with
Applications, 2020.

[52] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting. In IEEE Computer
Security Foundations Symposium (CSF), pages 268–282. IEEE, 2018.

A DEFENSE
In this section, we demonstrate the defense methodology in detail
(Appendix A.1), discuss about visualization results (Appendix A.2),
and analyze the impacts of Popularity Randomization on original
recommendation performances (Appendix A.3).

A.1 Methodology
In the original setting in Section 2.5, non-members are provided
with the most popular items. However, the most popular items for
different users are the same, resulting in that feature vectors of non-
members are extremely similar and easily distinguished. To address
this problem, an intuitive way is to increase the randomness of non-
members’ recommendations. In the paper, we propose a defense
mechanism named Popularity Randomization. Specifically, a larger
number of the most popular items are first selected as candidates.
Then, we conduct a random selection, i.e., we randomly pick 10%
of candidates as recommendations for non-members. Note that all
recommendations for non-members are still the most popular items.
In that case, recommendations to different non-members are diverse
and thus the similarities among non-members’ feature vectors are
decreased. The above defense strategy can be formulated as follows:

First, a recommender system A𝑅𝑆 sorts all items by popularity,
i.e.,

A𝑅𝑆 : D𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑆𝑜𝑟𝑡−→ S𝑠𝑜𝑟𝑡𝑒𝑑 ,

where D𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original dataset and
𝑆𝑜𝑟𝑡−→ is to sort items by

popularity. And S𝑠𝑜𝑟𝑡𝑒𝑑 is an ordered sequence, including all items
from D𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . In S𝑠𝑜𝑟𝑡𝑒𝑑 , higher items are more popular.

Second, based on the number of recommendations and the pre-
set ratio, the recommender system selects a number of the most
popular items as candidates, which can be defined as the following
functions:

𝛼𝑃𝑅 =
𝑁𝑟𝑒𝑐

𝑁𝑐𝑎𝑛𝑑
,

S𝑐𝑎𝑛𝑑 = {𝑥 |𝑥 ∈ S𝑠𝑜𝑟𝑡𝑒𝑑 , 𝐼𝑛𝑑𝑥 ≤ 𝑁𝑐𝑎𝑛𝑑 },

where 𝛼𝑃𝑅 is the ratio of recommendations to candidates. S𝑐𝑎𝑛𝑑 is
a sequence containing all candidates selected by the recommender
system from S𝑠𝑜𝑟𝑡𝑒𝑑 . 𝑁𝑟𝑒𝑐 and 𝑁𝑐𝑎𝑛𝑑 are the numbers of the rec-
ommendations and the candidates. And 𝐼𝑛𝑑𝑥 is the index of 𝑥 in
S𝑠𝑜𝑟𝑡𝑒𝑑 .

Finally, non-members are randomly provided with items from
candidates as recommendations, which can be defined as the fol-
lowing function:

𝑓 (S𝑐𝑎𝑛𝑑) = R𝑜𝑢𝑡 (|R𝑜𝑢𝑡 | = 𝑁𝑟𝑒𝑐),

where 𝑓 (S𝑐𝑎𝑛𝑑) is to randomly select recommendations fromS𝑐𝑎𝑛𝑑 .
And |R𝑜𝑢𝑡 |, which is equal to 𝑁𝑟𝑒𝑐 , is the number of recommenda-
tions to non-members.

AI

AL

AN LI LL LN M
I

M
L

M
N

0.0

0.2

0.4

0.6

0.8

H
R

@
10

0

Original Setting

Defense Mechanism

Figure 13: Comparisons of recommendation performances
before against after deploying the defense mechanism.

A.2 Visualization Results
In this section, we visualize user feature vectors by t-SNE to show
the differences of the distributions between members and non-
members in the shadow and target datasets. In Figure 14, the red
points represent feature vectors of members and the blue points
denote feature vectors of non-members. We conclude from the
comparison between Figure 14a and Figure 14b that Popularity
Randomization can decrease the differences between the feature
vectors of members and non-members, and hinder the attack perfor-
mance considerably. We find a similar phenomenon in Figure 14c
and Figure 14d. These visualization results show the effectiveness
of Popularity Randomization.

Moreover, as Figure 12 shows, with the defense mechanism, the
attack against LFM can only reach comparable performances with
Random Guess. In contrast, when the target algorithm is Item, the
attack achieves strong performances. To explain this, as Figure 14a
and Figure 14c shows, the areas of the red and blue points rarely
overlap when using Item. However, there exist many red points
in the area of the blue points when using LFM, leading to a poor
attack performance.

A.3 Impacts on Recommendation
Performances

We next investigate the impacts on the performance of the target
recommender with Popularity Randomization. In Figure 13, the re-
sults show that the performances of the recommender only slightly
drops. For instance, when the target recommender uses Item on
the ml-1m dataset, Popularity Randomization only achieves a 2%
drop in the recommendation performance. Therefore, our proposed
defense strategy can mitigate the attack risk effectively while pre-
serving the original recommendation performances.

members

non-members

members

non-members

(a) ADM_Item_shadow (left) and ADM_Item_target (right) with
the defense mechanism.

members

non-members

members

non-members

(b) ADM_Item_shadow (left) and ADM_Item_target (right) without
the defense mechanism.

members

non-members

members

non-members

(c) ADM_LFM_shadow (left) and ADM_LFM_target (right) with
the defense mechanism.

members

non-members

members

non-members

(d) ADM_LFM_shadow (left) and ADM_LFM_target (right) without
the defense mechanism.

Figure 14: Data distributions by t-SNE, in which red points represent members and blue points denote non-member. (a) Data
points in the shadow and target recommenders using Item on the ADM dataset with the defense mechanism. (b) Data points
in the shadow and target recommenders using Item on the ADM dataset without the defensemechanism. (c) Data points in the
shadow and target recommenders using LFM on the ADM dataset with the defense mechanism. (d) Data points in the shadow
and target recommenders using LFM on the ADM dataset without the defense mechanism.

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Method
	2.1 Definitions
	2.2 Threat Model
	2.3 Recommender Systems
	2.4 Attack Overview
	2.5 Membership Inference Attack

	3 Experiments
	3.1 Experimental Setup
	3.2 Recommendation Performance
	3.3 Attack Performance
	3.4 Hyperparameters
	3.5 Extensive Analysis
	3.6 Summary

	4 Defense
	5 Related Work
	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Defense
	A.1 Methodology
	A.2 Visualization Results
	A.3 Impacts on Recommendation Performances

