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ABSTRACT
Machine learning (ML) has been widely adopted in various privacy-
critical applications, e.g., face recognition and medical image analy-
sis. However, recent research has shown that ML models are vulner-
able to attacks against their training data. Membership inference is
one major attack in this domain: Given a data sample and model,
an adversary aims to determine whether the sample is part of the
model’s training set. Existing membership inference attacks lever-
age the confidence scores returned by the model as their inputs
(score-based attacks). However, these attacks can be easily miti-
gated if the model only exposes the predicted label, i.e., the final
model decision.

In this paper, we propose decision-based membership inference
attacks and demonstrate that label-only exposures are also vulner-
able to membership leakage. In particular, we develop two types
of decision-based attacks, namely transfer attack and boundary
attack. Empirical evaluation shows that our decision-based attacks
can achieve remarkable performance, and even outperform the pre-
vious score-based attacks in some cases. We further present new
insights on the success of membership inference based on quantita-
tive and qualitative analysis, i.e., member samples of a model are
more distant to the model’s decision boundary than non-member
samples. Finally, we evaluate multiple defense mechanisms against
our decision-based attacks and show that our two types of attacks
can bypass most of these defenses.1
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Figure 1: An illustration of accessible components of the tar-
get model for each of the two threat models. A score-based
threat model assumes access to the output layer; a decision-
based threat model assumes access to the predicted label
alone.

1 INTRODUCTION
Machine learning (ML) has witnessed tremendous progress over
the past decade and has been applied across a wide range of privacy-
critical applications, such as face recognition [28, 61] and medical
image analysis [9, 29, 51]. Such developments rely on not only novel
training algorithms and architectures, but also access to sensitive
and private data, such as health data. Various recent research [23,
25, 31, 35, 36, 45, 46, 48, 49, 54, 57, 60] has shown that ML models
are vulnerable to privacy attacks. One major attack in this domain
is membership inference: An adversary aims to determine whether
or not a data sample is used to train a target ML model.

Existing membership inference attacks [25, 31, 35, 46, 48, 49,
57] rely on the confidence scores (e.g. class probabilities or logits)
returned by a target ML model as their inputs. The success of
membership inference is due to the inherent overfitting property
of ML models, i.e., an ML model is more confident facing a data
sample it was trained on, and this confidence is reflected in the
model’s output scores. See Figure 1 for an illustration of accessible
components of an ML model for such score-based threat model. A
major drawback for these score-based attacks is that they can be
trivially mitigated if the model only exposes the predicted label, i.e.,
the final model decision, instead of confidence scores. The fact that
score-based attacks can be easily averted makes it more difficult
to evaluate whether a model is truly vulnerable to membership
inference or not, which may lead to premature claims of privacy
for ML models.

This motivates us to focus on a new category of membership
inference attacks that has so far received fairly little attention,
namely Decision-based attacks. Here, the adversary solely relies
on the final decision of the target model, i.e., the top-1 predicted
label, as their attack model’s input. It is more realistic to evaluate
the vulnerability of a machine learning system under the decision-
based attacks with sole access to the model’s final decision. First,
compared to score-based attacks, decision-based attacks are much
more relevant in real-world applications where confidence scores
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are rarely accessible. Furthermore, decision-based attacks have the
potential to be much more robust to the state-of-the-art defenses,
such as confidence score perturbation [27, 38, 56]. In label-only
exposure, a naive baseline attack [57] infers that a candidate sample
is a member of a target model if it is predicted correctly by the
model. However, this baseline attack cannot distinguish between
members and non-members that are both correctly classified as
shown in Figure 1.

In this paper, we propose two types of decision-based attacks
under different scenarios, namely transfer attack and boundary
attack. In the following, we abstractly introduce each of them.

TransferAttack.Weassume the adversary has an auxiliary dataset
(namely shadow dataset) that comes from the same distribution
as the target model’s training set. The assumption also holds for
previous score-based attacks [35, 46, 48, 49]. The adversary first
queries the target model in a manner analog to cryptographic or-
acle, thereby relabeling the shadow dataset by the target model’s
predicted labels. Then, the adversary can use the relabeled shadow
dataset to construct a local shadow model to mimic the behavior of
the target model. In this way, the relabeled shadow dataset contains
sufficient information from the target model, and membership in-
formation can also be transferred to the shadow model. Finally, the
adversary can leverage the shadow model to launch a score-based
membership inference attack locally.

BoundaryAttack.Collecting data, especially sensitive and private
data, is a non-trivial task. Thus, we consider a more difficult and
realistic scenario in which there is no shadow dataset and shadow
model available. To compensate for the lack of information in this
scenario, we shift the focus from the target model’s output to the
input. Here, our key intuition is that it is harder to perturb member
data samples to different classes than non-member data samples.
The adversary queries the target model on candidate data samples,
and perturb them to change the model’s predicted labels. Then
the adversary can exploit the magnitude of the perturbation to
differentiate member and non-member data samples.

Extensive experimental evaluation shows that both of our attacks
achieve strong performance. In particular, our boundary attack in
some cases even outperforms the previous score-based attacks.
This demonstrates the severe membership risks stemming from ML
models. In addition, we present a new perspective on the success of
current membership inference and show that the distance between a
sample and an ML model’s decision boundary is strongly correlated
with the sample’s membership status.

Finally, we evaluate our attacks on multiple defense mechanisms:
generalization enhancement[46, 50, 54], privacy enhancement [4]
and confidence score perturbation [27, 38, 56]. The results show
that our attacks can bypass most of the defenses, unless heavy
regularization is applied. However heavy regularization can lead to
a significant degradation of the model accuracy.

In general, our contributions can be summarized as the following:

• We perform a systematic investigation on membership leak-
age in label-only exposures of ML models, and introduce
decision-basedmembership inference attacks, which is highly
relevant for real-world applications and important to gauge
model privacy.

• We propose two types of decision-based attacks under differ-
ent scenarios, including transfer attack and boundary attack.
Extensive experiments demonstrate that our two types of
attacks achieve better performances than the baseline attack,
and even outperform the previous score-based attacks in
some cases.

• We propose a new perspective on the reasons for the success
of membership inference, and perform a quantitative and
qualitative analysis to demonstrate that members of an ML
model are more distant from the model’s decision boundary
than non-members.

• We evaluate multiple defenses against our decision-based
attacks and show that our novel attacks can still achieve rea-
sonable performance unless heavy regularization is applied.

Paper Organization. The rest of this paper is organized as follows.
Section 2 presents the definitions of membership inference for the
ML models, threat models, datasets, and model architectures used
in this paper. Section 3 and Section 4 introduce our two attack
methods and evaluation methods. In Section 5, we provide an in-
depth analysis of the success of membership inference. Section 6
provides multiple defenses against decision-based attacks. Section 7
presents related work, and Section 8 concludes the paper.

2 PRELIMINARIES
2.1 Membership Leakage in Machine Learning

Models
Membership leakage in ML models emerges when an adversary
aims to determine whether a candidate data sample is used to train
a certain ML model. More formally, given a candidate data sample
𝑥 , a trained ML modelM, and external knowledge of an adversary,
denoted by Ω, a membership inference attack A can be defined as
the following function.

A : 𝑥,M,Ω → {0, 1}.
Here, 0 means 𝑥 is not amember ofM’s training set and 1 otherwise.
The attack model A is essentially a binary classifier. Depending
on the assumptions, it can be constructed in different ways, which
will be presented in later sections.

2.2 Threat Model
Here, we outline the threat models considered in this paper. The
threat models are summarized in Table 1. There are two existing
categories of attacks, i.e., score-based attacks and decision-based
attacks. The general idea of score-based attacks is to exploit the
detailed output (i.e., confidence score) of the target model to launch
an attack. In decision-based attacks, an adversary cannot access to
confidence scores, but relies on the final predictions of the target
model launch an attack. The baseline attack predicts a data sample
as a member of the training set when themodel classifies it correctly.
However, this naive and simple approach does not work at all in
the case shown in Figure 1. In the following, we introduce the
adversarial knowledge that an adversary has in our decision-based
attacks.

Adversarial Knowledge. For our decision-based attacks, the ad-
versary only has black-box access to the target model, i.e., they are



Table 1: An overview of membership inference threat models. “✓” means the adversary needs the knowledge and “-” indicates
the knowledge is not necessary.

Attack Category Attacks Target Model’s Training Data Shadow Detailed Model Prediction Final Model Prediction
Structure Distribution Model (e.g. probabilities or logits) (e.g. max class label)

Score-based [25, 31, 35, 46, 48, 49, 57] ✓or - ✓or - ✓or - ✓ ✓

Decision-based
Baseline attack [57] - ✓ - - ✓

Transfer attack - ✓ ✓ - ✓
Boundary attack - - - - ✓

not able to extract a candidate data sample’s membership status
from the confidence scores. Concretely, our threat model comprises
the following entities. (1) Final decision of the target model M, i.e.,
predicted label. (2) A shadow datasetDshadow drawn from the same
distribution as target model’s dataset Dtarget . (3) A local shadow
model S trained using the shadow dataset Dshadow . For boundary
attack, the adversary only has the knowledge of (1).

2.3 Datasets and Target Model Architecture

Datasets. We consider four benchmark datasets of different size
and complexity, namely CIFAR-10 [1], CIFAR-100 [1], GTSRB [2],
and Face [3], to conduct our experiments. Since the images in GT-
SRB are of different sizes, we resize them to 64×64 pixels. For the
Face dataset, we only consider people with more than 40 images,
which leaves us with 19 people’s data, i.e., 19 classes. We describe
them in detail in Appendix Section A.1.

Target Model Architecture. Typically, for image classification
tasks, we use neural networks which is adopted across a wide
of applications. In this work, we build the target model using 4
convolutional layers and 4 pooling layers with 2 hidden layers
containing 256 units each at last. The target models are trained
for 200 training epochs, iteratively using Adam algorithm with a
batch-size of 128 and a fixed learning rate of 0.001.

3 TRANSFER ATTACK
In this section, we present the first type of decision-based attacks,
i.e., transfer attack. We start by introducing our key intuition. Then,
we describe the attack methodology. Finally, we present the evalua-
tion results.

3.1 Key Intuition
The intuition of this attack is that the transferability property holds
between shadow model S and target modelM. Almost all related
works [15, 33, 37, 39] focus on the transferability of adversarial
examples, i.e., adversarial examples can transfer between models
trained for the same task. Unlike these works, we focus on the
transferability of membership information for benign data samples,
i.e., the member and non-member data samples behaving differ-
ently in M will also behave differently in S. Then we can leverage
the shadow model to launch a score-based membership inference
attack.

3.2 Methodology
The transfer attack’s methodology can be divided into four stages,
namely shadow dataset relabeling, shadow model architecture se-
lection, shadow model training, and membership inference. The
algorithm can be found in Appendix algorithm 1.

Shadow Dataset Relabeling. As aforementioned, the adversary
has a shadow dataset Dshadow drawn from the same distribution as
the target modelM’s dataset Dtarget . To train a shadow model, the
first step is to relabel these data samples using the target model M
as an oracle. In this way, the adversary can establish a connection
between the shadow dataset and the target model, which facilitates
the shadow model to be more similar to the target model in the
next step.

ShadowModel Architecture Selection. As the adversary knows
the main task of the target model, it can build the shadow model
using high-level knowledge of the classification task (e.g., convolu-
tional networks are appropriate for vision). As in prior score-based
attacks, we also use the same architecture of target models to build
our shadow models. Note that we emphasize that the adversary
does not have the knowledge of the concrete architecture of the
target model, and in Section 3.4, we also show that a wide range of
architecture choices yield similar attack performance.

ShadowModel Training. The adversary trains the shadowmodel
S with the relabeled shadow dataset Dshadow in conjunction with
classical training techniques.

Membership Inference. Finally, the adversary feeds a candidate
data sample into the shadow model S to calculate its cross-entropy
loss with the ground truth label.

CELoss = −
𝐾∑
𝑖=0

1𝑦 log(𝑝𝑖 ), (1)

where 1𝑦 is the one-hot encoding of the ground truth label 𝑦, 𝑝𝑖 is
the probability that the candidate sample belongs to class 𝑖 , and 𝐾
is the number of classes. If the loss value is smaller than a threshold,
the adversary then determines the sample being a member and vice
versa. The adversary can pick a suitable threshold depending on
their requirements, as in many machine learning applications. [7,
19, 22, 27, 43, 46]. In our evaluation, we mainly use area under the
ROC curve (AUC) which is threshold independent as our evaluation
metric.
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Figure 2: Comparison of our transfer attack performance with the baseline attack by Yeom et al. [57]. The x-axis represents
the target model being attacked and the y-axis represents the AUC score.

3.3 Experimental Setup
Following the attack strategy, we split each dataset into Dtarget
and Dshadow : One is used to train and test the target model, and
the other is used to train the shadow model S after relabeled by
the target model. For evaluation, Dtarget is also split into two: One
is used to train the target modelM, i.e., Dtrain, and serves as the
member samples of the target model, while the other Dtest serves
as the non-member samples.

It is well known that the inherent overfitting drives MLmodels to
be vulnerable to membership leakage [46, 48]. To show the variation
of the attack performance on each dataset, we train 6 target models
M-0, M-1, ..., M-5 using different size of the training set Dtrain,
exactly as performed in the prior work by Shokri et al. [48] and
many subsequent works [35, 46, 49, 54]. The sizes of Dtrain, Dtest ,
and Dshadow are summarized in Appendix Table 7.

We execute the evaluation on randomly reshuffled data samples
from Dtarget , and select sets of the same size (i.e, equal number
of members and non-members) to maximize the uncertainty of
inference, thus the baseline performance is equivalent to random
guessing. We adopt AUC as our evaluation metric which is thresh-
old independent. In addition, we further discuss methods to pick
threshold for our attack later in this section.

3.4 Results

Attack AUC Performance. Figure 2 depicts the performance of
our transfer attack and baseline attack. First, we can observe that
our transfer attack performs at least on-par with the baseline attack.
More encouragingly, on the CIFAR-10 and GTSRB datasets, our
transfer attack achieves better performance than the baseline attack.
For example, in Figure 2 (M-5, CIFAR-10), the AUC score of the
transfer attack is 0.94, while that of the baseline attack is 0.815. The
reason why our transfer attack outperforms the baseline attack on
CIFAR-10 and GTSRB rather than on CIFAR-100 and Face, is that
the size of the shadow dataset for the first two datasets is relatively
larger than that of the latter two, compared to the size of each
dataset (see Appendix Table 7). In the next experiments, we make
the same observation that a larger shadow dataset implies better
attack performance.
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Figure 3: Attack AUC under the effect of changing the
dataset size and shadow model complexity (upper is the
number of parameters, lower is the computational complex-
ity FLOPs). The target model (M-0, CIFAR-100)’s training
set size is 7,000, and complexity is 3.84M parameters and
153.78M FLOPs.

Effects of the Shadow Dataset and Model. We further investi-
gate the effects of shadow dataset size and shadow model com-
plexity (structure and hyper-parameter) on the attack performance.
More concretely, for the target model (M-0, CIFAR-100), we vary
the size of the shadow dataset Dshadow from 5,000 to 42,000, where
the target training set Dtrain is 7,000. We also vary the complex-
ity of the shadow model from 0.86M (number of parameters) and
26.01M (FLOPs,2 computational complexity) to 4.86M and 418.88M,
where the complexity of the target model is 3.84M and 153.78M,
respectively. We conduct extensive experiments to simultaneously
tune these two hyper-parameters and report the results in Figure 3.
Through investigation, we make the following observations.

• Larger shadow dataset implies more queries to the target
model which leads to better attack performance.

• Even simpler shadow models and fewer shadow datasets
(bottom left part) can achieve strong attack performance.

2FLOPs represent the theoretical amount of floating-point arithmetic needed when
feeding a sample into the model.
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Figure 4: The cross entropy loss distribution obtained from the shadow model. The x-axis represents the loss value and the
y-axis represents the number of the loss.
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Figure 5: AttackAUC for three different statisticalmeasures.
The x-axis represents the target model being attacked and
the y-axis represents the AUC score.

• In general, the transfer attack is robust even if the shadow
model is much different from the target model.

Effects of Statistical Metrics. As prior works [46, 48] also use
other statistical metrics, i.e., maximum confidence scores𝑀𝑎𝑥 (𝑝𝑖 )
and normalized entropy −1

log(𝐾)
∑
𝑖 𝑝𝑖 log (𝑝𝑖 ). Here, we also con-

duct experiments with these statistical metrics. Figure 5 reports the
AUC on the CIFAR-10 and CIFAR-100 datasets. We can observe that
the loss metric achieves the highest performance with respect to
the different target models. Meanwhile, the AUC score is very close
between maximum confidence score and entropy. This indicates
that the loss metric contains the strongest signal on differentiat-
ing member and non-member samples. We will give an in-depth
discussion on this in Section 5.2.

Loss Distribution of Membership. To explain why our transfer
attack works, Figure 4 further shows the loss distribution of mem-
ber and non-member samples from the target model calculated
on the shadow model (M-0 and M-5 on CIFAR-10 and CIFAR-
100). Though both member and non-member samples are never
used to train the shadow model, we still observe a clear difference
between their loss distribution. This verifies our key intuition afore-
mentioned: The transferability of membership information holds
between shadowmodelS and target modelM, i.e., the member and
non-member samples behaving differently inM will also behave
differently in S.

Threshold Choosing. As mentioned before, in the membership
inference stage, the adversary needs to make a manual decision on
which threshold to use. For the transfer attack, since we assume that
the adversary has a dataset that comes from the same distribution
as the target model’s dataset, it can rely on the shadow dataset to
estimate a threshold by sampling certain part of that dataset as
non-member samples.

4 BOUNDARY-ATTACK
After demonstrating our transfer attack, we now present our second
attack, i.e., boundary attack. Since curating auxiliary data requires
significant time and monetary investment. Thus, we relax this as-
sumption in this attack. The adversary does not have a shadow
dataset to train a shadow model. All they could rely on is the pre-
dicted label from the targetmodel. To the best of our knowledge, this
is by far the most strict setting for membership inference against
ML models. In the following section, we start with the key intuition
description. Then, we introduce the attack methodology. In the end,
we present the evaluation results.

4.1 Key Intuition
Our intuition behind this attack follows a general observation of
the overfitting nature of ML models. Concretely, an ML model is
more confident in predicting data samples that it is trained on. In
contrast to the prior score-based attacks[25, 31, 35, 46, 48, 49, 57]
that directly exploit confidence scores as analysis objects, we place
our focus on the antithesis of this observation, i.e., since the ML
model is more confident on member data samples, it should be
much harder to change its mind.

Intuitively, Figure 6 depicts the confidence scores for two ran-
domly selected member data samples (Figure 6a, Figure 6c) and
non-member data samples (Figure 6b, Figure 6d) with respect to
M-0 trained on CIFAR-10. We can observe that the maximal score
for member samples is indeed much higher than the one of non-
member samples. We further use cross entropy (Equation 1) to
quantify the difficulty for an ML model to change its predicted label
for a data sample to other labels.

Table 2 shows the cross entropy between the confidence scores
and other labels for these samples. We can see that member samples’
cross entropy is significantly larger than non-member samples. This
leads to the following observation on membership information.



Table 2: The cross entropy between the confidence scores and other labels except for the predicted label. ACE represent the
Average Cross Entropy.

Truth Predicted Cross Entropy
Status Label Label 0 1 2 3 4 5 6 7 8 9 ACE

(a) Member 6 6 7.8156 8.3803 4.1979 1.0942 4.1367 4.3492 - 7.6328 1.5522 1.2923 4.4946
(b) Non-member 8 8 2.3274 0.8761 0.8239 2.0793 1.2275 0.9791 1.2373 1.1152 - 5.0451 1.2218

(c) Member 3 3 1.2995 5.2842 5.4212 - 1.5130 4.8059 4.5897 7.1547 3.2411 4.7910 4.2334
(d) Non-member 7 9 2.8686 1.8325 3.6480 0.5352 1.8722 1.1689 4.0124 0.6866 3.1071 - 2.1766
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Figure 6: The probability distribution of the target model
(M-0, CIFAR-10) onmember samples and non-member sam-
ples.

Observation. Given an ML model and a set of data samples, the
cost of changing the target model’s predicted labels for member
samples is larger than the cost for non-member samples. Further-
more, consider the label-only exposures in a black-box ML model,
which means the adversary can only perturb the data samples to
change the target model’s predicted labels, thus the perturbation
needed to change a member sample’s predicted label is larger than
non-members. Then, the adversary can exploit the magnitude of
the perturbation to determine whether the sample is a member or
not.

4.2 Methodology
Our attack methodology consists of the following three stages,
i.e., decision change, perturbation measurement, and membership
inference. The algorithm can be found in Appendix algorithm 2.

Decision Change. The goal of changing the final model decision,
i.e., predicted label, is similar to that of adversarial attack [8, 10, 41,
42, 47, 52], For simplicity, we utilize adversarial example techniques

to perturb the input to mislead the target model. Specifically, we
utilize two state-of-the-art black-box adversarial attacks, namely
HopSkipJump [12] and QEBA [30], which only require access to
the model’s predicted labels.

Perturbation Measurement. Once the final model decision has
changed, we measure the magnitude of the perturbations added
to the candidate input samples. In general, adversarial attack tech-
niques typically use 𝐿𝑝 distance (or Minkowski Distance), e.g., 𝐿0,
𝐿1, 𝐿2, and 𝐿∞, to measure the perceptual similarity between a
perturbed sample and its original one. Thus, we use 𝐿𝑝 distance to
measure the perturbation.

Membership Inference. After obtaining the magnitude of the
perturbations, the adversary simply considers a candidate sample
with perturbations larger than a threshold as a member sample, and
vice versa. Similar to the transfer attack, we mainly use AUC as our
evaluation metric. We also provide a general and simple method
for choosing a threshold in Section 4.4.

4.3 Experiment Setup
We use the same experimental setup as presented in Section 3.3,
such as the dataset splitting strategy and 6 target models trained
on different size of training set Dtrain. In the decision change stage,
we use the implementation of a popular python library (ART3)
for HopSkipJump, and the authors’ source code4 for QEBA. Note
that we only apply untargeted decision change, i.e., changing the
initial decision of the target model to any other random decision.
Besides, both HopSkipJump and QEBA require multiple queries
to perturb data samples to change their predicted labels. We set
15,000 for HopSkipJump and 7,000 for QEBA. We further study the
influence of the number of queries on the attack performance. For
space reasons, we report the results of HopSkipJump scheme in the
main body of our paper. Results of QEBA scheme can be found in
Appendix Figure 14 and Figure 15.

4.4 Results

Distribution of Perturbation. First, we show the distribution
of perturbation between a perturbed sample and its original one
for member and non-member samples in Figure 7. Both decision
change schemes, i.e., HopSkipJump and QEBA, apply 𝐿2 distance
to limit the magnitude of perturbation, thus we report results of 𝐿2
distance as well. As expected, the magnitude of the perturbation on

3https://github.com/Trusted-AI/adversarial-robustness-toolbox
4https://github.com/AI-secure/QEBA

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/AI-secure/QEBA
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Figure 7: 𝐿2 distance between the original sample and its perturbed samples generated by the HopSkipJump attack. The x-axis
represents the target model being attacked and the y-axis represents the 𝐿2 distance.
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Figure 8: Attack AUC for four different 𝐿𝑝 distances between the original samples and its perturbed samples generated by the
HopSkipJump attack. The x-axis represents the target model being attacked and the y-axis represents the AUC score.

member samples is indeed larger than that on non-member samples.
For instance in Figure 7 (M-5, CIFAR-10), the average 𝐿2 distance
of the perturbation for member samples is 1.0755, while that for
non-member samples is 0.1102. In addition, models with a larger
training set, i.e., lower overfitting level, require less perturbation to
change the final prediction. As the overfitting level increases, the
adversary needs to modify more on the member sample. The reason
is that an ML model with a higher overfitting level has remembered
its training samples to a larger extent, thus it is much harder to
change their predicted labels, i.e., larger perturbation is required.

Attack AUC Performance. We report the AUC scores over all
datasets in Figure 8. In particular, we compare 4 different distance
metrics, i.e., 𝐿0, 𝐿1, 𝐿2, and 𝐿∞, for each decision change scheme.
From Figure 8, we can observe that 𝐿1, 𝐿2 and 𝐿∞ metrics achieve
the best performance across all datasets. For instance in Figure 8
(M-1, CIFAR-10), the AUC scores for 𝐿1, 𝐿2, and 𝐿∞ metrics are
0.8969, 0.8963, and 0.9033, respectively, while the AUC score for 𝐿0
metric is 0.7405. From Figure 15 (in Appendix), we can also observe
the same results of QEBA scheme: 𝐿1, 𝐿2 and 𝐿∞ metrics achieve the
best performance across all datasets, while 𝐿0 metric performs the
worst. Therefore, an adversary can simply choose the same distance
metric adopted by adversarial attacks to measure the magnitude of
the perturbation.

Effects of Number of Queries. To mount boundary attack in
real-world ML applications such as Machine Learning as a Service
(MLaaS), the adversary cannot issue as many queries as they want
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Figure 9: Attack AUC under the effect of number of queries.
The x-axis represents the number of queries and the y-axis
represents the AUC score for perturbation-based attack.

to the target model, since a large number of queries increases the
cost of the attack and may raise the suspicion of the model provider.
Now, we evaluate the attack performance with different number
of queries. Here, we show the results of the HopSkipJump scheme
forM-5 over all datasets. We vary the number of queries from 0 to
15,000 and evaluate the attack performance based on the 𝐿2 metric.
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Figure 10: Comparison of our two types of attacks with the baseline attack and score-based attack. The x-axis represents the
target model being attacked and the y-axis represents the AUC score.
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Figure 11: The relation between the top 𝑡 percentile of the 𝐿2
distance, i.e., threshold, and the attack performance. The x-
axis represents the top 𝑡 percentile and the y-axis represents
the F1 score.

As we can see in Figure 9, the AUC increases sharply as the number
of queries increases in the beginning. After 2,500 queries, the attack
performance becomes stable. From the results, we argue that query
limiting would likely not be a suitable defense. For instance, when
querying 131 times, the AUC for CIFAR-10 is 0.8228 and CIFAR-100
is 0.9266. At this time, though the perturbed sample is far away from
its origin’s decision boundary, the magnitude of perturbation for
member samples is still relatively larger than that for non-member
samples. Thus, the adversary can still differentiate member and
non-member samples.

Threshold Choosing. Here, we focus on the threshold choosing
for our boundary attack where the adversary is not equipped with
a shadow dataset. We provide a simple and general method for
choosing a threshold. Concretely, we generate a set of random
samples in the feature space as the target model’s training set. In the
case of image classification, we sample each pixel for an image from
a uniform distribution. Next, we treat these randomly generated
samples as non-members and query them to the target model. Then,
we apply adversarial attack techniques on these random samples to
change their initial predicted labels by the target model. Finally, we

use these samples’ perturbation to estimate a threshold, i.e., finding
a suitable top 𝑡 percentile over these perturbations. The algorithm
can be found in Appendix algorithm 3.

We experimentally generate 100 random samples forM-5 trained
across all datasets, and adopt HopSkipJump in decision change
stage. We again use the 𝐿2 distance to measure the magnitude of
perturbation and F1 score as our evaluation metric. From Figure 11,
we make the following observations:

• The peak attack performance is bounded between 𝑡 = 0%
and 𝑡 = 100%, which means the best threshold can definitely
be selected from these random samples’ perturbation.

• The powerful and similar attack performance ranges from
𝑡 = 30% to 𝑡 = 80%, reaching half of the total percentile,
which means that a suitable threshold can be easily selected.

Therefore, we conclude that our threshold choosing method is
effective and can achieve excellent performance.

Comparison of Different Attacks. Now we compare the perfor-
mance of our two attacks and previous existing attacks. In particular,
we also compare our attacks against prior score-based attacks. Fol-
lowing the score-based attack proposed by Salem et al. [46], we
train one shadow model using half of Dshadow with its ground
truth labels, and one attack model in a supervised manner based
on the shadow model’s output scores. Here, we do not assume that
the attacker knows the exact training set size of the target model,
which is actually a strong assumption. Note that this is not a fair
comparison, as our decision-based attacks only access to the final
model’s prediction, rather than the confidence scores.

We report attack performance for our boundary attack using 𝐿2
metric in HopSkipJump scheme. From Figure 10, we can find that
our boundary attack achieves similar or even better performance
than the score-based attack in some cases. This demonstrates the
efficacy of our proposed decision-based attack, thereby the corre-
sponding membership leakage risks stemming from ML models are
much more severe than previously shown.

As for cost analysis, the attack logic is different for each method,
so it is difficult to evaluate the cost with standard metrics. Besides
the adversarial knowledge acquired for each attack, we mainly
report training costs and query costs in Table 4. We can find the
baseline attack only queries once for a candidate sample. However,
in our transfer attack, once a shadow model is built, the adversary
will only query the shadow model for candidate samples without



Table 3: Average Certified Radius (ACR) of members and non-members for target models.

Target CIFAR-10 CIFAR-100 GTSRB Face
Model Member Non-mem Member Non-mem Member Non-mem Member Non-mem

M-0 0.1392 0.1201 0.0068 0.0033 0.0300 0.0210 0.0571 0.0607
M-1 0.1866 0.1447 0.0133 0.0079 0.0358 0.0215 0.0290 0.0190
M-2 0.1398 0.1170 0.0155 0.0079 0.0692 0.0463 0.0408 0.0313
M-3 0.1808 0.1190 0.0079 0.0074 0.0430 0.0348 0.1334 0.1143
M-4 0.1036 0.1032 0.0141 0.0116 0.0212 0.0176 0.0392 0.0292
M-5 0.1814 0.0909 0.0157 0.0080 0.0464 0.0385 0.1242 0.1110

making any other queries to the target model. Therefore, we cannot
prematurely claim that the baseline attack has the lowest cost, but
should consider the actual situation.

Table 4: The cost of each attack. Query cost is the number of
queries to the target model.

Attack Shadow Model Query for Query for a
Type Training Epochs Dshadow candidate sample

score-based 200 - 1
baseline attack - - 1
transfer attack 200 |Dshadow | -
boundary attack - - Multiple

5 MEMBERSHIP LEAKAGE ANALYSIS
The above results fully demonstrate the effectiveness of our decision-
based attacks. Here, we delve more deeply into the reasons for the
success of membership inference. Our boundary attack utilizes the
magnitude of the perturbation to determine whether the sample
is a member or not, and the key to stop searching perturbations is
the final decision change of the model. Here, the status of decision
change actually contains information about the decision bound-
ary, i.e., the perturbed sample crosses the decision boundary. This
suggests a new perspective on the relationship between member
samples and non-member samples, and we intend to analyze mem-
bership leakage from this perspective. Since previous experiments
have verified our key intuition that the perturbation required to
change the predicted label of a member sample is larger than that
of a non-member, we argue that the distance between the member
sample and its decision boundary is typically larger than that of
the non-member sample. Next, we will verify it both quantitatively
and qualitatively.

5.1 Quantitative Analysis
We introduce the neighboring 𝐿𝑝 -radius ball to investigate the
membership leakage of MLmodels. This neighboring 𝐿𝑝 -radius ball,
also known as Robustness Radius, is defined as the 𝐿𝑝 robustness of
the target model at a data sample, which represents the radius of the
largest 𝐿𝑝 ball centered at the data sample in which the target model
does not change its prediction, as shown in Figure 12d. Concretely,
we investigate the 𝐿2 robustness radius of the target model M at a
data sample 𝑥 . Unfortunately, computing the robustness radius of

a ML model is a hard problem. Researchers have proposed many
certification methods to derive a tight lower bound of robustness
radius 𝑅(M;𝑥,𝑦) for ML models. Here, we also derive a tight lower
bound of robustness radius, namely Certified Radius [58], which
satisfies 0 ≤ 𝐶𝑅(M;𝑥,𝑦) ≤ 𝑅(M;𝑥,𝑦) for anyM, 𝑥 and its ground
truth label 𝑦 ∈ Y = {1, 2, · · · , 𝐾}. More details about certified
radius can be found in Appendix Section A.2.

ACR of Members and Non-members. As we can see from The-
orem 1 (see Appendix Section A.2), the value of the certified radius
can be estimated by repeatedly sampling Gaussian noises. For the
target model M and a data sample (𝑥,𝑦), we can estimate the
certified radius 𝐶𝑅(M;𝑥,𝑦). Here, we use the average certified ra-
dius (ACR) as a metric to estimate the average certified radius for
members and non-members separately, i.e.,

𝐴𝐶𝑅𝑚𝑒𝑚𝑏𝑒𝑟 =
1

|Dtrain |
∑

(𝑥,𝑦) ∈Dtrain

𝐶𝑅(M;𝑥,𝑦), (2)

𝐴𝐶𝑅𝑛𝑜𝑛−𝑚𝑒𝑚𝑏𝑒𝑟 =
1

|Dtest |
∑

(𝑥,𝑦) ∈Dtest

𝐶𝑅(M;𝑥,𝑦) . (3)

Table 5: Average Certified Radius (ACR) of members and
non-members for shadow models.

Shadow CIFAR-10 CIFAR-100
Model Member Non-mem Member Non-mem

M-0 0.1392 0.1301 0.0091 0.0039
M-1 0.1873 0.1516 0.0150 0.0071
M-2 0.1416 0.1463 0.0177 0.0068
M-3 0.1962 0.1452 0.0121 0.0047
M-4 0.1152 0.1046 0.0099 0.0092
M-5 0.1819 0.0846 0.0176 0.0087

We randomly select an equal number of members and non-
members for target models and report the results in Table 3. Note
that the certified radius is actually an estimated value represent-
ing the lower bound of the robustness radius, not the exact radius.
Therefore, we analyze the results from a macroscopic perspective
and can draw the following observations.

• TheACR ofmember samples is generally larger than the ACR
of non-member samples, which means that in the output
space, the ML model maps member samples further away
from its decision boundary than non-member samples.
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Figure 12: The visualization of decision boundary for target model (a, b) and shadow model (c), and the search process of
perturbed sample by HopSkipJump and QEBA (d).

• As the level of overfitting increases, the macroscopic trend
of the gap between the ACR of members and non-members
is also larger, which exactly reflects the increasing attack
performance in the aforementioned AUC results.

Furthermore, we also feed the equal member and non-member
samples into each corresponding shadowmodel and obtain the ACR.
Note that both member and non-member samples are never used
to train the shadow model. We report the results in Table 5, and we
can draw the same observations as for the target model. In other
words, this again verifies our key intuition for transfer attack: The
transferability of membership information holds between shadow
model S and target model M, i.e., the member and non-member
samples behaving differently inM will also behave differently with
high probability in S.

5.2 Qualitative Analysis
Next, we investigate the membership leakage of ML models from
a visualization approach. We study the decision boundary of the
target model (CIFAR-10, M-3) with a given set of data samples,
including 1,000 member samples and 1,000 non-member samples.
To better visualize the decision boundary, there are two points to
note:

• Both member and non-member samples are mapped from
the input space to the output space, which then presents the
membership signal. Thus, we visualize the decision boundary
in the output space, i.e., the transformed space of the last
hidden layer which is fully connected with the final model
decision.

• Due to the limitation of the target dataset size, we further
sample a large number of random data points in the output
space and label them with different colors according to their
corresponding classes. This can clearly visualize the decision
boundary that distinguishes between different class regions.

To this end, we map the given data samples into the transformed
space and embed the output logits or scores into a 2D space using
t-Distributed Stochastic Neighbor Embedding (t-SNE) [16]. Fig-
ure 12a shows the results for 10 classes of CIFAR-10. We can see
that the given data samples have been clearly classified into 10
classes and mapped to 10 different regions. For the sake of analysis,

we purposely zoom in four different regions in the left of the whole
space. From Figure 12b, we can make the following observations:

• The member samples and non-member samples belonging
to the same class are tightly divided into 2 clusters, which
explains why the previous score-based attacks can achieve
effective performance.

• More interestingly, we can see that the member samples
are further away from the decision boundary than the non-
member samples, that is, the distance between the members
and the decision boundary is larger than that of the non-
members. Again, this validates our key intuition.

Recall that in the decision change stage of boundary attack,
we apply black-box adversarial attack techniques to change the
final model decision. Here, we give an intuitive overview of how
HopSkipJump and QEBA schemes work in Figure 12d. As we can
see, though these two schemes adopt different strategies to find the
perturbed sample, there is one thing in common: The search ends at
the tangent samples between the neighboring 𝐿𝑝 -radius ball of the
original sample and its decision boundary. Only in this way they can
mislead the target model and also generate a small perturbation.
Combined with Figure 12b, we can find that the magnitude of
perturbation is essentially a reflection of the distance from the
original sample to its decision boundary.

We again feed the 1,000 member samples and 1,000 non-member
samples to the shadow model (CIFAR-10, M-3), and visualize its
decision boundary in Figure 12c. In particular, we mark in red
the misclassified samples from non-members. First, looking at the
correctly classified samples, we can also find that the member sam-
ples are relatively far from the decision boundary, i.e., the loss is
relatively lower than that of non-member samples. As for the mis-
classified samples, it is easy to see that their loss is much larger than
any other samples. Therefore, we can leverage the loss as metric
to differentiate members and non-members. However, we should
also note that compared to Figure 12b, the difference between mem-
bers and non-members towards the decision boundary is much
smaller. Thus, if we do not adopt loss metric which considers the
ground truth label, then the maximum confidence scores𝑀𝑎𝑥 (𝑝𝑖 )
and normalized entropy −1

log(𝐾)
∑
𝑖 𝑝𝑖 log (𝑝𝑖 ) which are just based

on self-information will lead to a much lower difference between
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Figure 13: Attack AUC of transfer attack and boundary attack against multiple defense mechanisms.

members and non-members. This is the reason why the loss metric
achieves the highest performance.

Summarizing the above quantitative and qualitative analysis,
we verify our argument that the distance between the member
sample and its decision boundary is larger than that of the non-
member sample, thus revealing the reasons for the success of the
membership inference, including score-based and decision-based
attacks. In addition, we verify thatmembership information remains
transferable between the target and shadow models. Last but not
least, we also show the reason why the loss metric of the transfer
attack achieves the best performance.

6 DEFENSES EVALUATION
To mitigate the threat of membership leakage, a large body of de-
fense mechanisms have been proposed in the literature. In this
section, we evaluate the performance of current membership infer-
ence attacks against the state-of-the-art defenses. We summarize
existing defenses in the following three broad categories.

Generalization Enhancement.As overfitting is the major reason
for membership inference to be successful, multiple approaches
have been proposed with the aim of reducing overfitting, which
are first introduced by the machine learning community to en-
courage generalization. The standard generalization enhancement
techniques, such as weight decay (L1/L2 regularization) [46, 54],
dropout [50], and data augmentation, have been shown to limit
overfitting effectively, but may lead to a significant decrease in
model accuracy.

Privacy Enhancement.Differential privacy [11, 17, 26] is a widely
adopted for mitigating membership privacy. Many differential pri-
vacy based defense techniques add noise to the gradient to ensure
the data privacy in the training process of the ML model. A repre-
sentative approach in this category is DP-Adam [4], and we adopt
an open-source version of its implementation in our experiments.5

Confidence Score Perturbation. Previous score-based attacks
have demonstrated that the confidence score predicted by the target
model clearly presents membership signal. Therefore, researchers
have proposed several approaches to alter the confidence score.
We focus on two representative approaches in this category: Mem-
Guard [27] and adversarial regularization [38], which changes the

5https://github.com/ebagdasa/pytorch-privacy

output probability distribution so that both members and non-
members look like similar examples to the inference model built
by the adversary. We adopt the original implementation of Mem-
Guard,6 and an open-source version of the adversarial regulariza-
tion.7

For each mechanism, we train 3 target models (CIFAR-10,M−2)
using different hyper-parameters. For example, in L2 regularization,
the 𝜆 used to constrain the regularization loss is set to 0.01, 0.05,
and 0.1, and the 𝜆 in L1 regularization is set to 0.0001, 0.001 and
0.005, respectively. In differential privacy, the noise is randomly
sampled from a Gaussian distribution N(𝜖, 𝛽), wherein 𝜖 is fixed
to 0 and 𝛽 is set to 0.1, 0.5 and 1.1, respectively.

Table 6: AttackAUCperformance under the defense ofMem-
Guard.

CIFAR-10, M-2 Face, M-2
Attack None MemGuard None MemGuard

score-based 0.8655 0.5151 0.755 0.513
baseline attack 0.705 0.705 0.665 0.665
transfer attack 0.7497 0.7497 0.6664 0.6664
boundary attack 0.8747 0.8747 0.8617 0.8617

We report the attack performance against models trained with a
wide variety of different defensive mechanisms in Figure 13, and
we make the following observations.

• Our decision-based attacks. i.e., both transfer attack and
boundary attack, can bypass most types of defense mecha-
nisms.

• Strong differential privacy (𝛽=1.1), L1 regularization (𝜆 =

0.005) and L2 regularization (𝜆 = 0.1) can reducemembership
leakage but, as expected, lead to a significant degradation
in the model’s accuracy. The reason is that the decision
boundary between members and non-members is heavily
blurred.

• Data augmentation can definitely reduce overfitting, but it
still does not reduce membership leakage. This is because
data augmentation drives the model to strongly remember
both the original samples and their augmentations.

6https://github.com/jjy1994/MemGuard
7https://github.com/SPIN-UMass/ML-Privacy-Regulization
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https://github.com/jjy1994/MemGuard
https://github.com/SPIN-UMass/ML-Privacy-Regulization


In Table 6, we further compare the performance of all attacks against
MemGuard [27], which is the latest powerful defense technique
and can be easily deployed. We can find that MemGuard cannot
defend against decision-based attacks at all, but is very effective
against previous score-based attacks.

7 RELATEDWORKS
Various research has shown that machine learning models are vul-
nerable to security and privacy attacks. In this section, we mainly
survey the domains that are most relevant to us.

Membership Inference.Membership inference attack has been
successfully performed in various data domains, ranging form
biomedical data [6, 22, 24] to mobility traces [43]. Shokri et al. [48]
present the first membership inference attack against machine
learning models. The general idea behind this attack is to use multi-
ple shadow models to generate data to train multiple attack models
(one for each class). These attack models take the target sample’s
confidence scores as input and output its membership status, i.e.,
member or non-member. Salem et al. [46] later present another
attack by gradually relaxing the assumptions made by Shokri et
al. [48] achieving a model and data independent membership infer-
ence. In addition, there are several other subsequent score-based
membership inference attacks [25, 31, 35, 49, 57]. In the area of
decision-based attacks, Yeom et al. [57] quantitatively analyzed
the relationship between attack performance and loss for training
and testing sets, and proposed the first decision-based attack, i.e.,
baseline attack aforementioned. We also acknowledge that a con-
current work [13] proposes an approach similar to our boundary
attack. Specifically, the concurrent work assumes that an adver-
sary has more knowledge of the target model, including training
knowledge (model architecture, training algorithm, and training
dataset size), and a shadow dataset from the same distribution as
the target dataset to estimate the threshold. In our work, we relax
all assumptions and propose a general threshold-choosing method.
We further present a new perspective on the reasons for the suc-
cess of membership inference. In addition, we introduce a novel
transfer-attack.

DefensesAgainstMembership Inference.Researchers have pro-
posed to improve privacy against membership inference via dif-
ferent types of generalization enhancement. For example, Shokri
et al. [48] adopted L2 regularization with a polynomial in the
model’s loss function to penalize large parameters. Salem et al. [46]
demonstrated two effective method of defendingMI attacks, namely
dropout and model stacking. Nasr et al. [38] introduced a defensive
confidence score membership classifier in a min-max game mecha-
nism to train models with membership privacy, namely adversarial
regularization. There are other existing generalization enhancement
method can be used to mitigate membership leakage, such as L1
regularization and data augmentation. Another direction is privacy
enhancement. Many differential privacy-based defenses [11, 17, 26]
involve clipping and adding noise to instance-level gradients and is
designed to train a model to prevent it from memorizing training
data or being susceptible to membership leakage. Shokri et al. [48]
designed a differential privacy method for collaborative learning of
DNNs. As for confidence score alteration, Jia et al. [27] introduce
MemGuard, the first defense with formal utility-loss guarantees

against membership inference. The basic idea behind this work is
to add carefully crafted noise to confidence scores of an ML model
to mislead the membership classifier. Yang et al. [56] also propose
a similar defense in this direction.

Attacks against Machine Learning. Besides membership infer-
ence attacks, there exist numerous other types of attacks against
ML models. A major attack type in this space is adversarial ex-
amples [12, 30, 40–42, 52]. In this setting, an adversary adds care-
fully crafted noise to samples aiming at mislead the target classi-
fier. Ganju et al. [20] proposed a property inference attack aiming
at inferring general properties of the training data (such as the
proportion of each class in the training data). Model inversion at-
tack [18, 19] focuses on inferring the missing attributes of the target
ML model. A similar type of attacks is backdoor attack, where the
adversary as a model trainer embeds a trigger into the model for
her to exploit when the model is deployed [21, 34, 55]. Another
line of work is model stealing, Tramèr et al. [53] proposed the first
attack on inferring a model’s parameters. Other works focus on
protecting a model’s ownership [5, 32, 44, 59].

8 CONCLUSION
In this paper, we perform a systematic investigation on member-
ship leakage in label-only exposures of ML models, and propose
two novel decision-based membership inference attacks, including
transfer attack and boundary attack. Extensive experiments demon-
strate that our two attacks achieve better performances than base-
line attack, and even outperform prior score-based attacks in some
cases. Furthermore, we propose a new perspective on the reasons
for the success of membership inference and show that members
samples are further away from the decision boundary than non-
members. Finally, we evaluate multiple defense mechanisms against
our decision-based attacks and show that our novel attacks can
still achieve reasonable performance unless heavy regularization
has been applied. In particular, our evaluation demonstrates that
confidence score perturbation is an infeasible defense mechanism
in label-only exposures.
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A APPENDIX
A.1 Datasets Description

CIFAR-10/CIFAR-100.CIFAR-10 [1] andCIFAR-100 [1] are bench-
mark datasets used to evaluate image recognition algorithms. CIFAR-
10 is composed of 32×32 color images in 10 classes, with 6000 images
per class. In total, there are 50000 training images and 10000 test
images. CIFAR-100 has the same format as CIFAR-10, but it has 100
classes containing 600 images each. There are 500 training images
and 100 testing images per class.

GTSRB. The GTSRB [2] dataset is an image collection consisting
of 43 traffic signs. Images vary in size and are RGB-encoded. It
consists of over 51,839 color images, whose dimensions range from
15×15 to 250×250 pixels (not necessarily square). Of these 51,839
images, 39,209 are used for training, and 12,630 are used for testing.
Due to the varying sizes of the images, the images are resized to
64×64 before being passed to the model for classification.

Face. The Face [3] dataset consists of about 13,000 images of human
faces crawled from the web. It is collected from 1,680 participants
with each participant having at least two distinct images in the
dataset. In our evaluation, we only consider people with more than
40 images, which leaves us with 19 people’s data, i.e., 19 classes.
The Face dataset is challenging for facial recognition, as the images
are taken from the web and not under a controlled environment,
such as a lab. It is also worth noting that this dataset is unbalanced.

A.2 Certified Radius

Randomized Smoothing. In this work, we apply a recent tech-
nique, called randomized smoothing [14], which can be extended
to any architecture to obtain the certified radius of smoothed deep
neural networks. The core of randomized smoothing is to use the
smoothed version ofM, which is denoted byG, to make predictions.
The formulation of G is defined as follows.

Definition 1. For an arbitrary classifierM and𝜎 > 0, the smoothed
classifier G ofM is defined as

G(𝑥) = argmax
𝑐∈Y

𝑃𝜀∼N(0,𝜎2𝑰 ) (M(𝑥 + 𝜀) = 𝑐). (4)

In short, the smoothed classifier G returns the label most likely
to be returned by M when its input is sampled from a Gaussian
distribution N(𝑥, 𝜎2𝑰 ) centered at 𝑥 . Cohen et al. [14] prove the
following theorem, which provides an analytic form of certified
radius:

Theorem 1. [14] Let M : 𝑥 → 𝑦, and 𝜀 ∼ N(0, 𝜎2𝑰 ). Let the
smoothed classifier G be defined as in (4). Let the ground truth of
an input 𝑥 be 𝑦. If G classifies 𝑥 correctly, i.e.,

𝑃𝜀 (M(𝑥 + 𝜀) = 𝑦) ≥ max
𝑦′≠𝑦

𝑃𝜀 (M(𝑥 + 𝜀) = 𝑦′). (5)

Then, G is provably robust at 𝑥 , with the certified radius given by

𝐶𝑅(G;𝑥,𝑦) =𝜎
2
[Φ−1 (𝑃𝜀 (M(𝑥 + 𝜀) = 𝑦))

− Φ−1 (max
𝑦′≠𝑦

𝑃𝜀 (M(𝑥 + 𝜀) = 𝑦′))]

=
𝜎

2
[Φ−1 (E𝜀1{M(𝑥+𝜀)=𝑦 })

− Φ−1 (max
𝑦′≠𝑦
E𝜀1{M(𝑥+𝜀)=𝑦′ })], (6)

where Φ is the 𝑐.𝑑.𝑓 . of the standard Gaussian distribution.

Table 7: Dataset splitting strategy. Dtrain is used to train the
target model and serves as the members, while the other
Dtest serves as the non-members.Dshadow is used to train the
shadow model after relabelled by the target model.

Target CIFAR10 CIFAR100 GTSRB Face
Model Dtrain Dtest Dtrain Dtest Dtrain Dtest Dtrain Dtest

M-0 3000 1000 7000 1000 600 500 350 100
M-1 2000 1000 6000 1000 500 500 300 100
M-2 1500 1000 5000 1000 400 500 250 100
M-3 1000 1000 4000 1000 300 500 200 100
M-4 500 1000 3000 1000 200 500 150 100
M-5 100 1000 2000 1000 100 500 100 100

Shadow Dshadow
Model 46000 42000 38109 1417



Algorithm 1: Transfer attack algorithm.
Input: shadow dataset Dshadow , shadow model S, target

model M, a candidate sample (𝑥,𝑦), threshold 𝜏 ,
minibatch𝑚, membership indicator 𝑇 ;

Output: Trained shadow model S, 𝑥 is member or not;
1 Initialize the parameters of 𝑠ℎ𝑎𝑑𝑜𝑤 ;
2 Relabel Dshadow by querying toM;
3 for number of training epochs do
4 for 𝑖 = 1; 𝑖 ≤ |Dshadow |

𝑚 ; 𝑖 + + do
5 sample minibatch of𝑚 samples from Dshadow ;
6 update S by descending its adam gradient
7 end
8 end
9 Feed 𝑥 into S to obtain 𝑝𝑖 ;

10 calculate loss: 𝑙 = −∑𝐾
𝑖=0 1𝑦 log(𝑝𝑖 );

11 if 𝑙 ≤ 𝜏 then
12 𝑇 = 1; ; /* 𝑥 is a member */

13 else
14 𝑇 = 0; ; /* 𝑥 is a non-member */

15 end
16 return S, 𝑇 ;

Algorithm 2: Boundary attack algorithm.
Input: adversarial attack technique HopSkipJump, target

model M, a candidate sample (𝑥,𝑦), threshold 𝜏 ,
membership indicator 𝑇 ;

Output: 𝑥 is member or not;
1 for number of query do
2 Feed 𝑥 intoM to obtain predicted label 𝑦′;
3 if 𝑦′ ≠ 𝑦 then
4 𝑥 ′ = x; ; /* perturbed sample 𝑥 ′ */

5 else
6 Apply HopSkipJump to perturb 𝑥 ;
7 end
8 end
9 calculate perturbation 𝑃 = |𝑥 − 𝑥 ′ |2;

10 if 𝑃 ≤ 𝜏 then
11 𝑇 = 0; ; /* 𝑥 is a non-member */

12 else
13 𝑇 = 1; ; /* 𝑥 is a member */

14 end
15 return 𝑇 ;

Algorithm 3: Threshold choosing for boundary attack.
Input: adversarial attack technique HopSkipJump, target

modelM; Gaussian distribution N(𝜖, 𝛽), queue 𝑞,
top 𝑡 percentile;

Output: threshold 𝜏 ;
1 Initialize 𝑞;
2 Sample multiple random samples X from N(𝜖, 𝛽) for

number of random samples do
3 Select one sample 𝑥 ∈ X;
4 Feed 𝑥 intoM to obtain predicted label 𝑦;
5 for number of query do
6 Apply HopSkipJump to perturb 𝑥 to obtain 𝑥 ′ ;
7 Feed 𝑥 ′ into M to obtain predicted label 𝑦′;
8 if 𝑦′ ≠ 𝑦 then
9 push |𝑥 − 𝑥 ′ |2 into 𝑞; break;

10 else
11 𝑥 = 𝑥 ′;
12 end
13 end
14 end
15 sort 𝑞 in descending order;
16 𝜏 = 𝑞(𝑡);
17 return 𝜏 ;



0 1 2 3 4 5
Target  Model  

0.0

1.0

2.0

3.0

4.0

L2
 D

is
ta

nc
e

Member
Non-Member

(a) CIFAR-10

0 1 2 3 4 5
Target  Model  

0.0

1.0

2.0

3.0

L2
 D

is
ta

nc
e

(b) CIFAR-100

0 1 2 3 4 5
Target  Model  

0.0

2.0

4.0

6.0

L2
 D

is
ta

nc
e

(c) GTSRB

0 1 2 3 4 5
Target  Model  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

L2
 D

is
ta

nc
e

QEBA

(d) Face

Figure 14: 𝐿2 distance between the original sample and its perturbed samples generated by the QEBA attack. The x-axis repre-
sents the target model being attacked and the y-axis represents the 𝐿2 distance.
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Figure 15: Attack AUC for four different 𝐿𝑝 distances between the original sample and its perturbed samples generated by the
QEBA attack. The x-axis represents the target model being attacked and the y-axis represents the AUC score.
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