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ABSTRACT
Data is the key factor to drive the development of machine learning
(ML) during the past decade. However, high-quality data, in partic-
ular labeled data, is often hard and expensive to collect. To leverage
large-scale unlabeled data, self-supervised learning, represented
by contrastive learning, is introduced. The objective of contrastive
learning is to map different views derived from a training sample
(e.g., through data augmentation) closer in their representation
space, while different views derived from different samples more
distant. In this way, a contrastive model learns to generate infor-
mative representations for data samples, which are then used to
perform downstream ML tasks. Recent research has shown that
machine learning models are vulnerable to various privacy attacks.
However, most of the current efforts concentrate on models trained
with supervised learning. Meanwhile, data samples’ informative
representations learned with contrastive learning may cause severe
privacy risks as well.

In this paper, we perform the first privacy analysis of contrastive
learning through the lens of membership inference and attribute
inference. Our experimental results show that contrastive models
trained on image datasets are less vulnerable to membership in-
ference attacks but more vulnerable to attribute inference attacks
compared to supervised models. The former is due to the fact that
contrastive models are less prone to overfitting, while the latter
is caused by contrastive models’ capability of representing data
samples expressively. To remedy this situation, we propose the first
privacy-preserving contrastive learning mechanism, Talos, relying
on adversarial training. Empirical results show that Talos can suc-
cessfully mitigate attribute inference risks for contrastive models
while maintaining their membership privacy and model utility.1

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
contrastive learning, membership inference attacks, attribute infer-
ence attacks, privacy-preserving machine learning
1Our code is available at https://github.com/xinleihe/ContrastiveLeaks.
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1 INTRODUCTION
Machine learning (ML) has progressed tremendously, and data is the
key factor to drive such development. However, high-quality data,
in particular labeled data, is often hard and expensive to collect as
this relies on large-scale human annotation. Meanwhile, unlabeled
data is being generated at every moment. To leverage unlabeled
data for machine learning tasks, self-supervised learning has been
introduced [34]. The goal of self-supervised learning is to derive
labels from an unlabeled dataset and train an unsupervised task
in a supervised manner. A trained self-supervised model serves as
an encoder transforming data samples into their representations
which are then used to perform supervised downstream ML tasks.
One of the most prominent self-supervised learning paradigms is
contrastive learning [9, 18, 20, 24, 29, 61, 67], with SimCLR [9] as its
most representative framework [34].

Different from supervised learning which directly optimizes an
ML model on a labeled training dataset, referred to as a supervised
model, contrastive learning aims to train a contrastive model, which
is able to generate expressive representations for data samples, and
relies on such representations to perform downstream supervised
ML tasks. The optimization objective for contrastive learning is to
map different views derived from one training sample (e.g., through
data augmentation) closer in the representation space while dif-
ferent views derived from different training samples more distant.
By doing this, a contrastive model is capable of representing each
sample in an informative way.

Recently, machine learning models have been demonstrated
to be vulnerable to various privacy attacks against their training
dataset [5, 7, 19, 22, 36, 49, 52, 55, 56]. The two most representative
attacks in this domain are membership inference attack [49, 52]
and attribute/property inference attack [36, 56]. The former aims
to infer whether a data sample is part of a target ML model’s train-
ing dataset. The latter leverages the overlearning property of a
machine learning model to infer the sensitive attribute of a data
sample. So far, most of the research on the privacy of machine learn-
ing concentrates on supervised models. Meanwhile, informative
representations for data samples learned by contrastive models may
cause severe privacy risks as well. To the best of our knowledge,
this has been left largely unexplored.
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Our Contributions. In this paper, we perform the first privacy
quantification of contrastive learning, the most representative self-
supervised learning paradigm. More specifically, we study the pri-
vacy risks of data samples in the contrastive learning setting, with a
focus on SimCLR, through the lens of membership inference and at-
tribute inference, and we concentrate on contrastive models trained
on image datasets.

We adapt the existing attack methodologies for membership in-
ference (neural network-based, metric-based, and label-only) and
attribute inference against supervised models to contrastive mod-
els. Our empirical results show that contrastive models are less
vulnerable to membership inference attacks than supervised mod-
els. For instance, considering the neural network-based attacks,
we achieve 0.620 membership inference accuracy on a contrastive
model trained on STL10 [11] with ResNet-50 [21], while the result
is 0.810 on the corresponding supervised model. The reason behind
this is contrastive models are less prone to overfitting.

On the other hand, we observe that contrastive models are more
vulnerable to attribute inference attacks than supervised models.
For instance, on the UTKFace [68] dataset with ResNet-18, we can
achieve 0.701 attribute inference attack accuracy on the contrastive
model while only 0.422 on the supervised model. This is due to
the fact that the representations generated by a contrastive model
contain rich and expressive information about their original data
samples, which can be exploited for effective attribute inference.

To mitigate the attribute inference risks stemming from con-
trastive models, we propose the first privacy-preserving contrastive
learning mechanism, namely Talos, relying on adversarial train-
ing. Concretely, Talos introduces an adversarial classifier into the
original contrastive learning framework to censor the sensitive
attributes learned by a contrastive model. Our evaluation reveals
that Talos can successfully mitigate attribute inference risks for con-
trastive models while maintaining their membership privacy and
model utility. Our code and models will be made publicly available.

In summary, we make the following contributions:

• We take the first step towards quantifying the privacy risks
of contrastive learning.

• Our empirical evaluation shows that contrastive models
trained on image datasets are less vulnerable to member-
ship inference attacks but more prone to attribute inference
attacks compared to supervised models.

• We propose the first privacy-preserving contrastive learning
mechanism, which is able to protect the trained contrastive
models from attribute inference attacks without jeopardizing
their membership privacy and model utility.

2 PRELIMINARY
2.1 Supervised Learning
Supervised learning, represented by classification, is one of the
most common and important ML applications. We first denote a
set of data samples by 𝑋 and a set of labels by 𝑌 . The objective of a
supervised ML model M is to learn a mapping function from each
data sample 𝑥 ∈ 𝑋 to its label/class 𝑦 ∈ 𝑌 . Formally, we have

M : 𝑥 ↦→ 𝑦 (1)

Given a sample 𝑥 , its output from M, denoted by 𝑝 = M(𝑥), is a
vector that represents the probability distribution of the sample
belonging to a certain class. In this paper, we refer to 𝑝 as the
prediction posteriors. To train an ML model, we need to define a
loss function L(𝑦,M(𝑥)) which measures the distance between a
sample’s prediction posteriors and its label. The training process is
then performed by minimizing the expectation of the loss function
over a training dataset Dtrain, i.e., the empirical loss. We formulate
this as follow:

argmin
M

1
|Dtrain |

∑
(𝑥,𝑦) ∈Dtrain

L(𝑦,M(𝑥)) (2)

Cross-entropy loss is one of the most common loss functions used
for classification tasks, it is defined as the following.

LCE (𝑦, 𝑝) = −
𝑘∑
𝑖=1

𝑦𝑖 log 𝑝𝑖 (3)

Here, 𝑘 is the total number of classes, 𝑦𝑖 equals to 1 if the sample
belongs to class 𝑖 (otherwise 0), and 𝑝𝑖 is the 𝑖-th element of the
posteriors 𝑝 . In this paper, we use cross-entropy as the loss function
to train all the supervised models.

2.2 Contrastive Learning
Supervised learning is powerful, but its success heavily depends on
the labeled training dataset. In the real world, high-quality labeled
dataset is hard and expensive to obtain as it often relies on human
annotation. For instance, the ILSVRC2011 dataset [47] contains
more than 12 million labeled images that are all annotated by Ama-
zon Mechanical Turk workers. Meanwhile, unlabeled data is being
generated at every moment. To leverage large-scale unlabeled data,
self-supervised learning is introduced.

The goal of self-supervised learning is to get labels from an
unlabeled dataset for free so that one can train an unsupervised
task on this unlabeled dataset in a supervised manner. Contrastive
learning/loss [9, 18, 20, 24, 29, 61, 67] is one of the most successful
and representative self-supervised learning paradigms in recent
years and has received a lot of attention from both academia and
industry. In general, contrastive learning aims to map a sample
closer to its correlated views and more distant to other samples’
correlated views. In this way, contrastive learning is able to learn
an informative representation for each sample, which can then
be leveraged to perform different downstream tasks. Contrastive
learning relies on Noise Contrastive Estimation (NCE) [18] as its
objective function, which can be formulated as:

L = − log( 𝑒sim(𝑓 (𝑥),𝑓 (𝑥+))

𝑒sim(𝑓 (𝑥),𝑓 (𝑥+)) + 𝑒sim(𝑓 (𝑥),𝑓 (𝑥−)) ) (4)

where 𝑓 is an encoder that maps a sample into its representation,
𝑥+ is similar to 𝑥 (referred to as a positive pair), 𝑥− is dissimilar to
𝑥 (referred to as a negative pair), and sim is a similarity function.
The structure of the encoder and the similarity function can vary
from different tasks. In this paper, we focus on one of the most
popular contrastive learning frameworks [34], namely SimCLR [9].
This framework is assembled with the following components.
Data Augmentation. SimCLR first uses a data augmentation mod-
ule to transform a given data sample 𝑥 to its two augmented views,



denoted by 𝑥𝑖 and 𝑥 𝑗 , which can be considered as a positive pair for
𝑥 . In our work, we follow the same data augmentation process used
by SimCLR [9], i.e., first random cropping and flipping with resizing,
second random color distortions, and third random Gaussian blur.
Base Encoder 𝑓 . Base encoder 𝑓 is used to extract representations
from the augmented data samples. The base encoder can follow
various neural network (NN) architectures. In this paper, we ap-
ply the widely used ResNet [21] (ResNet-18 and ResNet-50) and
MobileNetV2 [50] to obtain the representation ℎ𝑖 = 𝑓 (𝑥𝑖 ) for 𝑥𝑖 .
Projection Head 𝑔. Projection head 𝑔 is a simple neural network
that maps the representations from the base encoder to another
latent space to apply the contrastive loss. The goal of the projection
head is to enhance the encoder’s performance. Following Chen et
al. [9], we implement it with a 2-layer MLP (multilayer perceptron)
to obtain the output 𝑧𝑖 = 𝑔(ℎ𝑖 ) for ℎ𝑖 .
Contrastive Loss Function. The contrastive loss function is de-
fined to guide the model to learn the general representation from
the data itself. Given a set of augmented samples {𝑥𝑘 } including a
positive pair 𝑥𝑖 and 𝑥 𝑗 , the contrastive loss maximizes the similarity
between 𝑥𝑖 and 𝑥 𝑗 and minimizes the similarity between 𝑥𝑖 (𝑥 𝑗 )
and other samples. For each mini-batch of 𝑁 samples, we have 2𝑁
augmented samples. The loss function for a positive pair 𝑥𝑖 and 𝑥 𝑗
can be formulated as:

ℓ (𝑖, 𝑗) = − log
𝑒sim(𝒛𝑖 ,𝒛 𝑗 )/𝜏∑2𝑁

𝑘=1,𝑘≠𝑖 𝑒
sim(𝒛𝑖 ,𝒛𝑘 )/𝜏

(5)

where sim(𝑧𝑖 , 𝑧 𝑗 ) = 𝑧𝑖
⊤𝑧 𝑗/∥𝑧𝑖 ∥∥𝑧 𝑗 ∥ represents the cosine similarity

between 𝑧𝑖 and 𝑧 𝑗 and 𝜏 is a temperature parameter. The final loss
is calculated over all positive pairs in a mini-batch, which can be
defined as the following.

LContrastive =
1
2𝑁

𝑁∑
𝑘=1

[ℓ (2𝑘 − 1, 2𝑘) + ℓ (2𝑘, 2𝑘 − 1)] (6)

Here, 2𝑘 − 1 and 2𝑘 are the indices for each positive pair.
Training classifiers with SimCLR can be partitioned into two

phases. In the first phase, we train a base encoder as well as a projec-
tion head by the contrastive loss using an unlabeled dataset. After
training, we discard the projection head and keep the base encoder
only. In the second phase, to perform classification tasks, we freeze
the parameters of the encoder, add a trainable linear layer at the end
of the encoder, and fine-tune the linear layer with the cross-entropy
loss (see Equation 3) on a labeled dataset. The linear layer serves as
a classifier, with its input being the representations generated by
the encoder. We refer to this linear layer as the classification layer.
In the rest of the paper, we call a model trained with supervised
learning as a supervised model and a model trained with contrastive
learning as a contrastive model. Also, we consider contrastive mod-
els trained on image datasets, as most of the current development
of contrastive learning focus on images.

Compared to supervised learning, contrastive learning can learn
more informative representations for data samples. Previous work
shows that supervised models are vulnerable to various privacy
attacks [5, 7, 36, 49, 52, 56, 66]. However, to the best of our knowl-
edge, privacy risks stemming from contrastive models have been
left largely unexplored. In this work, we aim to fill this gap.

3 MEMBERSHIP INFERENCE ATTACK
We first quantify the privacy risks of contrastive models through
the lens of membership inference. Note that our goal here is not to
propose a novel membership inference attack, instead, we aim to
quantify the membership privacy of contrastive models. Therefore,
we follow existing attacks and their threat models [10, 33, 49, 52, 57].

3.1 Attack Definition and Threat Model
Membership inference attack is one of the most popular privacy at-
tacks against ML models [7, 8, 10, 19, 28, 31, 33, 49, 52, 57]. The goal
of membership inference is to determine whether a data sample
𝑥 is part of the training dataset of a target model T . We formally
define a membership inference attack model AMemInf : 𝑥,T ↦→
{member, non-member}. Here, the target model is the contrastive
model introduced in Section 2. A successful membership inference
attack can cause severe privacy risks. For instance, if a model is
trained on data samples collected from people with certain sensitive
information, then successfully inferring a sample from a person be-
ing a member of the model can directly reveal the person’s sensitive
information.

Following previous work [10, 33, 49, 52, 57], we assume that an
adversary only has black-box access to the target model T , i.e., they
can only query T with their data samples and obtain the outputs. In
addition, the adversary also has a shadow dataset Dshadow, which
comes from the same distribution as the target model’s training
dataset. The shadow dataset Dshadow is used to train a shadow
model S, the goal of which is to obtain the necessary information
to perform the attack. We further assume that the shadow model
shares the same architecture as the target model [52]. This is realis-
tic as the adversary can use the same machine learning service as
the target model owner to train their shadow model. Alternatively,
the adversary can also learn the target model’s architecture first by
applying model extraction attacks [40, 41, 60, 63].

3.2 Methodology
We adapt the previous membership inference attacks, which are
designed for supervised models, to contrastive models [10, 49, 52,
57]. Concretely, we consider three types of membership inference
attacks, i.e., NN-based attacks [49, 52], metric-based attacks [57],
and label-only attacks [10].

NN-based Attacks (Neural Network-based Attacks). In NN-
based attacks, the adversary aims to train an attack model to dif-
ferentiate members and non-members using the posteriors gen-
erated from the target model and their predicted labels. Given a
shadow dataset Dshadow, the adversary first splits it into two dis-
joint sets, namely shadow training dataset Dtrain

shadow and shadow
testing dataset Dtest

shadow. D
train
shadow is used to train the shadow model

S, which mimics the behavior of the target model. This means the
shadow model is trained to perform the same task as the target
model. Then, the adversary uses Dshadow (including both Dtrain

shadow
and Dtest

shadow) to query the shadow model S and obtains the cor-
responding posteriors and prediction labels. For each data sample
in Dshadow, the adversary ranks its posteriors in descending order
and takes the largest two posteriors (classification tasks considered
in this paper have at least two classes) as part of the input to the



attack model. The other part is an indicator representing whether
the prediction is correct or not. Thus, the dimension of the input to
AMemInf is 3. If a sample belongs to Dtrain

shadow, the adversary labels
its corresponding input to the attack model as a member, other-
wise as a non-member. Then, this obtained dataset is used to train
the attack model, which is a binary machine learning classifier.
To determine whether a target data sample 𝑥 is used to train the
target model, the adversary first queries the target model T with
𝑥 and obtains the input to the attack model for this sample. Then,
the adversary queries this input to the attack model and gets its
membership prediction.

Metric-based Attacks. Song and Mittal [57] propose several
metric-based attacks. Similar to NN-based attacks, metric-based
attacks need to train shadow models. However, instead of training
an attack model, metric-based attacks leverage a certain metric
and a predefined threshold on that metric (calculated over the
shadow model) to determine a sample’s membership status. Song
and Mittal [57] propose four metrics, i.e., prediction correctness
(metric-corr), prediction confidence (metric-conf), prediction en-
tropy (metric-ent), and modified prediction entropy (metric-ment).

Label-only Attacks. Label-only attacks [10] consider a more re-
strict scenario where the target model only exposes the predicted
label instead of posteriors. Similar to previous attacks, this attack
requires the adversary to train a shadow model. Label-only attacks
focus more on the input samples instead of the model’s outputs,
relying on the adversarial example techniques. The key intuition is
that the magnitude of perturbation to change the predicted label
of member samples is larger than that of non-member samples.
The adversary can exploit the magnitude of the perturbation to
distinguish members and non-members.

3.3 Experimental Settings

Datasets. We utilize 8 different image datasets to conduct our
experiments for membership inference.

• CIFAR10 [1]. This dataset contains 60,000 images in 10
classes. Each class represents one object and has 6,000 images.
The size of each image is 32 × 32.

• CIFAR100 [1]. This dataset is similar to CIFAR10, except it
has 100 classes, with each class containing 600 images. The
size of each image is also 32 × 32.

• STL10 [11]. This dataset is composed of 10 classes of images.
Each class has 1,300 samples. The size of each image is 96 ×
96. Besides the labeled image, STL10 also contains 100,000
unlabeled images, which we use for pretraining the encoder
for the contrastive model (detailed later). These images are
extracted from a broader distribution compared to those with
labeled classes.

• CelebA [35]. This dataset is composed of more than 200,000
celebrities’ facial images. Note that in CelebA, we randomly
select 60,000 images for our experiments. We set its target
model’s classification task as gender classification.

• UTKFace [68]. This dataset consists of over 23,000 facial
images labeled with gender, age, and race. We set its target
model’s classification task as gender classification as well.

• Places365 [69]. This dataset is composed of more than 1.8
million images with 365 scene categories. We randomly se-
lect 100 scene categories and randomly select 400 images
per category to form the Places100 dataset. Besides, we
randomly select 50 (20) scene categories and randomly se-
lect 800 (2,000) images per category to form the Places50
(Places20) dataset. Each dataset contains 40,000 images in
total. We follow Song and Shmatikov [56] and set its target
model’s classification task as predicting whether the scene
is indoor or outdoor.

All the datasets are used to evaluate membership inference at-
tacks, while UTKFace, Places100, Places50, and Places20 are also
used to evaluate attribute inference attacks since they have ex-
tra labels that can be used as sensitive attributes (see Section 4.3).
For all the datasets, we rescale their images to the size of 96 ×
96. Note that we concentrate on image datasets as it is the most
prominent domain for applying contrastive learning at the mo-
ment [9, 18, 20, 29, 61, 67]. We leave our investigation in other data
domains as future work.
Datasets Configuration. For each dataset, we first split it into
four equal parts, i.e.,Dtrain

target,Dtest
target,Dtrain

shadow, andD
test
shadow.D

train
target

is used to train the target model T , the samples of which are thus
considered as members of the target model. We treat Dtest

target as
non-members of the target model T . Dtrain

shadow is used to train the
shadow model S, and Dtrain

shadow and Dtest
shadow are used to create the

attack model AMemInf.
Metric. Since the attack model’s training and testing datasets are
both balanced with respect to membership distribution, we adopt
accuracy as our evaluation metric following previous work [49, 52].
AttackModel. For NN-based attacks, the attack model is a 3-layer
MLP, and the number of neurons for each hidden layer is set to
32. We use cross-entropy as the loss function and Adam as the
optimizer with a learning rate of 0.05. The attack model is trained
for 100 epochs. For metric-based attacks, we follow the implemen-
tation of Song et al. [57]. For label-only attacks, we leverage the
implementation of ART [2].
TargetModel (ContrastiveModel). We adopt three popular neu-
ral network architectures as the contrastive model’s base encoder
𝑓 in our experiments, including MobileNetV2 [50], ResNet-18 [21],
and ResNet-50 [21]. Specifically, we discard the last classification
layer of MobileNetV2, ResNet-18, and ResNet-50 and use the re-
maining parts as 𝑓 . Then, a 2-layer MLP is added after 𝑓 as the
projection head 𝑔. For ResNet-18, the dimensions for the output
of 𝑓 , the first-layer of 𝑔, and the second-layer of 𝑔 are set to 512,
512, and 256, respectively. For ResNet-50, the corresponding dimen-
sions are 2,048, 256, and 256. For MobileNetV2, the corresponding
dimensions are 1,280, 256, and 256.

After training the base encoder with the contrastive loss, we
ignore the projection head 𝑔 and add a new linear layer to the
base encoder 𝑓 as its classification layer. For all datasets, we first
use the unlabeled dataset of STL10 to pretrain the base encoder
𝑓 for 100 epochs. Then, we fine-tune the base encoder 𝑓 with the
corresponding training dataset (without label) for 100 epochs. In
the end, we freeze the parameters of 𝑓 and use the corresponding
training dataset to only fine-tune the classification layer for 100



CIFAR10

CIFAR100
STL10

CelebA

UTKFace

Places100

Places50

Places20
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

MobileNetV2

ResNet-18

ResNet-50

(a) Supervised Model

CIFAR10

CIFAR100
STL10

CelebA

UTKFace

Places100

Places50

Places20
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Contrastive Model

Figure 1: The performance of original classification tasks for both supervised models and contrastive models with Mo-
bileNetV2, ResNet-18, and ResNet-50 on 8 different datasets. The x-axis represents different datasets. The y-axis represents
original classification tasks’ accuracy.
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Figure 2: The performance of different membership inference attacks against both supervised models and contrastive models
with MobileNetV2 on 8 different datasets. The x-axis represents different datasets. The y-axis represents membership infer-
ence attacks’ accuracy.

epochs to establish the contrastive model. In all cases, Adam is
utilized as the optimizer.

Baseline (Supervised Model). To fully understand the privacy
leakage of contrastive models, we further use supervised models
as the baseline. We train three models including MobileNetV2,
ResNet-18, and ResNet-50 from scratch for all the datasets. The
models are trained for 100 epochs. Cross-entropy is adopted as the
loss function, and we again use Adam as the optimizer. Our code is
currently implemented in Python 3.6 and PyTorch 1.6.0, and run
on an NVIDIA DGX-A100 server with Ubuntu 18.04.

3.4 Results
Wefirst show the performance of supervisedmodels and contrastive
models on their original classification tasks in Figure 1. We observe
that contrastive models perform better than supervised models on
most of the datasets. For instance, on STL10 with ResNet-18 as the
base encoder, the contrastive model achieves 0.726 accuracy while
the supervised model achieves 0.538 accuracy.
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(a) Supervised Model
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Figure 3: The distribution of loss with respect to original
classification tasks for member and non-member samples
for both the supervised model and the contrastive model
withResNet-18 onCIFAR10. The x-axis represents each sam-
ple’s classification loss. The y-axis represents the number of
member and non-member samples.

Regarding membership inference against supervised models and
contrastive models, the results for MobileNetV2 are shown in Fig-
ure 2. We also summarize the results for ResNet-18 (Figure 15) and



Figure 4: Randomly selected images from STL10 and their
augmented views used during the process of contrastive
learning. The first and fourth columns show the original im-
ages (bounded by orange boxes), and the rest columns show
their augmented views.

ResNet-50 (Figure 16) in Appendix. In Figure 2, we see that all the
supervised models have higher attack accuracy than the contrastive
models. E.g., when the supervised model is MobileNetV2 trained
on CIFAR100, the accuracy of NN-based attack is 0.931, while the
accuracy for the corresponding contrastive model is only 0.625.

We observe that NN-based, metric-conf, and metric-ment attacks
achieve the best performance in all cases. The reason metric-conf
andmetric-ment achieving better performance thanmetric-corr and
metric-ent is that metric-conf and metric-ment consider both pre-
diction correctness and confidence while metric-corr (metric-ent)
only considers prediction correctness (confidence). Interestingly, for
supervised models, metric-corr and metric-ent perform similarly,
while for contrastive models, metric-ent is worse than metric-corr.
This reason is that the posteriors generated by contrastive models
are more smooth compared to supervised model, which makes it
harder to distinguish members and non-members through the pos-
terior entropy. Label-only attacks perform worse than NN-based
attacks. This is expected since the adversary has less information
in these cases. Note that label-only attacks do not perform well on
binary classifiers, we will investigate the reason in the future.2

To further investigate why contrastive models are less vulnerable
to membership inference, we analyze the loss distribution between
members and non-members in both supervised models and con-
trastive models. Due to space limitations, we only show the results
of ResNet-18 trained on the CIFAR10 dataset in Figure 3. A clear
trend is that compared to the contrastive model, the supervised
model has a larger divergence between the classification loss (cross-
entropy) for members and non-members. Recall that contrastive
learning uses two augmented views of each sample in each epoch
to train its base encoder and the original sample to train its clas-
sification layer. This indicates that each sample is generalized to
multiple views during the contrastive model training process. In
this way, the contrastive model reduces its memorization of the
original sample itself.

Interestingly, Song et al. [58] observe that defense mechanisms
for mitigating adversarial examples [4, 6, 44, 59] increase the mem-
bership inference performance. This means such defense and con-
trastive learning have different effects on membership privacy. On
2Choquette-Choo et al. [10] also only perform label-only membership inference attacks
against datasets with more than two classes.

the one hand, these defense mechanisms for adversarial examples
use original samples and their visually imperceptible adversarial
examples to train a model; in this way, the model learns to remem-
ber each original sample more accurately. On the other hand, the
augmented samples in contrastive learning are very different from
their original samples (see Figure 4 for some examples). Therefore,
membership inference is less effective against contrastive models.

We notice that the attack performance varies on different models
and different datasets. We relate this to the different overfitting
levels. Similar to previous work [49, 52], we measure the overfitting
level of a target model by calculating the difference between its
training accuracy and testing accuracy. In Figure 5, we see that the
overfitting level is highly correlated with the attack performance:
if a model is more overfitted, it is more vulnerable to membership
inference attacks. For instance, in Figure 5a, on CIFAR100, the
contrastive model (upper right orange cross) has an overfitting
level of 0.249, and the NN-based attack accuracy is 0.625, while the
supervised model (upper right blue dot) has a larger overfitting level
(0.678) and higher attack accuracy (0.931). Another observation is
that compared to the supervised models, the overfitting levels of
the contrastive models reside in a smaller range.

NN-based method as well as some of the metric-based ones
(metric-ent and metric-ment) require the target model to provide
posteriors to launch the attacks. We further investigate whether
the number of posteriors provided by the target model can influ-
ence the attack performance. Concretely, we vary the number of
posteriors from 2 to 100 on CIFAR100 for both supervised and con-
trastive models. Figure 6 shows that the number of posteriors does
not have a strong influence on the attack performance. We further
measure the influence of the number of epochs used for training
each contrastive model’s classification layer on the attack perfor-
mance. Figure 7 shows that the attack accuracy is rather stable (the
performance of metric-based attacks are summarized in Figure 17 in
Appendix). These results show that contrastive models consistently
reduce the membership threat.

In conclusion, contrastive models are less vulnerable to member-
ship inference attacks compared to supervised models. The reason
is that contrastive models are less overfitted to their training sam-
ples than supervised models due to the design of the contrastive
learning paradigm.

4 ATTRIBUTE INFERENCE ATTACK
In this section, we take a different angle to measure the privacy
risks of contrastive learning using attribute inference attack [36, 56].
Similar to membership inference attacks, we use existing attribute
inference attacks [36, 56] tomeasure the contrastivemodel’s privacy
risks instead of inventing new methods.

4.1 Attack Definition and Threat Model
In attribute inference, the adversary’s goal is to infer a specific
sensitive attribute of a data sample from its representation gen-
erated by a target model. This sensitive attribute is not related to
the target ML model’s original classification task. For instance, a
target model is designed to classify an individual’s age from their
social network posts, while attribute inference aims to infer their
educational background.
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Figure 5: The performance of membership inference attacks against both supervised models and contrastive models with Mo-
bileNetV2, ResNet-18, and ResNet-50 on 5 different datasets under different overfitting levels. The x-axis represents different
overfitting levels. The y-axis represents membership inference attacks’ accuracy.
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Figure 6: The performance of NN-based, metric-ent, and metric-ment attacks against both supervised models and contrastive
models with MobileNetV2, ResNet-18, and ResNet-50 on CIFAR100 under different numbers of posteriors given by the target
models. (S) and (C) denotes the supervised and contrastive models, respectively. The x-axis represents different numbers of
posteriors. The y-axis represents membership inference attacks’ accuracy. Note that we do not report the performance of
metric-corr, metric-conf, and label-only attacks since the number of posteriors does not affect their performance.
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Figure 7: The performance of NN-based and label-onlymem-
bership inference attacks against contrastive models with
ResNet-50 on 8 different datasets under different numbers
of epochs for classification layer training. The x-axis rep-
resents different numbers of epochs. The y-axis represents
membership inference attacks’ accuracy. Each line corre-
sponds to a specific dataset.

Attribute inference attacks have been successfully performed on
supervised models [36, 56]. The reason behind this is the intrinsic
overlearning property of ML models. Overlearning means that an
MLmodel trained for a certain taskmay also learn to represent other

characteristics of data samples. Such representation capability, in
some cases, can be exploited by an adversary to infer data samples’
sensitive attributes.

Once a contrastive model is trained, it can generate a represen-
tation for each sample with its base encoder 𝑓 . For a supervised
model, we consider the whole model without the classification layer
as its base encoder to generate a representation for each sample.
Note that the base encoder of contrastive model and supervised
model has the same architecture.

For attribute inference, given a data sample’s representation from
a target model, denoted by ℎ, to conduct the attribute inference
attack, the adversary trains an attack model AAttInf : ℎ ↦→ 𝑠 , where
𝑠 represents the sensitive attribute.

We follow the same threat model as previous work [36, 56]: the
adversary only has access to the target sample’s embedding (repre-
sentation), but not the target sample itself. The adversary is also
assumed to have a set of samples’ embeddings and their sensitive
attributes; this dataset is termed as an auxiliary dataset Daux. As
shown by previous work, attribute inference can be applied in both
federated learning [36] and model partitioning [56] settings.
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Figure 8: The performance of attribute inference attacks against both supervised models and contrastive models with Mo-
bileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models. The y-axis represents
attribute inference attacks’ accuracy.

4.2 Methodology
Wegeneralize themethodology of attribute inference attacks against
supervised models [36, 56] to contrastive models. The attack pro-
cess can be partitioned into two stages, i.e., attack model training
and attribute inference.
Attack Model Training. For each (ℎ, 𝑠) ∈ Daux, the adversary
takes the representation ℎ as the input and the corresponding sen-
sitive attribute 𝑠 as the label to train the attack model.
Attribute Inference. To determine the sensitive attribute of a
data sample’s representation ℎ, the adversary queries the attack
model AAttInf with ℎ and obtains the result.

4.3 Experimental Setting
Datasets. We utilize UTKFace, Places100, Places50, and Places20
to evaluate attribute inference attacks as they contain extra at-
tributes that can be considered as sensitive attributes for our exper-
iments (see Section 3.3). In UTKFace, the target model’s classifica-
tion task is gender classification, and the sensitive attribute is race
(Black, White, Asian, Indian, and Other). In Places100, Places50, and
Places20, the target classification task is whether the scene is in-
door or outdoor, and the sensitive attribmaxcute is scene categories.
Similar to Song and Shmatikov [56], we take Dtrain

target to generate
the auxiliary dataset and train the attack model, and take Dtest

target
to test the attack performance.
Metric. We adopt accuracy as the metric to evaluate attribute
inference attacks following previous work [36, 56].
Models. All the target models’ architectures are the same as those
for membership inference attacks. For the attack model, we leverage
a 3-layer MLP with the number of neurons in the hidden layer set
to 128. We use cross-entropy as the loss function and SGD as the
optimizer with a learning rate of 0.01. The attack model is trained
for 100 epochs. The dimension of each sample’s representation
from the base encoder, i.e., the attack model’s input, is 1,280 for
MobileNetV2, 512 for ResNet-18, and 2,048 for ResNet-50.

4.4 Results
The performance of attribute inference attacks is depicted in Fig-
ure 8. First, we observe that, in general, attribute inference achieves
effective performance except for the supervised model trained on
UTKFace dataset (close to the prior sensitive attribute distribu-
tion in the attack training dataset as shown in Table 1). Second,

Table 1: The baseline accuracy (random guessing based on
majority class labels) of attribute inference attack on differ-
ent datasets.

Dataset #. Class Baseline Accuracy

UTKFace 5 0.421
Places100 100 0.012
Places50 50 0.023
Places20 20 0.053

compared to the supervised models, the contrastive models are
more vulnerable to attribute inference attacks. For instance, on
the UTKFace dataset with ResNet-18, we can achieve an attack
accuracy of 0.701 on the contrastive model while only 0.422 on the
supervised model. To better understand this, we extract samples’
representations (512-dimension) from ResNet-18 on UTKFace for
both the supervised model and the contrastive model and project
them into a 2-dimension space using t-Distributed Neighbor Em-
bedding (t-SNE) [62]: Figure 9a shows the results for the supervised
model on the original classification task, i.e., gender classification;
Figure 9b shows the results for the supervised model on attribute
inference, i.e., race. We see that in Figure 9a, male samples (blue)
and female samples (orange) reside in completely different regions,
which can be separated perfectly (the gender classification accuracy
is 0.875 in Figure 1). However, for the sensitive attribute (Figure 9b),
samples of different classes are clustered tightly, which increases
the difficulty for attribute inference. Figure 9c and Figure 9d show
the corresponding results for the contrastive model. We observe
that different samples’ representations on the contrastive model
are less separable with respect to the original classification task
compared to the supervised model (see Figure 9c and Figure 9a),
but we can still successfully separate most of them correctly (the
gender classification accuracy is 0.858 in Figure 1) since most of the
male samples (blue) lie in the upper area while the female samples
(orange) are in the lower area. On the other hand, for the sensitive
attribute, compared to the supervised model (Figure 9b), represen-
tations generated by the contrastive model (Figure 9d) are more
distinguishable. Our finding reveals that the representations gener-
ated by the contrastive model are more informative, which can be
exploited not only for the original classification tasks but also for
attribute inference.
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contrastive models, respectively. Each point represents a sample.
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Figure 10: The performance of attribute inference attacks against contrastive models on 4 different datasets under different
percentages of the attack training dataset. The x-axis represents different percentages of the attack training dataset. The y-axis
represents attribute inference attacks’ accuracy.
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Figure 11: The performance of attribute inference attacks against contrastive models on 4 different datasets under attack
models with different layers. The x-axis represents attack models’ layers. The y-axis represents attribute inference attacks’
accuracy.

To study the effect of training dataset size on the attack model
AAttInf, we randomly select from 10% to 90% of the training dataset
to train the attack model and evaluate the performance using all the
testing dataset; the results for contrastive models are summarized
in Figure 10. By jointly considering Figure 8 and Figure 10, we can
observe that, in most of the cases, even using 10% of the training
dataset, the contrastive models are still more vulnerable to attribute
inference attack than the supervised models when the attack model
is trained with its full training dataset. On the other hand, the attack
performance on supervised models is not significantly influenced
by the training dataset size (see Figure 18). This further shows the
privacy risks of contrastive learning.

Recall our attack model is a 3-layer MLP. We further investigate
whether more complex attack models would improve the attack
performance. To this end, we increase the attack model’s layer from
3 to 6 and summarize the corresponding attack performance for
contrastive and supervised models in Figure 11 and Figure 19 (in

Appendix), respectively. The results show that 3-layer attackmodels
can achieve the best performance in most of the cases. With more
layers, the attack performance may degrade or keep stable, which
indicates that even simple models are enough to launch effective
attacks. This further shows that informative representations learned
by contrastive models can be easily exploited by the adversary to
infer samples’ attributes.

We also observe that attribute inference attacks over contrastive
models are more effective against smaller embedding size (see Fig-
ure 8 and Figure 10). For instance, ResNet-18 (512) leak more in-
formation than MobileNetV2 (1,280) and ResNet-50 (2,048). We
conjecture that a larger embedding size represents each sample in
a more complex space in the contrastive setting, which is harder
for the attack model to decode. However, the effect of embedding
size on attribute inference attacks against the supervised models
is less pronounced (see Figure 8 and Figure 18 in the Appendix).



This further shows the difference between supervised models and
contrastive models with respect to representing samples.

In conclusion, contrastive models are more vulnerable to at-
tribute inference attacks compared to supervised models.

5 DEFENSE
So far, we have demonstrated that compared to supervised mod-
els, contrastive models are more vulnerable to attribute inference
attacks (Section 4) but less vulnerable to membership inference
attacks (Section 3). In this section, we propose the first privacy-
preserving contrastive learning mechanism, namely Talos, which
aims to reduce the risks of attribute inference for contrastive models
while maintaining their membership privacy and model utility.

5.1 Methodology
Intuition. As shown in Section 4, the reason for a contrastive
model to be vulnerable to attribute inference attacks is that the
model’s base encoder 𝑓 learns informative representations for data
samples, which can be exploited by an adversary. To mitigate such a
threat, we aim for a new training paradigm for contrastive learning
which can eliminate data samples’ sensitive attributes from their
representations. Meanwhile, the base encoder of the contrastive
model still needs to represent data samples expressively for pre-
serving model utility. These two objectives are in conflict, and our
defense mechanism should consider both simultaneously.
Methodology. Our defense mechanism, namely Talos, can be
modeled as a mini-max game, and we rely on adversarial train-
ing [12–14, 17, 65] to realize it. Similar to the original contrastive
model, Talos also leverages a base encoder and a projection head
to learn informative representations for data samples. Besides, Ta-
los introduces an adversarial classifier 𝐶 , which is used to censor
sensitive attributes from data samples’ representations.

The adversarial classifier of Talos is essentially designed for at-
tribute inference. Similar to the original contrastive learning process
(see Section 2), Talos is trained with mini-batches. Given a mini-
batch of 2𝑁 augmented data samples (generated from 𝑁 original
samples), we define the loss of the adversarial classifier𝐶 as follows.

L𝐶 =
1
2𝑁

𝑁∑
𝑘=1

[LCE (𝑠𝑘 ,𝐶 (𝑓 (𝑥2𝑘−1))) + LCE (𝑠𝑘 ,𝐶 (𝑓 (𝑥2𝑘 )))] (7)

where 𝑥2𝑘−1 and 𝑥2𝑘 are the two augmented samples of an original
sample 𝑥𝑘 , 𝑠𝑘 represents 𝑥𝑘 ’s sensitive attribute, 𝑓 is the base en-
coder, and LCE is the cross-entropy loss (Equation 3). We consider
𝑥2𝑘−1 and 𝑥2𝑘 sharing the same sensitive attribute as 𝑥𝑘 . Note that
we take the output of the base encoder instead of the projection
head as the input to the adversarial classifier. Since the projection
head is discarded after the first phase of training the contrastive
model, directly optimizing the base encoder with the adversarial
classifier loss would maintain the effect of adversarial training.

Talos also adopts the original contrastive loss LContrastive (Equa-
tion 6). By jointly considering the adversarial classifier loss and the
contrastive loss, Talos’s loss function is defined as follows:

LTalos = LContrastive − 𝜆L𝐶 (8)

where 𝜆 is the adversarial factor to balance the two losses. We refer
to a model trained with Talos as a Talos model.

Algorithm 1: The training process of Talos.

1 Input: Target training dataset Dtrain
target with sensitive

attribute 𝑠 , base encoder 𝑓 , projection head 𝑔, adversarial
classifier 𝐶 , and adversarial factor 𝜆.

2 Initialize 𝑓 , 𝑔, and 𝐶’s parameters.
3 for each epoch do
4 for each mini-batch do
5 Sample a mini-batch with 𝑁 training data samples

and its corresponding sensitive attributes
{(𝑥1, 𝑠1), (𝑥2, 𝑠2), ..., (𝑥𝑁 , 𝑠𝑁 )} from Dtrain

target
6 Generate augmented data samples:

{(𝑥1, 𝑠1), (𝑥2, 𝑠1), ..., (𝑥2𝑁 , 𝑠𝑁 )}, where 𝑥2𝑘−1 and
𝑥2𝑘 are the two augmented views of 𝑥𝑘

7 Feed augmented data samples into the base encoder
𝑓 and the projection head 𝑔 to calculate the
contrastive loss:
LContrastive =

1
2𝑁

∑𝑁
𝑘=1 [ℓ (2𝑘−1, 2𝑘) +ℓ (2𝑘, 2𝑘−1)]

8 Feed the representations generated by the base
encoder 𝑓 into the adversarial classifier 𝐶 to
calculate the adversarial classifier loss:
L𝐶 = 1

2𝑁
∑𝑁
𝑘=1 [LCE (𝑠𝑘 ,𝐶 (𝑓 (𝑥2𝑘−1))) +

LCE (𝑠𝑘 ,𝐶 (𝑓 (𝑥2𝑘 )))]
9 if epoch mod 2 ≠ 0 then
10 Optimize adversarial classifier 𝐶’s parameters

with the adversarial classifier loss: L𝐶

11 else
12 Optimize projection head 𝑔’s parameters with

the contrastive loss: LContrastive
13 Optimize base encoder 𝑓 ’s parameters with

adversarial training loss:
LTalos = LContrastive − 𝜆L𝐶

14 end
15 end
16 end
17 Return: Base encoder 𝑓

Algorithm 1 presents the training process of Talos. In each mini-
batch, given 𝑁 training samples, we first generate 2𝑁 augmented
views (Line 6) and feed them into the base encoder. The generated
representations are then fed into the projection head (Line 7) and
the adversarial classifier (Line 8) simultaneously. Note that the
adversarial classifier and contrastive model are updated alternately
by epoch. We First optimize the adversarial classifier with the cross-
entropy loss (Line 10). Then we optimize the projection head with
the contrastive loss (Line 12) and the base encoder with the loss
function of Talos, i.e., Equation 8 (Line 13).

To implement this in practice, we utilize the gradient reversal
layer (GRL) proposed by Ganin et al. [15]. GRL is a layer that can be
added between the base encoder 𝑓 and the adversarial classifier 𝐶 .
In the forward propagation, GRL acts as an identity transform that
simply copies the input as the output. During the backpropagation,
GRL takes the gradients passed through it from the adversarial
classifier 𝐶 , multiplies the gradients by −𝜆, and passes them to the
base encoder 𝑓 . Such operation lets the base encoder receive the



opposite direction of gradients from the adversarial classifier. In this
way, the base encoder 𝑓 is able to learn informative representations
for samples while censoring their sensitive attributes.

Note that our adversarial training is performed only on the pro-
cess of training the base encoder 𝑓 . The training for the classifica-
tion layer of the contrastive model remains unchanged. As we show
in Section 3, the classification layer generalizes well on the con-
trastive models, i.e., less overfitting. Therefore, models trained by
Talos should be robust against membership inference attacks as well.
Our evaluation shows that this is indeed the case (see Figure 13).

Adaptive Attacks. An adversary needs to establish a shadow
model tomountmembership inference attacks. To evaluatemember-
ship privacy risks of Talos, we consider an adaptive (and stronger)
adversary [28]. Concretely, we assume that the adversary knows
the training details of Talos and trains their shadow model in the
same way. For attribute inference, the attack model is trained on
embeddings generated by Talos, thus, our attribute inference attack
considered in the evaluation of Talos is also adaptive.

5.2 Experimental Setting
We follow the same experimental setting, including datasets, met-
rics, target models, and attack models (both attribute inference
and membership inference), as those in Section 3.3 and Section 4.3.
As mentioned before, both membership inference and attribute
inference attacks are performed in an adaptive way. Regarding the
adversarial classifier of Talos, we leverage a 3-layer MLP with 64
neurons in the hidden layer, which is smaller than the attribute
inference attack model.

Baseline. We consider three state-of-the-art defenses, one for
membership inference (MemGuard [28]) and two for attribute in-
ference (Olympus [46] and AttriGuard [27]) as the baseline models.
MemGuard, Olympus, and AttriGuard are originally designed for su-
pervised models, here, we adapt them to contrastive models. Since
the input to the attribute inference attack is each sample’s represen-
tation, we further consider a sample’s representation as the input
to Olympus and AttriGuard.

MemGuard is a two-phase defense for membership inference.
In phase I, the defender generates a noise vector to perturb the
posteriors of a target sample, so that the adversary’s membership
classifier is likely to give a random guess for the perturbed posteri-
ors. In phase II, the defender adds the noise vector to the posteriors
with certain probability.

Olympus, designed for attribute inference, has three basic com-
ponents: an autoencoder to transfer the original representation into
the perturbed one, a classifier to perform the original task over the
perturbed representation, and an adversarial classifier to infer the
sensitive attribute from the perturbed representation. Olympus op-
timizes the three components using adversarial training to preserve
the model utility while protecting samples’ sensitive attributes. To
perform Olympus on contrastive models, we first train a base en-
coder following the original contrastive learning process. Then, we
add an autoencoder between the base encoder and the classification
layer, and fine-tune the whole model using the original training
samples with Olympus’s losses.

AttriGuard is a two-phase defense for attribute inference. In
phase I, for each representation, the defender generates an adver-
sarial example for each possible value of the sensitive attribute by
adapting the existing evasion attack techniques. In phase II, the
defender samples one sensitive attribute value based on a probabil-
ity distribution and selects the corresponding adversarial example
found in phase I as the new representation.

The adversarial classifier used in AttriGuard and Olympus shares
the same architecutre as the one in Talos. ForMemGuard, we follow
Jia et al. [28] to generate the noise in Phase I. For the autoencoder
of Olympus, we set its encoder (decoder) as a 2-layer MLP with 256
and 128 (128 and 256) neurons in the hidden layers. For AttriGuard,
we leverage the C&W attack [6] with the 𝐿𝑖𝑛𝑓 norm in phase I.

5.3 Results
We compare the performance of the original classification tasks, NN-
based membership inference attacks, and attribute inference attacks
for the original contrastive model and the models defended by Talos,
MemGuard, Olympus, and AttriGuard. The results are depicted in
Figure 12, Figure 13, and Figure 14, respectively. Note that we also
perform metric-based and label-only membership inference attacks
and the results are summarized in Figure 20, Figure 21, Figure 22,
Figure 23, and Figure 24 in Appendix.

In Figure 14, we find that Talos indeed reduces the attribute
inference accuracy compared to the original contrastive learning.
For instance, the attribute inference accuracy is 0.701 on the original
contrastive model with ResNet-18 on the UTKFace dataset, while
only 0.602 on the Talos model. Meanwhile, the testing accuracy of
the original classification task for the Talos model is also preserved
(Figure 12).

For different defense mechanisms, we find that Olympus reduces
attribute inference attacks the most (see Figure 14). However, it
jeopardizes the membership privacy to a large extent (see Figure 13).
For instance, the membership inference accuracy of the Talosmodel
(ResNet-50) on Place100 is 0.513 while the corresponding Olympus
model’s value is 0.631. The reason is that Olympus’s training pro-
cess utilizes the original training samples to fine-tune the whole
model, which leads to the model memorizing these samples with
the model’s full capacity. On the other hand, as mentioned in Sec-
tion 5.1, Talos is only performed on the training process of the base
encoder 𝑓 which considers each sample’s augmented views. The
original samples are only used to fine-tune the final classification
layer, the same as training a normal contrastive model. In other
words, the Talos model memorizes its training samples with only
its one-layer capacity. Therefore, Talos models are less prone to
membership inference. In addition, Olympus jeopardizes the target
model’s utility in multiple cases (see Figure 12b, Figure 12c, and
Figure 12d), the reason again lies in the training process of Olympus.
More specifically, Olympus needs to fine-tune the whole model in a
supervised way, this reduces the effect of contrastive learning in the
final model. Meanwhile, Talos preserves the contrastive learning
process to a large extent as its adversarial loss is applied together
with the contrastive loss during the training of the base encoder.
Since membership privacy, attribute privacy, and model utility are
equally important, we believe Talos is a better choice than Olympus.
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Figure 12: The performance of original classification tasks against original contrastive models, Talos, MemGuard, Olympus,
and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of original classification tasks.
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Figure 13: The performance of NN-basedmembership inference attacks against original contrastivemodels, Talos,MemGuard,
Olympus, andAttriGuardwithMobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different
models. The y-axis represents the accuracy of NN-based membership inference attacks.
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Figure 14: The performance of attribute inference attacks against original contrastive models, Talos, MemGuard, Olympus,
and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of attribute inference attacks.

We also find that Talos, MemGuard, and AttriGuard models can
achieve similar utility as the original contrastive models (see Fig-
ure 12). However, Talos can mitigate attribute inference attacks to
a larger extent than AttriGuard and MemGuard (see Figure 14). For
instance, the attribute inference accuracy is only 0.132 on the Talos
model with ResNet-18 on the Places100 dataset, while 0.176 and
0.178 on the AttriGuard and MemGuard models. Also, as the con-
trastive learning procedure is preserved for Talos, AttriGuard, and
MemGuard, we observe that all these defenses are robust against
membership inference attacks (see Figure 13).

We also investigate the effect of the adversarial factor 𝜆 on the
performance of original classification tasks, membership inference
attacks, and attribute inference attacks. The results are summarized
in Figure 25, Figure 26, and Figure 27. First of all, we observe that

the performance of original classification tasks (Figure 25) and
membership inference attacks ( Figure 26) are relatively stable
with respect to different adversarial factors. However, for different
datasets or different model architectures, the best 𝜆 to defense
attributes inference attack may vary (Figure 27). In general, we
notice that setting 𝜆 to 2 or 3 can achieve nearly the best defense
performance on most datasets and model architectures. To perform
Talos in practice, we believe the model owner needs to tune the 𝜆
on their validation dataset. During the process, concentrating more
on model utility or defense effectiveness depends on the ML model
owner’s purpose.

In conclusion, Talos can successfully defend attribute inference
attacks for contrastive models without jeopardizing their member-
ship privacy and model utility.



6 RELATEDWORK

Contrastive Learning. Contrastive learning is one of the most
popular self-supervised learning paradigms [9, 18, 20, 29, 61, 67].
Oord et al. [61] propose contrastive predictive coding, which lever-
ages autoregressive models to predict future observations for data
samples. Wu et al. [64] utilize a memory bank to save instance rep-
resentation and k-nearest neighbors to conduct prediction. He et
al. [20] introduce MoCo, which relies on momentum to update the
key encoder with the query encoder to maintain consistency. Chen
et al. [9] propose SimCLR, which leverages data augmentation and
the projection head to enhance the performance of contrastive mod-
els. SimCLR is the most prominent contrastive learning paradigm
at the moment [34], thus we concentrate on it in this paper.

Membership Inference Attack. In membership inference, the
adversary’s goal is to infer whether a given data sample is used
to train a target model. Right now, membership inference is one
of the major means to measure privacy risks of machine learning
models [19, 23, 31, 38, 49, 52, 58, 66]. Shokri et al. [52] propose the
first membership inference attack in the black-box setting. Specifi-
cally, they rely on training multiple shadow models to mimic the
behavior of a target model to derive the data for training their at-
tack models. Salem et al. [49] further relax the assumptions made
by Shokri et al. [52] and propose three novel attacks. Later, Nasr et
al. [38] conduct a comprehensive analysis of membership privacy
under both black-box and white-box settings for centralized as well
as federated learning scenarios. Song et al. [58] study the synergy
between adversarial example and membership inference and show
that membership privacy risks increase when a model owner ap-
plies measures to defend against adversarial example attacks. To
mitigate membership inference, many defense mechanisms have
been proposed [28, 37, 49]. Nasr et al. [37] introduce an adversarial
regularization term into a target model’s loss function. Salem et
al. [49] propose to use dropout and model stacking to reduce model
overfitting, the main reason behind the success of membership
inference. Jia et al. [28] rely on adversarial examples to craft noise
to add to a target sample’s posteriors. Also, deferentially private
methods [39, 45] are introduced to mitigate membership inference.

Attribute Inference Attack. Another major type of privacy at-
tack against ML models is attribute inference. Here, an adversary
aims to infer a specific sensitive attribute of a data sample from
its representation generated by a target model [36, 56]. Melis et
al. [36] propose the first attribute inference attack against machine
learning, in particular federated learning. Song and Shmatikov [56]
later show that attribute inference attacks are also effective against
another training paradigm, namely model partitioning. They fur-
ther demonstrate that the success of attribute inference is due to
the overlearning behavior of ML models. More recently, Song and
Raghunathan [53] demonstrate that language models are also vul-
nerable to attribute inference.

Other Attacks Against Machine Learning Models. Besides
membership inference and attribute inference, there exist a plethora
of other attacks against MLmodels [3, 5, 22, 26, 32, 42, 43, 48, 51, 54].
One major attack is adversarial example [4, 6, 44, 59], where an
adversary aims to add imperceptible noises to data samples to evade
a target ML model. Another representative attack in this domain

is model extraction, the goal of which is to learn a target model’s
parameters [25, 30, 41, 60] or hyperparameters [40, 63].

7 DISCUSSION
Other Types of Datasets. In this paper, we only focus on image
datasets, as most of the current efforts on contrastive learning con-
centrate on the image domain. For other types of datasets like texts
or graphs, the main challenge is to define a suitable augmentation
method for the input sample. There indeed exist some preliminary
works of contrastive learning over texts or graphs [16, 67]. How-
ever, the effectiveness of these methods still needs to be further
evaluated. We believe it is straightforward to extend our analysis
to contrastive models trained on other types of data.
Novel Membership Inference Attacks Against Contrastive
Models. Traditional membership inference attacks use the original
data samples to query the model and get the corresponding poste-
riors to launch the attacks. However, such attacks is less effective
on contrastive models as shown in our paper. Since the contrastive
model is trained with some augmented views of each data sample,
the model itself may remember these augmented views as well.
This inspires us to use the augmented views of the original training
sample to query the contrastive model to obtain multiple posteriors
(one for each augmented version), and aggregate these posteriors as
the input to the membership inference attack model. However, our
initial attempt in this direction does not achieve a stronger attack.
One reason might be our aggregation method is not optimal (we
have tried averaging and concatenation). In the future, we plan to
investigate more advanced aggregation operations to establish a
membership inference attack tailored to contrastive models.

8 CONCLUSION
In this paper, we perform the first privacy quantification of the most
representative self-supervised learning paradigm, i.e., contrastive
learning. Concretely, we investigate the privacy risks of contrastive
models trained on image datasets through the lens of membership
inference and attribute inference. Empirical evaluation shows that
contrastive models are less vulnerable to membership inference
attacks compared to supervised models. This is due to the fact that
contrastive models are normally less overfitted. Meanwhile, con-
trastive models are more prone to attribute inference attacks. We
posit this is because contrastive models can generate more infor-
mative representations for data samples, which can be exploited by
an adversary to achieve effective attribute inference.

To reduce the risks of attribute inference stemming from con-
trastive models, we propose the first privacy-preserving contrastive
learning mechanism, namely Talos. Specifically, Talos introduces
an adversarial classifier to censor the sensitive attributes learned
by the contrastive models under the adversarial training frame-
work. Our evaluation shows that Talos can effectively mitigate the
attribute inference risks for contrastive models while maintaining
their membership privacy and model utility.
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Figure 15: The performance of different membership infer-
ence attacks against both supervisedmodels and contrastive
models with ResNet-18 on 8 different datasets. The x-axis
represents different datasets. The y-axis representsmember-
ship inference attacks’ accuracy.
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Figure 16: The performance of differentmembership inference attacks against both supervisedmodels and contrastivemodels
with ResNet-50 on 8 different datasets. The x-axis represents different datasets. The y-axis represents membership inference
attacks’ accuracy.

25 50 75
Training Epochs

0.6

0.8

1.0

A
cc

ur
ac

y

CIFAR10

CIFAR100

STL10

CelebA

UTKFace

Places100

Places50

Places20

(a) Metric-corr

25 50 75
Training Epochs

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Metric-conf

25 50 75
Training Epochs

0.6

0.8

1.0

A
cc

ur
ac

y

(c) Metric-ent

25 50 75
Training Epochs

0.6

0.8

1.0

A
cc

ur
ac

y

(d) Metric-ment

Figure 17: The performance of metric-based membership inference attacks against contrastive models with ResNet-50 on 8
different datasets under different numbers of epochs for classification layer training. The x-axis represents different numbers
of epochs. The y-axis represents membership inference attacks’ accuracy. Each line corresponds to a specific dataset.
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Figure 18: The performance of attribute inference attacks against supervised models on 4 different datasets under different
percentages of the attack training dataset. The x-axis represents different percentages of the attack training dataset. The y-axis
represents attribute inference attacks’ accuracy.
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Figure 19: The performance of attribute inference attacks against supervised models on 4 different datasets under attack
models with different layers. The x-axis represents attack models’ layers. The y-axis represents attribute inference attacks’
accuracy.
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Figure 20: The performance of metric-corr membership inference attacks against original contrastive models,Talos, Mem-
Guard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents
different models. The y-axis represents the accuracy of metric-corr membership inference attacks.
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Figure 21: The performance of metric-conf membership inference attacks against original contrastive models, Talos, Mem-
Guard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents
different methods. The y-axis represents the accuracy of metric-conf membership inference attacks.
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Figure 22: The performance of metric-ent membership inference attacks against original contrastive models, Talos, Mem-
Guard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents
different models. The y-axis represents the accuracy of metric-ent membership inference attacks.
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Figure 23: The performance of metric-ment membership inference attacks against original contrastive models, Talos, Mem-
Guard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents
different models. The y-axis represents the accuracy of metric-ment membership inference attacks.
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Figure 24: The performance of label-onlymembership inference attacks against original contrastivemodels,Talos,MemGuard,
Olympus, andAttriGuardwithMobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different
models. The y-axis represents the accuracy of label-only membership inference attacks.
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Figure 25: The performance of original classification tasks for the Talos models with MobileNetV2, ResNet-18, and ResNet-
50 on 4 different datasets under different adversarial factor 𝜆. The x-axis represents different 𝜆. The y-axis represents the
corresponding performance.
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Figure 26: The performance of membership inference attacks for the Talosmodels with MobileNetV2, ResNet-18, and ResNet-
50 on 4 different datasets under different adversarial factor 𝜆. The x-axis represents different 𝜆. The y-axis represents the
corresponding performance.



0 1 2 3 4 5
λ

0.60

0.65

0.70

A
cc

ur
ac

y

MobileNetV2

ResNet-18

ResNet-50

(a) UTKFace

0 1 2 3 4 5
λ

0.05

0.10

0.15

A
cc

ur
ac

y

(b) Places100

0 1 2 3 4 5
λ

0.15

0.20

0.25

0.30

A
cc

ur
ac

y

(c) Places50

0 1 2 3 4 5
λ

0.40

0.45

0.50

A
cc

ur
ac

y

(d) Places20

Figure 27: The performance of attribute inference attacks for the Talos models with MobileNetV2, ResNet-18, and ResNet-
50 on 4 different datasets under different adversarial factor 𝜆. The x-axis represents different 𝜆. The y-axis represents the
corresponding performance.
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