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ABSTRACT
Deep learning has achieved overwhelming success, spanning from

discriminative models to generative models. In particular, deep

generative models have facilitated a new level of performance in

a myriad of areas, ranging from media manipulation to sanitized

dataset generation. Despite the great success, the potential risks of

privacy breach caused by generative models have not been analyzed

systematically. In this paper, we focus on membership inference at-

tack against deep generative models that reveals information about

the training data used for victim models. Specifically, we present

the first taxonomy of membership inference attacks, encompassing

not only existing attacks but also our novel ones. In addition, we

propose the first generic attack model that can be instantiated in a

large range of settings and is applicable to various kinds of deep

generative models. Moreover, we provide a theoretically grounded

attack calibration technique, which consistently boosts the attack

performance in all cases, across different attack settings, data modal-

ities, and training configurations. We complement the systematic

analysis of attack performance by a comprehensive experimental

study, that investigates the effectiveness of various attacks w.r.t.

model type and training configurations, over three diverse applica-

tion scenarios (i.e., images, medical data, and location data).
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1 INTRODUCTION
Over the last few years, two categories of deep learning techniques

have made tremendous progress. The discriminative model has

been successfully adopted in various prediction tasks, such as im-

age classification [26, 42, 61, 62] and speech recognition [21, 30].

The generative model, on the other hand, has also gained increas-

ing attention and has delivered appealing applications including

photorealistic image synthesis [20, 44, 52, 70], text and sound gener-

ation [4, 49, 64, 65], sanitized dataset generation [2, 7, 35, 66, 73], etc.

Most of such applications are supported by deep generative models,

e.g., the generative adversarial networks (GANs) [3, 10, 20, 23, 36–

38, 54, 59, 71] and variational autoencoder (VAE) [41, 55, 67].

In line with the growing trend of deep learning in real busi-

ness, many companies collect and process customer data which

is then used to develop deep learning models for commercial use.

However, data privacy violations frequently happened due to data

misuse with an inappropriate legal basis, e.g., the misuse of Na-

tional Health Service data in the DeepMind project.
1
Data privacy

can also be challenged by malicious users who intend to infer the

original training data. The resulting privacy breach would raise

serious issues as training data contains sensitive attributes such as

diagnosis and income. One such attack is membership inference

attack (MIA) [5, 18, 24, 25, 58, 60] which aims to identify if a data

record was used to train a machine learning model. Overfitting is

the major cause for the feasibility of MIA, as the learned model

tends to memorize training inputs and perform better on them.

While numerous literature is dedicated to MIA against discrimi-

native models [33, 45, 48, 50, 58, 60, 68], the attack on generative

models has not received equal attention, despite its practical impor-

tance. For instance, GANs have been applied to health record data

and medical images [12, 19, 69] whose membership is sensitive as

it may reveal a patient’s disease history. Moreover, recent works

in privacy preserving data sharing [2, 7, 11, 35, 66, 73] propose to

impose (membership) privacy constraints during GANs training for

sanitized data generation. Understanding the membership privacy

leakage under a practical threat model helps shed light on future

research in this area.

Nevertheless, this is a highly challenging task from the adversary

side. Unlike discriminative models, the victim generative models

do not directly provide confidence values about the overfitting of

data records, and thus leave little clues for conducting membership
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inference. In addition, current GAN models inevitably underrepre-

sent certain data samples, i.e., encounter mode dropping and mode

collapse, which pose additional difficulty to the attacker.

Unfortunately, none of the existing works [25, 29] provides a

generic attack applicable to varying types of generative models. Nor

do they report a complete and practical analysis of MIA against deep

generativemodels. For example, Hayes et al. [25] do not consider the

realistic situation where the GAN’s discriminator is not accessible

but only the generator is released. Hilprecht et al. [29] investigate

only on small-scale image datasets and do not involve white-box

attack against GANs. This motivates our contributions towards a

simple and generic approach as well as a more systematic analysis.

In general, we make the following contributions in the paper.

Taxonomy of Membership Inference Attacks against Deep
Generative Models:We conduct a pioneering study to categorize

attack settings against deep generative models. Given the increas-

ing order of the amount of knowledge about a victim model, the

settings are benchmarked as (1) full black-box generator, (2) partial

black-box generator, (3) white-box generator, and (4) accessible dis-

criminator (full model). In particular, two of the settings, the partial

black-box and white-box settings, are of practical value but have

not been explored by previous works. We then establish the first

taxonomy that comprises the existing and our proposed attacks.

See Section 4, Table 1, and Figure 1 for details.

GenericAttackModel and itsNovel InstantiatedVariants:We

propose a simple and generic attack model (Section 5.1) applica-

ble to all the practical settings and various types of deep gener-

ative models. More specifically, our generic attack model can be

instantiated to a preliminary low-skill attack for the full black-box

setting (Section 5.2), a novel black-box optimization-based attack

variant in the partial black-box (Section 5.3), as well as a novel

quasi-Newton optimization-based variant in the white-box settings

(Section 5.4). The consistent effectiveness of our attack model ex-

hibited in all of the aforementioned settings bridges the assumption

gap and performance gap between the full black-box attacks and

discriminator-accessible attack in previous study [25, 29] through

a complete performance spectrum (Section 6.7).

Novel Attack Calibration Technique: To further improve the

effectiveness of our attack model, we adjust our approach to each

query sample and propose our novel attack calibration technique,

which is naturally incorporated in our generic attack framework.

Moreover, we prove its near-optimality under a Bayesian perspec-

tive. Through extensive experiments, we validate that our attack

calibration technique boosts the attack performance noticeably in

all cases, across different attack settings, data modalities, and train-

ing configurations. See Section 5.6 for detailed explanation and

Section 6.6 for experiment results.

Systematic Analysis in Each Setting:We progressively investi-

gate attacks in each setting in the increasing order of amount of

knowledge to adversary. See Section 6.3 to Section 6.5 for detailed

elaboration. In each setting, our research spans several orthogo-

nal dimensions including three datasets with diverse modalities

(Section 6.1), five victim GAN models that were the state-of-the-art

at their release time (Section 6.1), two analysis study w.r.t. GAN

training configuration (Section 6.2), attack performance gains in-

troduced by attack calibration (Section 5.6 and Section 6.6) and

differential private defense (Section 6.8).

2 RELATEDWORK
Generative Models: Generative models are designed for approxi-

mating the probability distribution of the real data. In general, this

is done by defining a parametric family of densities and finding

the optimal parameters that either maximize the real data likeli-

hood or minimize the divergence between generated and real data

distribution. Recent generative models exploit the representation

power of deep neural networks for constituting an exceptionally

rich parametric family, resulting in tremendous success in modeling

high-dimensional data distribution. In this work, we investigate

the most widely used deep generative models, namely the genera-

tive adversarial networks (GANs) [3, 10, 20, 23, 36–38, 54, 59, 71]

and variational autoencoders (VAEs) [13, 14, 40]. Briefly speaking,

GANs are trained to minimize the divergence between the gener-

ated and real data distribution, while VAEs maximize a lower bound

of the real data log-likelihood.

Membership Inference Attacks (MIAs): Shokri et al. [60] spec-
ifies the first MIA against discriminative models in the black-box

setting, where an attack has access to the victim model’s full re-

sponse (i.e., confidence scores for all classes) for a given input query.

They propose to train shadow models that imitate the behavior of

the victim model, which generates data to train an attacker model.

Hayes et al. [25] consider MIA against GANs and also propose to

retrain a shadow model of the victim model in the black-box case.

They then check the discriminator’s output scores to query inputs

and set a threshold such that all the query inputs with scores larger

than the threshold will be classified as in the training set.

Another concurrent study by Hilprecht et al. [29] investigates

MIA against both GANs and VAEs. For VAEs, they assume the

accessibility of the full model and propose to threshold the 𝐿2
reconstruction error; For GANs, they only consider the full black-

box setting. Their black-box attack is similar to ours in spirit, as

they count the number of generated samples that are inside an

𝜖-ball of the query, while we exploit the reconstruction distance

instead.

Differential Privacy (DP): Differential privacy [17] is designed

to protect the membership privacy of individual samples and is

by constructing a defense mechanism against MIA. Recent works

propose to train GANmodels with differential privacy constraint [2,

7, 11, 35, 66, 73] and publicize the DP-trained models instead of

the raw data, which allows sharing sensitive data while preserving

privacy. The differential privacy constraint is fulfilled by replacing

the regular stochastic gradient descent with differential private

stochastic gradient descent (DP-SGD) [1], which injects calibrated

noise in training gradients. As a result, it perturbs data-related

objective functions and mitigates inference attacks.

3 BACKGROUND
3.1 Generative Model
GenerativeAdversarial Networks (GANs):GANs consist of two
neural network modules, a generator 𝐺 and a discriminator 𝐷 ,



which are trained simultaneously in an adversarial manner. The

generator takes random noise 𝑧 (latent code) as input and generates

samples that approximate the training data distribution, while the

discriminator receives samples from both the generator and train-

ing dataset and is trained to differentiate the two sources. During

training, these two modules compete and evolve, such that the gen-

erator learns to generate more and more realistic samples aiming

at fooling the discriminator, while the discriminator learns to tell

the two sources apart more accurately. The training objective can

be formulated as

min

𝜃𝐺
max

𝜃𝐷
E𝑥∼𝑃data [log(𝐷𝜃𝐷 (𝑥))] + E𝑧∼𝑃𝑧 [log(1 − 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧)))]

where 𝜃𝐺 , 𝜃𝐷 denote the parameters of the generator and the dis-

criminator. 𝑃
data

is the real data distribution, while the 𝑃𝑧 is the prior

distribution of the latent code. The first term in the objective forces

the discriminator to output high score given real data sample. The

second term makes discriminator output low score on generated

samples, while the generator is trained to maximize the discrim-

inator output score. Once the training is done, the discriminator

is no longer useful and will normally be discarded. The genera-

tor will receive new latent code samples 𝑧 drawn from the known

prior distribution (normally Gaussian) and output the synthetic

data samples, which will be collected and used for the downstream

task.

Variational Autoencoder (VAE):VAE is another widely used gen-
erative framework [41, 55, 67] consists of an encoder and a decoder,

which are cascaded to reconstruct data with pre-defined similarity

metrics, e.g. 𝐿1/𝐿2 loss. The encoder maps data into a latent space,

while the decoder maps the encoded latent representation back to

the data space. The VAE objective is composed of the reconstruction

error and the prior regularization over the latent code distribution.

Formally,

min

𝜃,𝜙
−E𝑞𝜙 (𝑧 |𝑥) [𝑝𝜃 (𝑥 |𝑧)] + 𝐾𝐿(𝑞𝜙 (𝑧 |𝑥)∥𝑃𝑧)

where 𝑧 denotes the latent code, 𝑥 denotes the input data, 𝑞𝜙 (𝑧 |𝑥)
is the probabilistic encoder parameterized by 𝜙 which is introduced

to approximate the intractable true posterior, 𝑝𝜃 (𝑥 |𝑧) represents
the probabilistic decoder parameterized by 𝜃 , and 𝐾𝐿(·∥·) denotes
the KL divergence. In practice, 𝑞𝜙 (𝑧 |𝑥) is always constrained to be

uni-modal Gaussian and 𝑧 is sampled via the reparameterization

trick, which results in a closed-form derivation of the second term.

Hybrid Model: GANs often suffer from mode collapse and mode

dropping issues, i.e., failing to generate appearances relevant to

some training samples (low recall), due to the lack of explicit super-

vison (e.g. data reconstruction) for promoting data mode coverage.

VAEs, on the contrary, attain better data coverage but often lack

flexible generation capability (low precision). Therefore, a hybrid

model, VAEGAN [8, 43], is proposed to jointly train a VAE and a

GAN, where the VAE decoder and the GAN generator are collapsed

into one by sharing trainable parameters. The GAN discriminator

is trained to complement the low-level 𝐿1 or 𝐿2 reconstruction loss,

in order to improve the generation quality of fine-grained details.

3.2 Membership Inference
We formulate the membership inference attack as a binary classifi-

cation task where the attacker aims to classify whether a sample

Latent Gen- Dis-

code erator criminator

[25] full black-box × ■ ×
[29] full black-box × ■ ×
Our full black-box (Section 5.2) × ■ ×
Our partial black-box (Section 5.3) ✓ ■ ×
Our white-box (Section 5.4) ✓ □ ×
[25] accessible discriminator (full model) ✓ □ ✓

Table 1: Taxonomy of attack settings against GANs over the
previous work and ours. (×: without access; ✓: with access;
■: black-box; □: white-box).

z Gen samples

Dis
real data

 (1) Full black-box generator
 (2) Par tial black-box generator
 (3) White-box generator
 (4) Accessible discr iminator

real/fake?

Figure 1: Taxonomy of attack models against GANs. Gen:
generator; Dis: discriminator; z: latent code input to Gen.

𝑥 has been used to train a victim generative model. Formally, we

define

A : (𝑥,M(𝜃 )) → {0, 1}
where the attack model A output 1 if the attacker infers that the

query sample 𝑥 is included in the training set, and 0 otherwise.

𝜃 denotes the victim model parameters while M represents the

general model publishing mechanism, i.e., type of access available

to the attacker. For example, the M is an identity function for

the white-box access case and can be the inference function for

the black-box case. For simplicity, we may omit the dependence

on M if the type of access is irrelevant for illustration. With a

Bayesian perspective [57], the optimal attacker aims to compute

the probability 𝑃 (𝑥 ∈ 𝐷train |𝑥, 𝜃 ) and predict the query sample to

be in the training set if the log-likelihood ratio is non-negative, i.e.

the query sample is more likely to be contained in the training set

than not. Mathematically,

A(𝑥,M(𝜃 )) = 1
[
log

𝑃 (𝑥 ∈ 𝐷train |𝑥, 𝜃 )
𝑃 (𝑥 ∉ 𝐷train |𝑥, 𝜃 )

≥ 0

]
(1)

where 1(·) is the indicator function, and the training set is denoted
by 𝐷train. We denote the query sample set as 𝑆 = {(𝑥𝑖 ,𝑚𝑖 )}𝑁𝑖=1 that
contains both training set samples (𝑥𝑖 ∈ 𝐷train,𝑚𝑖 = 1) as well as

hold-out set samples (𝑥𝑖 ∉ 𝐷train,𝑚𝑖 = 0), where𝑚 is the member-

ship indicator variable. The true positive and true negative rate of

the attacker can be measure by E𝑥𝑖 [𝑃 (A(𝑥𝑖 ,M(𝜃 )) = 1|𝑚𝑖 = 1)]
and E𝑥𝑖 [𝑃 (A(𝑥𝑖 ,M(𝜃 )) = 0|𝑚𝑖 = 0)], respectively.

4 TAXONOMY
The attack scenarios can be categorized into either white-box or

black-box one. In the white-box setting, the adversary has access

to the victim model internals, whereas in the black-box setting,



the internal workings are unknown to the attackers. For attacks

against GANs, we further distinguish the settings based on the

accessibility of GANs’ components, i.e., the latent code, generator

model, and the discriminator model, according to the following

criteria: (1) whether the discriminator is accessible, (2) whether the

generator is accessible, and (3) whether the latent code is accessible.

We elaborate on each category in the following in a decreasing
order of the amount of knowledge to attackers. Note that we define

the taxonomy in a fully attack-agnostic way, i.e. the attacker can

freely decide which part of the available information to use.

4.1 Accessible Discriminator (Full Model)
By construction, the discriminator is only used for the adversarial

training and normally will be discarded after the training stage is

completed. The only scenario in which the discriminator is accessi-

ble to the attacker is that the developers publish the whole GAN

model along with the source code and allow fine-tuning. In this

case, both the discriminator and the generator are accessible to the

adversary in a white-box manner. This is the most knowledgeable

setting for attackers. And the existing attack methods against dis-

criminative models [60] can be applied to this setting. This setting

is also considered in [25], corresponding to the last row in Table 1.

In practice, however, the discriminator of a well-trained GAN is

discarded without being deployed to APIs, and thus not accessible

to attackers. We, therefore, devote less effort to investigating the dis-

criminator and mainly focus on the following practical and generic

settings where the attackers only have access to the generator.

4.2 White-box Generator
Following the common practice, researchers from the generative

modeling community always publish their well-trained generators

and code, which allows users to generate new samples and validate

the results. This corresponds to the settings that the generator is

accessible to the adversary in a white-box manner, i.e. the attackers

have access to the internals of the generator. This scenario is also

commonly studied in the community of differential privacy [16]

and privacy preserving data generation [2, 7, 11, 35, 66, 73], where

people enforce privacy guarantee by training and sharing their gen-

erative models instead of sharing the raw private data. Our attack

model under this setting can serve as a practical tool for empirically

estimating the privacy risk incurred by sharing the differentially

private generative models, which offers clear interpretability to-

wards bridging between theory and practice. However, this setting

has not been explored by any previous work and is a novel case

for constructing a membership inference attack against GANs. It

corresponds to the second last row in Table 1 and Section 5.4.

4.3 Partial Black-box Generator (Known
Input-output Pair)

This is a less knowledgeable setting to attackers where they have

no access to the internals of the generator but have access to the

latent code of each generated sample. This is a practical setting

where the developers retain ownership of their well-trained models

while allowing users to control the properties of the generated

samples by manipulating the latent code distribution [32], which

is a desired feature for application scenarios such as GAN-based

Notation Description

A Attacker

M model publishing mechanism

𝐷train Training set of the victim generator

𝑆 Query set

R Attacker’s reconstructor

𝑥 Query sample

𝑚 Membership indicator variable

𝑧 Latent code (input to the generator)

G𝑣 Victim generator

G𝑟 Attacker’s reference generator, described in Section 5.6

𝜃𝑣 Victim model’s parameter

𝜃𝑟 Attacker’s reference model’s parameter

Table 2: Notations.

image processing [22] and facial attribute editing [27, 37]. This is

another novel setting and not considered in previous works [25, 29].

It corresponds to the third last row in Table 1 and Section 5.3.

4.4 Full Black-box Generator (Known Output
Only)

This is the least knowledgeable setting to attackers where they

are passive, i.e., unable to provide input, but are only permitted to

access the generated samples set from the well-trained black-box

generator. Hayes et al. [25] investigate attacks in this setting by

retraining a local copy of the victim model. Hilprecht et al. [29]

count the number of generated samples that are inside an 𝜖-ball of

the query, based on an elaborate design of distance metric. Our idea

is similar in spirit to Hilprecht et al. [29] but we score each query

by the reconstruction error directly, which does not introduce addi-

tional hyperparameter while achieving superior performance. In

short, we design a low-skill attack method with a simpler implemen-

tation (Section 5.2) that achieves comparable or better performance

(Section 6.3). Our attack and theirs correspond to the third, second,

and first rows in Table 1, respectively.

5 ATTACK MODEL
5.1 Generic Attack Model
As mentioned in Section 3.2, the optimal attacker computes the

probability 𝑃 (𝑚𝑖 = 1|𝑥𝑖 , 𝜃𝑣). Specifically for the generative model,

wemake the assumption that this probability should be proportional

to the probability that the query sample can be generated by the

generator. This assumption holds in general as the generative model

is trained to approximate the training data distribution, i.e., 𝑃G𝑣
≈

𝑃𝐷train
where G𝑣 denotes the victim generator. And if the probability

that the query sample is generated by the victim generator is large,

it is more likely that the query sample is used to train the generative

model. Formally,

𝑃 (𝑚𝑖 = 1|𝑥𝑖 , 𝜃𝑣) ∝ 𝑃G𝑣
(𝑥 |𝜃𝑣) (2)

However, computing the exact probability is intractable as the

distribution of the generated data cannot be represented with an

explicit density function. Therefore, we adopt the Parzen window
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(b) Full black-box attack (Section 5.2)

PGv

PDtrain

12
34

56
43

54
32

52
34

52
43

53
45

24
3

12345643wrwerwer54

x1 ∈ Dtrain

R(x1|Gv)

x2 /∈ Dtrain

R(x2|Gv)
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(Section 5.3 and Section 5.4)
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(d) Attack calibration (Section 5.6)

Figure 2: Diagram of our attacks. Mathematical notations refer to Table 2. 𝑃 represents data distribution. 𝑥1 belongs to 𝐷train
so that it should be better represented by G𝑣 with a smaller distance to its reconstructed copy R(𝑥1 |G𝑣). 𝑥2 does not belong to
𝐷train so that it should have a larger distance to its best approximation R(𝑥2 |G𝑣) in 𝑃G𝑣

. (a) Our generic attacker set a decision
boundary based on the reconstruction distance to infer membership. (b) The best reconstruction is determined over random
samples from 𝑃G𝑣

while in (c) it is found by optimization on the manifold of 𝑃G𝑣
. (d) 𝑃G𝑟

is a third-party reference GAN
distribution where the reconstruction distance is calibrated by the distance between 𝑥 and R(𝑥 |G𝑟 ).

density estimation [15] and approximate the probability as below,

𝑃G𝑣
(𝑥 |𝜃𝑣) =

1

𝑘

𝑘∑
𝑖=1

𝜙 (𝑥,G𝑣 (𝑧𝑖 )); 𝑧𝑖 ∼ 𝑃𝑧 (3)

≈ 1

𝑘

𝑘∑
𝑖=1

exp(−𝐿(𝑥,G𝑣 (𝑧𝑖 ))); 𝑧𝑖 ∼ 𝑃𝑧 (4)

where 𝜙 (·, ·) denotes the kernel function, 𝐿(·, ·) is the general dis-
tance metric defined in Section 5.5, and 𝑘 is the number of samples.

Note that this can be further simplified and well approximated

using only few samples [9], as all of the terms in the summation

of Equation 3, except for a few, will be negligible since 𝜙 (𝑥,𝑦)
exponentially decreases with distance between 𝑥,𝑦.

5.2 Full Black-box Attack
We start with the least knowledgeable setting where an attacker

only has access to a black-box generator G𝑣 . The attacker is allowed

no other operation but blindly collecting 𝑘 samples from G𝑣 , de-

noted as {G𝑣 (·)𝑖 }𝑘𝑖=1. G𝑣 (·) indicates that the attacker has neither
access nor control over latent code input. We then approximate the

probability in Equation 4 using the largest term which is given by

the nearest neighbor to 𝑥 among {G𝑣 (·)𝑖 }𝑘𝑖=1. Formally,

R(𝑥 |G𝑣) = argmin

𝑥 ∈{G𝑣 ( ·)𝑖 }𝑘𝑖=1
𝐿(𝑥, 𝑥) (5)

See Figure 2(b) for a diagram. This approximation bound the com-

plete Parzen window from below, but in practice we observe almost

no difference when incorporating more terms in the summation for

a fixed 𝑘 . However, we find the estimation more sensitive to 𝑘 , and

in general a larger 𝑘 leads to better reconstructions (Figure 10) but

at the price of a higher query and computation cost. Throughout

the experiments, we consider a practical and limited budget and

choose 𝑘 to be of the same magnitude as the training dataset size.

5.3 Partial Black-box Attack
In some practical scenario discussed in Section 4.3, the access to the

latent code 𝑧 is permitted. We then propose to exploit 𝑧 in order to

find a better reconstruction of the query sample and thus improve

the 𝑃G𝑣
(𝑥 |𝜃𝑣) estimation. Concretely, the attacker performs an

black-box optimization with respect to 𝑧. Formally,

R(𝑥 |G𝑣) = G𝑣 (𝑧∗) (6)

where

𝑧∗ = argmin

𝑧
𝐿
(
𝑥,G𝑣 (𝑧)

)
(7)

Without knowing the internals of G𝑣 , the optimization is not

differentiable and no gradient information is available. As only

the evaluation of function (forward-pass through the generator) is

allowed by the access of {𝑧,G𝑣 (𝑧)} pair, we propose to approximate

the optimum via the Powell’s Conjugate Direction Method [53].

5.4 White-box Attack
In the white-box setting, we have the same reconstruction for-

mulation as in Section 5.3. See Figure 2(c) for a diagram. More

advantageously to attackers, the reconstruction quality can be

further boosted thanks to access to the internals of G𝑣 . With ac-

cess to the gradient information, the optimization problem can

be more accurately solved by advanced first-order optimization

algorithms [39, 46, 63]. In our experiment, we apply the L-BFGS

algorithm for its robustness against suboptimal initialization and

its superior convergence rate in comparison to the other methods.

5.5 Distance Metric
Our distance metric 𝐿(·, ·) consists of three terms: the element-wise

(pixel-wise) difference term 𝐿2 targets low-frequency components,

the deep image feature term 𝐿
lpips

(i.e., the Learned Perceptual

Image Patch Similarity (LPIPS) metric [72]) targets realism details,

and the regularization term penalizes latent code far from the prior
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Figure 3: The effectiveness of calibration when attacking PGGAN on CelebA. The x- and y-axes respectively represent the
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distribution. Mathematically,

𝐿
(
𝑥,G𝑣 (𝑧)

)
=𝜆1𝐿2

(
𝑥,G𝑣 (𝑧)

)
+ 𝜆2𝐿lpips

(
𝑥,G𝑣 (𝑧)

)
+ 𝜆3𝐿reg (𝑧) (8)

where

𝐿2
(
𝑥,G𝑣 (𝑧)

)
= ∥𝑥 − G𝑣 (𝑧)∥22 (9)

𝐿reg (𝑧) =
(
∥𝑧∥2

2
− dim(𝑧)

)
2

(10)

𝜆1, 𝜆2 and 𝜆3 are used to enable/disable and balance the order of

magnitude of each loss term. For non-image data, 𝜆2 = 0 because

LPIPS is no longer applicable. For full black-box attack, 𝜆3 = 0 as

the constraint 𝑧 ∼ 𝑃𝑧 is satisfied by the sampling process.

5.6 Attack Calibration
We noticed that the reconstruction error is query-dependent, i.e.,

some query samples are more (less) difficult to reconstruct due to

their intrinsically more (less) complicated representations, regard-

less of which generator is used. In this case, the reconstruction error

is dominated by the representations rather than by the membership

clues. We, therefore, propose to mitigate the query dependency by

first independently training a reference GAN G𝑟 with a relevant

but disjoint dataset, and then calibrating our base reconstruction

error according to the reference reconstruction error. Formally,

𝐿
cal

(
𝑥,R(𝑥 |G𝑣)

)
= 𝐿

(
𝑥,R(𝑥 |G𝑣)

)
− 𝐿

(
𝑥,R(𝑥 |G𝑟 )

)
(11)

with R the reconstruction. As demonstrated in Figure 3, we show

in the up-left quadrant the query samples in purple frame that are

classified as in 𝐷train by 𝐿 and as not in 𝐷train by 𝐿
cal
. They are

false-positive to 𝐿 but are corrected to true-negative by 𝐿
cal
. On

the other hand, we show in the bottom-right quadrant the query

samples in red frame that are classified as not in 𝐷train by 𝐿 and

as in 𝐷train by 𝐿
cal
. They are false-negative to 𝐿 but are corrected

to true-positive by 𝐿
cal

. We compare all these samples, their recon-

structions from the victim generator G𝑣 , and their reconstructions

from the reference generator G𝑟 on the two sides of the plot. The

false-positive samples by 𝐿 on the left-hand side are those with less

complicated appearances such that their reconstruction errors are

not high given arbitrary generators. In contrast, the false-negative

samples by 𝐿 on the right-hand side are those with more compli-

cated appearances such that their reconstruction errors are high

given arbitrary generators. Our calibration can effectively miti-

gate these two types of misclassification that depend on sample

representations.

As discussed in Section 3.2, the optimal attacker aims to compute

the membership probability

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 ) = E𝑆 [𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆)] (12)

Specifically, inferring themembership of the query sample𝑥𝑖 amounts

to approximating the value of 𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) [57]. We show

that our calibrated loss well approximate this probability by the

following theorem, whose proof is provided in Appendix.

Theorem 5.1. Given the victim model with parameter 𝜃𝑣 , a query
dataset 𝑆 , the membership probability of a query sample 𝑥𝑖 is well
approximated by the sigmoid of minus calibrated reconstruction error.

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) ≈ 𝜎 (−𝐿cal (𝑥𝑖 ,R(𝑥𝑖 |G𝑣)) (13)

And the optimal attack is equivalent to

A(𝑥𝑖 ,M(𝜃𝑣)) = 1[𝐿cal (𝑥𝑖 ,R(𝑥𝑖 |G𝑣)) < 𝜖] (14)

i.e., the attacker checks whether the calibrated reconstruction error of
the query sample 𝑥𝑖 is smaller than a threshold 𝜖 .

In the white-box case, the reference model has the same archi-

tecture as the victim model as this information is accessible to the

attacker. In the full black-box and partial black-box settings, G𝑟 has

irrelevant network architectures to G𝑣 , which is fixed across attack

scenarios. The optimization on the well-trained G𝑟 is the same as

on the white-box G𝑣 . See Figure 2(d) for a diagram, and Section 6.6

for implementation details.

6 EXPERIMENTS
Based on the proposed taxonomy, we present the most compre-

hensive evaluation to date on the membership inference attacks
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Figure 4: Generated images from different victim GAN models trained on CelebA.

against deep generative models. While prior studies have singled

out few data sets from constraint domains on selected models, our

evaluation includes three diverse datasets, five different generative

models, and systematic analysis of attack vectors – including more

viable threat models. Via this approach, we present key discoveries,

that connect for the first time the effectiveness of the attacks to the

model types, data sets, and training configuration.

6.1 Setup

Datasets: We conduct experiments on three diverse modalities of

datasets covering images, medical records, and location check-ins,

which are considered with a high risk of privacy breach.

CelebA [47] is a large-scale face attributes dataset with 200k RGB

images. Images are aligned to each other based on facial landmarks,

which benefits GAN performance. We select at most 20k images,

center-crop them, and resize them to 64 × 64 before GAN training.

MIMIC-III [34] is a public Electronic Health Records (EHR) data-

base containing medical records of 46, 520 intensive care unit (ICU)

patients. We follow the same procedure as in [12] to pre-process

the data, where each patient is represented by a 1071-dimensional

binary feature vector. We filter out patients with repeated vector

presentations and yield 41, 307 unique samples.

Instagram New-York [6] contains Instagram users’ check-ins at

various locations in New York at different time stamps from 2013

to 2017. We filter out users with less than 100 check-ins and yield

34, 336 remaining samples. For sample representation, we first select

2, 024 evenly-distributed time stamps. We then concatenate the

longitude and latitude values of the check-in location at each time

stamp, and yield a 4048-dimensional vector for each sample. The

longitude and latitude values are either retrieved from the dataset

or linearly interpolated from the available neighboring time stamps.

We then perform zero-mean normalization before GAN training.

Victim GANModels:We select PGGAN [36], WGANGP [23], DC-

GAN [54], MEDGAN [12], and VAEGAN [8] into the victim model

set, considering their pleasing performance on generating images

and/or other data representations.

It is important to guarantee the high quality of well-trained

GANs because attackers aremore likely to target high-quality GANs

with practical effectiveness. We noticed previous works [25, 29]

only show qualitative results of their victim GANs. In particular,

Hayes et al. [25] did not show visually pleasing generated results on

the Labeled Faces in theWild (LFW) dataset [31]. Rather, we present

better qualitative results of different GANs on CelebA (Figure 4),

PG- WGAN- DC- VAE- SOTA PGGAN

GAN GP GAN GAN ref w/ DP

FID 14.86 24.26 35.40 53.08 7.40 15.63

Table 3: FID for different GAN models trained on CelebA.
“SOTA ref” represents the state-of-the-art result reported
in [10] over 128 × 128 ImageNet ILSVRC 2012 dataset [56].
“w/ DP” represents the GAN model with DP privacy protec-
tion [1] (see Section 6.8).

and further present the corresponding quantitative evaluation in

terms of Fréchet Inception Distance (FID) metric [28] (Table 3).

A smaller FID indicates the generated image set is more realistic

and closer to real-world data distribution. We show that our GAN

models are in a reasonable range to the state of the art.

Attack Evaluation: The proposed membership inference attack

is formulated as a binary classification given a threshold 𝜖 in Equa-

tion 14. Through varying 𝜖 , we measure the area under the receiver

operating characteristic curve (AUCROC) to evaluate the attack

performance.

6.2 Analysis Study
We first list two dimensions of analysis study across attack settings.

There are also some other dimensions specifically for the white-box

attack, which are elaborated in Section 6.5.

6.2.1 GAN Training Set Size. Training set size is highly related to

the degree of overfitting of GAN training. A GAN model trained

with a smaller size tends to more easily memorize individual train-

ing images and is thus more vulnerable to membership inference

attack. Moreover, training set size is the main factor that affects

the privacy cost computation for differential privacy. Therefore, we

evaluate the attack performance w.r.t. training set size. We exclude

DCGAN and VAEGAN from evaluation since they yield unstable

training for small training sets.

6.2.2 Random v.s. Identity-based Selection for GAN Training Set.
There are different levels of difficulty for membership inference

attack. For example, CelebA contains person identity information

and we can design attack difficulty by composing GAN training

set based on identity or not. In one case, we include all images

of the selected individuals for training(identity). In the other case,

we ignore identity information and randomly select images for
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Figure 5: Full black-box attack (the first row) and white-box attack (the second row) performance w.r.t. GAN training set size.

training(random), i.e., it is possible that some images for an indi-

vidual are in the training dataset while some are not. The former

case is relatively easier to attackers with a larger margin between

membership image set and non-membership image set. In line with

previous work [25], we evaluate these two kinds of training set

selection schemes on CelebA for a complete and fair comparison.

6.3 Evaluation on Full Black-box Attack
We start with evaluating our preliminary low-skill black-box attack

model in order to gain a sense of the difficulty of the whole problem.

6.3.1 Performance w.r.t. GAN Training Set Size. Figure 5(a) to Fig-

ure 5(c) plot the attack performance against different GAN models

on the three datasets. As shown in the plots, the attack performs

sufficiently well when the training set is small for all three datasets.

For instance, on CelebA, when the training set contains up to 512

images, attacker’s AUCROC on both PGGAN and WGANGP are

above 0.95. This indicates an almost perfect attack and a serious

privacy breach. For larger training sets, however, the attacks be-

come less effective as the degree of overfitting decreases and GAN’s

capability shifts from memorization to generalization. It is also

consistent with the objective of GAN, i.e., to model the underlying

distribution of the whole population instead of fitting a particular

data sample. Hence, the collection of more data for GAN training

can reduce privacy breach of individual samples. Moreover, PG-

GAN becomes more vulnerable than WGANGP on CelebA when

the training size becomes larger. WGANGP is consistently more

vulnerable than MEDGAN on MIMIC-III regardless of training size.

6.3.2 Performance w.r.t. GAN Training Set Selection. Figure 6(a)

shows the attack performance w.r.t. training set selection schemes

on four victim GAN models when fixing the training set size. We

observe that, consistently, all the GAN models are more vulnerable

when the training set is selected based on identity. Hence, more at-

tention needs to be paid to an identity-based privacy breach, which

is more likely to happen than an instance-based privacy breach.

Moreover, when compared among different victim GAN models,

DCGAN and VAEGAN are more resistant against the full black-box

attack with AUCROC only marginally above 0.5 (random guess

baseline). This may be attributed to the poor generation quality

of DCGAN and VAEGAN (Table 3), as it indicates that a certain

amount of data samples can not be well represented by the victim

model and thus the reconstruction error will be a less accurate

approximation of the true membership probability in Equation 2.

6.4 Evaluation on Partial Black-box Attack
6.4.1 Performance w.r.t. GAN Training Set Selection. Figure 6(b)

shows the comparison on four victim GAN models. Similar to the

case of the full black-box attack (Section 6.3), we find that all models

become more vulnerable to identity-based selection. Still, DCGAN

is the most resistant victim against membership inference in both

training set selection schemes, probably due to its inferior genera-

tion quality.

6.4.2 Comparison to Full Black-box Attack. Comparing between

Figure 6(a) and Figure 6(b), the attack performance against each

GAN model consistently and significantly improves from black-box
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Figure 6: Attack performance on the random v.s. identity-based training set selection (CelebA with size=20k).

setting to partial black-box setting. We attribute this improvement

to a better reconstruction of query samples found by the attacker via

optimization. Hence, we conclude that providing the input interface

to a generator suffers from an increased privacy risk.

6.5 Evaluation on White-box Attack
We further investigate the case where the victim generator is pub-

lished in a white-box manner. This scenario is commonly studied in

the field of privacy preserving data generation [2, 7, 11, 35, 66, 73],

where our approach can serve as a simple and interpretable frame-

work for empirically quantifying the privacy leakage. As the opti-

mization in the white-box attack involves more technical details, we

conduct additional analysis study and sanity check in this setting.

See Appendix C.1 for more details.

6.5.1 Performance w.r.t. GAN Training Set Size. Figure 5(d) to Fig-

ure 5(f) plot the attack performance against different GAN models

on the three datasets when varying training set size. We find that

the attack becomes less effective as the training set becomes larger,

similar to that in the black-box setting. For CelebA, the attack re-

mains effective for 20k training samples, while for MIMIC-III and

Instagram, this number decreases to 8192 and 2048, respectively.

The strong similarity between the member and non-member in

these two non-image datasets increases the difficulty of attack,

which explains the deteriorated effectiveness of the attack model.

6.5.2 Performance w.r.t. GAN Training Set Selection. Figure 6(c)

shows the comparisons against four victim GANmodels. Our attack

is muchmore effective when composing GAN training set according

to identity, which is similar to those in the full and partial black-box

settings.

6.5.3 Comparison to Full and Partial Black-box Attacks. For mem-

bership inference attack, it is an important question whether or

to what extent the white-box attack is more effective than the

black-box ones. For discriminative (classification) models, recent lit-

erature reports that the state-of-the-art black-box attack performs

almost as well as the white-box attack [51, 57]. In contrast, we

find that against generative models the white-box attack is much

more effective. Comparisons across subfigures in Figure 6 show

that the AUCROC values increase by at least 0.03 when changing

from full black-box to white-box setting. Compared to the partial

black-box attack, the white-box attack achieves noticeably better

performance against PGGAN and VAEGAN. Moreover, conducting

the white-box attack requires much less computation cost than

conducting the partial black-box attack. Therefore, we conclude

that publicizing model parameters (white-box setting) does incur

high privacy breach risk.

6.6 Performance Gain from Attack Calibration
We perform calibration on all the settings. Note that for full and

partial black-box settings, attackers do not have prior knowledge

of victim model architectures. We thus train a PGGAN on LFW

face dataset [31] and use it as the generic reference model for

calibrating all victim models trained on CelebA in the black-box

settings. Similarly, for MIMIC-III, we useWGANGP as the reference

model for MedGAN and vice versa. In other words, we have to

guarantee that our calibrated attacks strictly follow the black-box

assumption.

Figure 7 compares attack performance on CelebA before and

after applying calibration. The AUCROC values are improved con-

sistently across all the GAN architectures in all the settings. In

general, the white-box attack calibration yields the greatest perfor-

mance gain. Moreover, the improvement is especially significant

when attacking against VAEGAN, as the AUCROC value increases

by 0.2 after applying calibration.

Figure 8 compares attack performance on the other two non-

image datasets. The performance is also consistently boosted for

all training set sizes after calibration.

6.7 Comparison to Baseline Attacks
We compare our calibrated attack to two recent membership infer-

ence attack baselines: Hayes et al. [25] (denoted as LOGAN) and
Hilprecht et al. [29] (denoted asMC, standing for their proposed
Monte Carlo sampling method). As described in our taxonomy

(Section 4), LOGAN includes a full black-box attack model and a

discriminator-accessible attack model against GANs. The latter is

regarded as the most knowledgeable but unrealistic setting because

the discriminator in GAN is usually not accessible in practice. But

we still compare to both settings for the completeness of our taxon-

omy and experiments. MC includes a full black-box attack against

GANs and a full-model-accessible attack against VAEs. We evaluate



PGGAN WGANGP DCGAN VAEGAN

0.5

0.6

0.7

0.8

A
U

C
R

O
C

CelebA (full black-box)

before calibration

after calibration

(a)

PGGAN WGANGP DCGAN VAEGAN

0.5

0.6

0.7

0.8

A
U

C
R

O
C

CelebA (partial black-box)

before calibration

after calibration

(b)

PGGAN WGANGP DCGAN VAEGAN

0.5

0.6

0.7

0.8

A
U

C
R

O
C

CelebA (white-box)

before calibration

after calibration

(c)

Figure 7: Attack performance before and after calibration on CelebA (size=20k).
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Figure 8: Attack performance before and after calibration for non-image datasets w.r.t. GAN training set sizes.
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Figure 9: Comparison of different attacks on CelebA. See Ta-
ble 12 in Appendix for quantitative results.

our generic attack model on both GANs and VAEs for a complete

comparison, though we mainly focus on GANs in this work. Note

that, to the best of our knowledge, there does not exist any attack

against GANs in the partial black-box or white-box settings.

Figure 9, Figure 10, and Figure 11 show the comparisons, consid-

ering several datasets, victim models, training set sizes, numbers

of query images (full black-box), and different attack settings. We

skip MC on the non-image datasets as it is not directly applicable

in terms of their distance calculation. Our findings are as follows.
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Figure 10: Full black-box attack performance against PG-
GAN on CelebA w.r.t. 𝑘 in Equation 5, the number of gen-
erated samples. See Table 14 in Appendix for quantitative
results.

In the black-box setting, our low-skill attack consistently out-

performs MC and outperforms LOGAN on the non-image datasets.

It also achieves comparable performance to LOGAN on CelebA but

with a much simpler and learning-free implementation.

Our white-box and even partial black-box attacks consistently

outperform the other full black-box attacks. Hence, publicizing the
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Figure 11: Comparison of different attacks on the other two non-image datasets w.r.t. GAN training set size. See Table 13 in
Appendix for quantitative results.

generator or even just the input to the generator can lead to a con-

siderably higher risk of privacy breach. With a complete spectrum

of performance across settings, they bridge the performance gap

between the highly constrained full black-box attack and the un-

realistic discriminator-accessible attack. Moreover, our proposed

white-box attack model is of practical value for the differential

privacy community.

Assuming the accessibility of discriminator (full model) normally

results in the most effective attack. This can be explained by the

fact that the discriminator is explicitly trained to maximize the

margin between training set (membership samples) and generated

set (a subset of non-membership samples), which eventually yields

very accurate confidence scores for membership inference. Surpris-

ingly, our calibrated white-box attack even outperforms baseline

methods in more knowledgeable settings, i.e., LOGAN (accessible

discriminator) for VAEGAN and MC (accessible full model) for VAE.

This shows that when data coverage is explicitly enforced, which

probably leads to overfitting and data memorization if not properly

regularized, our attack models are highly effectively and achieve

superior performance with a more realistic assumption.

6.8 Defense
We investigate the most effective defense mechanism against MIA

to date that is applicable to GANs [7, 25, 66, 73], i.e., the differ-

ential private (DP) stochastic gradient descent [1]. The algorithm

can be summarized into two steps. First, the per-sample gradient

computed at each training iteration is clipped by its 𝐿2 norm with

a pre-defined threshold. Subsequently, calibrated random noise is

added to the gradient in order to inject stochasticity for protecting

privacy. In this scheme, however, privacy protection is at the cost

of computational complexity and utility deterioration, i.e., slower

training and lower generation quality.

We conduct attacks against PGGAN on CelebA, which has been

defended by DP. We skip the other cases because DP always de-

teriorates generation quality to an unacceptable level. The hyper-

parameters are selected through the grid search. We fix the norm

threshold to 1.0 (average gradient norm magnitude during pre-

training) and the noise scale to 10
−4

(the largest value with which

we obtain samples of good visual quality). However, this results in
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Figure 12: (a) Attack performance against PGGANonCelebA
with or without DP defense. (b)Attack performance against
PGGAN on CelebA with or without DP defense, w.r.t. GAN
training set size. We fix all the other control factors (train-
ing iterations, batch size, noise scale, norm threshold) apart
from training set size, which results in less privacy guaran-
tee for a smaller dataset.

high 𝜖 values (> 10
10

for a default value of 𝛿 = 10
−5
), while it still

reduces the effectiveness of the membership inference attack.



Figure 12(a) and Figure 12(b) depict the attack performance in

different settings. We observe a consistent decrease in AUCROC

in all the settings. Therefore, DP is effective in general against our

attack. However, applying DP into training leads to a much higher

computation cost (10× slower) in practice due to the per-sample

gradient modification. Moreover, DP results in a deterioration of

GAN utility, which is witnessed by an increasing FID (comparing

the last and second columns in Table 3). Moreover, for obtaining

a pleasing level of utility, the noise scale has to be limited to a

small value, which, in turn, cannot defend the membership infer-

ence attack completely. For example, for all the settings, our attack

still achieves better performance than the random guess baseline

(AUCROC = 0.5).

6.9 Summary
Before ending this section, we show a few insights over the ex-

periment results and list practical considerations relevant to the

deployment of GANs and potential privacy breaches.

• The vulnerability of models under MIA heavily relies on the

attackers’ knowledge about victim models. Releasing the

discriminator (full model) results in an exceptionally high

risk of privacy breach, which can be explained by the fact

that the discriminator had full access to the training data

and thus easily memorizes the private information about the

training data. Similarly, the release of the generator and/or

the control over the input noise 𝑧 also incurs a relatively

high privacy risk.

• The vulnerability of different generative models under MIA

varies. Although the effectiveness of MIA mainly depends on

the generation quality of victim models, the objective func-

tion and training paradigm also play important roles. Specif-

ically, when data reconstruction is explicitly formulated in

the training objective to improve data mode coverage, e.g.

in VAEGAN and VAE, the resulting models become highly

vulnerable to MIA.

• A smaller training dataset leads to a higher risk of revealing

information of individual samples. In particular, if the magni-

tude of training set size is less than 10𝑘 where most existing

GAN models have sufficient modeling capacity for overfit-

ting to individual sample, the membership privacy is highly

likely to be compromised once the GAN model and/or its

generated sample set is released. This causes special concern

when dealing with real-world privacy sensitive datasets (e.g.

medical records), which typically contain very limited data

samples.

• Differential private defense on GAN training is effective

against practical MIA, but at the cost of high computation

burden and deteriorated generation quality.

7 CONCLUSION
We have established the first taxonomy of membership inference at-

tacks against GANs, with which we hope to benchmark research in

this direction in the future. We have also proposed the first generic

attack model based on reconstruction, which is applicable to all the

settings according to the amount of the attacker’s knowledge about

the victim model. In particular, the instantiated attack variants in

the partial black-box and white-box settings are another novelty

that bridges the assumption gap and performance gap in the previ-

ous work [25, 29]. In addition, we proposed a novel theoretically

grounded attack calibration technique, which consistently improve

the attack performance in all cases. Comprehensive experiments

show consistent effectiveness and a broad spectrum of performance

in a variety of setups spanning diverse dataset modalities, various

victim models, two directions of analysis study, attack calibration,

as well as differential privacy defense, which conclusively provide

a better understanding of privacy risks associated with deep gener-

ative models.
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A PROOF
Theorem 5.1. Given the victim model with parameter 𝜃𝑣 , a query
dataset 𝑆 , the membership probability of a query sample 𝑥𝑖 is well
approximated by the sigmoid of minus calibrated reconstruction error.

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) ≈ 𝜎 (−𝐿cal (𝑥𝑖 ,R(𝑥𝑖 |G𝑣)) (15)

And the optimal attack is equivalent to

A(𝑥𝑖 ,M(𝜃𝑣)) = 1[𝐿cal (𝑥𝑖 ,R(𝑥𝑖 |G𝑣)) < 𝜖] (16)

i.e., the attacker checks whether the calibrated reconstruction error of
the query sample 𝑥𝑖 is smaller than a threshold 𝜖 .

Proof. By applying the Bayes rule and the property of sigmoid

function 𝜎 , the membership probability can be rewritten as fol-

lows [57]:

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) = 𝜎
(
log

(
𝑃 (𝜃𝑣 |𝑚𝑖 = 1, 𝑥𝑖 , 𝑆−𝑖 )𝑃 (𝑚𝑖 = 1)
𝑃 (𝜃𝑣 |𝑚𝑖 = 0, 𝑥𝑖 , 𝑆−𝑖 )𝑃 (𝑚𝑖 = 0)

))
(17)

where 𝑆−𝑖 = 𝑆\(𝑥𝑖 ,𝑚𝑖 ), i.e., the whole query set except the query

sample 𝑥𝑖 .

Assuming independence of samples in S while applying Bayes rule

and Product rule, we obtain the following posterior approximation

𝑃 (𝜃𝑣 |𝑆) ∝
∏

{ 𝑗 |𝑚 𝑗=1}
𝑃 (𝑥 𝑗 |𝜃𝑣)𝑃 (𝜃𝑣) (18)

∝ exp(−
∑
𝑗

𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃𝑣)) (19)

with 𝑙 (𝑥 𝑗 , 𝜃𝑣) = 𝐿(𝑥 𝑗 ,R(𝑥 |G𝑣))for brevity. The Equation 18 means

that the probability of a certain model parameter is determined by

its i.i.d. training set samples. Subsequently, by assuming a uniform

prior of the model parameter over the whole parameter space and

plug in the results from Equation 4 we obtain Equation 19.

By normalizing the posterior in Equation 19, we obtain

𝑃 (𝜃𝑣 |𝑚𝑖 = 1, 𝑥𝑖 , 𝑆−𝑖 ) =
exp(−∑

𝑗 𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃𝑣))∫
𝜃 ′ exp(−

∑
𝑗 𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃 ′))𝑑𝜃 ′

(20)

𝑃 (𝜃𝑣 |𝑚𝑖 = 0, 𝑥𝑖 , 𝑆−𝑖 ) =
exp(−∑

𝑗≠𝑖𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃𝑣))∫
𝜃 ′ exp(−

∑
𝑗≠𝑖𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃 ′))𝑑𝜃 ′

(21)

with the following ratio:

𝑃 (𝜃𝑣 |𝑚𝑖 = 1, 𝑥𝑖 , 𝑆)
𝑃 (𝜃𝑣 |𝑚𝑖 = 0, 𝑥𝑖 , 𝑆)

=
exp(−𝑙 (𝑥𝑖 , 𝜃𝑣))∫

𝜃 ′ exp(−𝑙 (𝑥𝑖 , 𝜃 ′))𝑃 (𝜃 ′ |𝑆−𝑖 )𝑑𝜃 ′
(22)

where

𝑃 (𝜃 |𝑆−𝑖 ) =
exp(−∑

𝑗≠𝑖𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃 ))∫
𝜃 ′ exp(−

∑
𝑗≠𝑖𝑚 𝑗 · 𝑙 (𝑥 𝑗 , 𝜃 ′))𝑑𝜃 ′

Putting things together, we have

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) = 𝜎 [ log(
𝑃 (𝑚𝑖 = 1)
𝑃 (𝑚𝑖 = 0) ) − 𝑙 (𝑥𝑖 , 𝜃𝑣)

− log

(∫
𝜃 ′
exp(−𝑙 (𝑥𝑖 , 𝜃 ′))𝑃 (𝜃 ′ |𝑆−𝑖 )𝑑𝜃 ′

)
]

(23)

The first term is equivalent to the log ratio of the prior probabil-

ity, i.e., the fraction of training data in the query set. In most of

our experiments, we use a balanced split which makes this term

vanish. Thus, only the second and last term will affect the attacker

prediction. Next, we investigate the last term. By applying Jensen’s

inequality, we can bound the last term from above.

− log

(∫
𝜃 ′
exp(−𝑙 (𝑥 𝑗 , 𝜃 ′))𝑃 (𝜃 ′ |𝑆−𝑖 )𝑑𝜃 ′

)
= − logE𝜃 ′ exp(−𝑙 (𝑥𝑖 , 𝜃 ′))

≤ −E𝜃 ′ log exp(−𝑙 (𝑥𝑖 , 𝜃 ′))
= E𝜃 ′𝑙 (𝑥𝑖 , 𝜃 ′) (24)

Additionally, we can obtain the lower bound by taking the optimi-

mum over the full parameter space, i.e.

− log

(∫
𝜃 ′
exp(−𝑙 (𝑥 𝑗 , 𝜃 ′))𝑃 (𝜃 ′ |𝑆−𝑖 )𝑑𝜃 ′

)
≥ − logmax

𝜃 ′
exp(−𝑙 (𝑥𝑖 , 𝜃 ′))

= min

𝜃 ′
𝑙 (𝑥𝑖 , 𝜃 ′) (25)

Under the assumption of a highly peaked posterior, e.g. uni-modal

Gaussian [57], we can well approximate this quantity by using one

sample, i.e. using one reference model that is not trained on the

query sample. Formally,

𝑃 (𝑚𝑖 = 1|𝜃𝑣, 𝑥𝑖 , 𝑆) ≈ 𝜎 [−𝑙 (𝑥𝑖 , 𝜃𝑣) + 𝑙 (𝑥𝑖 , 𝜃𝑟 )]
= 𝜎 [−𝐿(𝑥,R(𝑥 |G𝑣)) + 𝐿(𝑥,R(𝑥 |G𝑟 )]
= 𝜎 [−𝐿

cal
(𝑥,R(𝑥 |G𝑣)] (26)

where the dependence on 𝑆, 𝜃𝑣 is absorbed in the calibrated distance

𝐿
cal

(𝑥,R(𝑥 |G𝑣)).
Hence, the optimal attacker classifies 𝑥𝑖 as in the training set if the

membership probability is sufficiently large, i.e., 𝐿
cal

(𝑥,R(𝑥 |G𝑣))
is sufficiently small (than a threshold), following from the non-

decreasing property of 𝜎 . □

B EXPERIMENT SETUP
B.1 Hyper-parameter Setting
We fix 𝑘 to be 20k for evaluating the full black-box attacks. We set

𝜆1 = 1.0, 𝜆2 = 0.2, 𝜆3 = 0.001 for our partial black-box and white-

box attack on CelebA, and set 𝜆1 = 1.0, 𝜆2 = 0.0, 𝜆3 = 0.0 for the

other cases. The maximum number of iterations for optimization

are set to be 1000 for our white-box attack and 10 for our partial

black-box attack.



B.2 Model Architectures
We use the official implementations of the victim GANmodels.

2
We

re-implement WGANGP model with a fully-connected structure

for non-image datasets. The network architecture is summarized in

Table 4. The depth of both the generator and discriminator is set to

5. The dimension of the hidden layer is fix to be 512 . We use ReLU

as the activation function for the generator and Leaky ReLU with

𝛼 = 0.2 for the discriminator, except for the output layer where

either the sigmoid or identity function is used.

Generator Generator Discriminator

(MIMIC-III) (Instagram) (MIMIC-III and Instagram)

FC (512) FC (512) FC (512)

ReLU ReLU LeakyReLU (0.2)

FC (512) FC (512) FC (512)

ReLU ReLU LeakyReLU (0.2)

FC (512) FC (512) FC (512)

ReLU ReLU LeakyReLU (0.2)

FC (512) FC (512) FC (512)

ReLU ReLU LeakyReLU (0.2)

FC (dim(𝑥)) FC (dim(𝑥)) FC (1)

Sigmoid Identity Identity

Table 4: Network architecutre of WGANGP on MIMIC-III
and Instagram.

B.3 Implementation of Baseline Attacks
We provide more details of implementing baseline attacks that are

discussed in Section 6.7.

B.3.1 LOGAN. For CelebA,we employDCGANas the attackmodel,

which is the same as in the original paper [25]. For MIMIC-III and

Instagram, we use WGANGP as the attack model.

B.3.2 MC. For implementing MC in the full black-box setting on

CelebA, we apply the same process of their best attack on the RGB

image dataset: First, we employ principal component analysis (PCA)

on a data subset disjoint from the query data. Then, we keep the

first 120 PCA components as suggested in the original paper [29]

and apply dimensionality reduction on the generated and query

data. Finally, we calculate the Euclidean distance of the projected

data and use the median heuristic to choose the threshold for MC

attack.

C ADDITIONAL RESULTS
C.1 Sanity-check in the White-box Setting
C.1.1 Analysis on optimization initialization. Due to the non-convexity
of our optimization problem, the choice of initialization is of great

importance. We explore three different initialization heuristics in

2
https://github.com/tkarras/progressive_growing_of_gans,

https://github.com/igul222/improved_wgan_training,

https://github.com/carpedm20/DCGAN-tensorflow,

https://github.com/mp2893/medgan,

https://drive.google.com/drive/folders/10RCFaA8kOgkRHXIJpXIWAC-

uUyLiEhlY

our experiments, including mean (𝑧0 = 𝜇), random (𝑧0 ∼ N(𝜇, Σ)),
and nearest neighbour (𝑧0 = argmin

𝑧∈{𝑧𝑖 }𝑘𝑖=1
∥G𝑣 (𝑧) −𝑥 ∥2

2
). We find

that the mean and nearest neighbor initializations perform well

in practice, and are in general better than random initialization

in terms of the successful reconstruction rate (reconstruction er-

ror smaller than 0.01). Therefore, we apply the mean and nearest

neighbor initialization in parallel, and choose the one with smaller

reconstruction error for the attack.

C.1.2 Analysis on Optimization Method. We explore three opti-

mizers with a range of hyper-parameter search: Adam [39], RM-

SProp [63], and L-BFGS [46] for reconstructing generated samples

of PGGAN on CelebA. Figure 13 shows that L-BFGS achieves supe-

rior convergence rate with no additional hyper-parameter. There-

fore, we select L-BFGS as our default optimizer in the white-box

setting.
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Figure 13: Convergence rate of various optimizers (Adam,
RMSProp, L-BFGS) with different learning rates. Mean ini-
tialization (𝑧0 = 𝜇) is applied in this analysis study.

C.1.3 Analysis on Distance Metric Design for Optimization. We

show the effectiveness of our objective design (Equation 8). Al-

though optimizing only for element-wise difference term 𝐿2 yields

reasonably good reconstruction in most cases, we observe unde-

sired blur in reconstruction for CelebA images. Incorporating deep

image feature term 𝐿
lpips

and regularization term 𝐿reg benefits the

successful reconstruction rate. See Figure 14 for a demonstration.

Table 5: Successful reconstruction rate for generated sam-
ples from different GANs.

DCGAN PGGAN WGANGP VAEGAN

Success rate (%) 99.89 99.83 99.55 99.25

C.1.4 Sanity Check on Distance Metric Design for Optimization. In
addition, we check if the non-convexity of our objective function

affects the feasibility of attack against different victim GANs. We

apply optimization to reconstruct generated samples. Ideally, the

reconstruction should have no error because the query samples are

directly generated by the model, i.e., their preimages exist. We set a

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/igul222/improved_wgan_training
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/mp2893/medgan
https://drive.google.com/drive/folders/10RCFaA8kOgkRHXIJpXIWAC-uUyLiEhlY
https://drive.google.com/drive/folders/10RCFaA8kOgkRHXIJpXIWAC-uUyLiEhlY
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Figure 14: Reconstruction error plots of PGGAN-generated samples on CelebA. The x-axis represents the Euclidean distance
between a reconstructed latent code to its ground truth value. The y-axis represents the 𝐿2 residual in the image domain. The
images in orange frame are generated samples. Their reconstructed copies are shown on their right. Samples below the dashed
line have reconstruction residuals smaller than 0.01, where no visual difference can be observed. Therefore, the reconstruction
is in general better if there is a higher portion of sample points below the dashed line (a higher successful reconstruction rate).
(a) Reconstruction results when disabling 𝐿lpips and 𝐿reg (𝜆1 = 1.0, 𝜆2 = 0, 𝜆3 = 0). (b) Reconstruction results when disabling 𝐿reg
(𝜆1 = 1.0, 𝜆2 = 0.2, 𝜆2 = 0). (c) Reconstruction results when enabling all the 𝐿2, 𝐿lpips and 𝐿reg terms (𝜆1 = 1.0, 𝜆1 = 0.2, 𝜆2 = 0.001).
We find that using all the terms most benefits the reconstruction.

threshold of 0.01 to the reconstruction error for counting successful

reconstruction rate, and evaluate the success rate for four GAN

models trained on CelebA. Table 5 shows that we obtained more

than 99% success rate for all the GANs, which verifies the feasibility

of our optimization-based attack.

C.1.5 Analysis on Distance Metric Design for Classification. We

propose to enable/disable 𝜆1, 𝜆2, or 𝜆3 in Equation 8 to investigate

the contribution of each term towards classification thresholding

(membership inference) on CelebA. In detail, we consider using (1)

the element-wise difference term 𝐿2 only, (2) the deep image feature

term 𝐿
lpips

only, and (3) all the three terms together to evaluate

attack performance. Figure 15 shows the AUCROC of attack against

each various GANs. We find that our complete distance metric

design achieves general superiority to single terms. Therefore, we

use the complete distance metric for classification thresholding.

PGGAN WGANGP DCGAN VAEGAN0.5

0.6

0.7

A
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C
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Figure 15: White-box attack performance against GANs on
CelebA, w.r.t. distance metric design for classification.

C.2 Additional Quantitative Results
C.2.1 Evaluation on Full Black-box Attack. Attack Performance
w.r.t. Training Set Size: Table 6 corresponds to Figure 5(a), Fig-

ure 5(b), and Figure 5(c) in the main paper.

(a) CelebA

64 128 256 512 1024 2048 4096 20k

PGGAN 1.00 1.00 1.00 0.99 0.95 0.79 0.58 0.51

WGANGP 1.00 1.00 1.00 0.97 0.89 0.72 0.62 0.51

(b) MIMIC-III

64 128 256 512 1024 2048 4096 8192

WGANGP 0.98 0.97 0.93 0.87 0.81 0.68 0.54 0.52

MEDGAN 0.78 0.65 0.57 0.54 0.52 0.52 0.51 0.51

(c) Instagram

64 128 256 512 1024 2048 4096 8192 10k

WGANGP 1.00 1.00 0.97 0.90 0.72 0.54 0.50 0.50 0.50

Table 6: Full black-box attack performance w.r.t. training set
size.

Attack Performance w.r.t. Training Set Selection: Table 7 cor-
responds to Figure 6 in the main paper.

C.2.2 Evaluation on Partial Black-box Attack. AttackPerformance
w.r.t. Training Set Selection: Table 7 corresponds to Figure 6 in

the main paper.



(a) Full black-box

PGGAN WGANGP DCGAN VAEGAN

random 0.51 0.51 0.51 0.50

identity 0.53 0.53 0.51 0.51

(b) Partial black-box

PGGAN WGANGP DCGAN VAEGAN

random 0.55 0.53 0.51 0.55

identity 0.57 0.60 0.55 0.58

(c) White-box

PGGAN WGANGP DCGAN VAEGAN

random 0.54 0.53 0.52 0.61

identity 0.59 0.59 0.55 0.63

Table 7: Attack performance on the random v.s. identity-
based GAN training set selection. We only focus on CelebA
across attack settings.

C.2.3 Evaluation on White-box Attack. Ablation on Distance
Metric Design for Classification: Table 8 corresponds to Fig-

ure 15.

DCGAN PGGAN WGANGP VAEGAN

𝐿2 0.54 0.59 0.59 0.62

𝐿
lpips

0.55 0.58 0.57 0.61

𝐿2 + 𝐿lpips + 𝐿reg 0.55 0.59 0.59 0.63

Table 8: White-box attack performance against various
GANs on CelebA, w.r.t. distance metric design for classifica-
tion.

AttackPerformancew.r.t. Training Set Size:Table 9 corresponds
to Figure 5(d), Figure 5(e), and Figure 5(f).

Attack Performance w.r.t. Training Set Selection: Table 7 cor-
responds to Figure 6 in the main paper.

C.2.4 Attack Calibration. Table 10 corresponds to Figure 7 in the

main paper. Table 11 corresponds to Figure 8 in the main paper.

C.2.5 Comparison to Baseline Attacks. Table 12 corresponds to

Figure 9 in the main paper. Table 13 corresponds to Figure 11 in the

main paper. Table 14 corresponds to Figure 10 in the main paper.

(a) CelebA

64 128 256 512 1024 2048 4096 20k

PGGAN 1.00 1.00 1.00 0.99 0.95 0.83 0.62 0.55

WGANGP 1.00 1.00 0.99 0.97 0.89 0.78 0.69 0.53

(b) MIMIC-III

64 128 256 512 1024 2048 4096 8192

WGANGP 0.98 0.96 0.92 0.87 0.82 0.80 0.67 0.54

MEDGAN 0.99 0.88 0.77 0.72 0.61 0.59 0.55 0.52

(c) Instagram

64 128 256 512 1024 2048 4096 8192 10k

WGANGP 1.00 1.00 0.97 0.90 0.72 0.55 0.50 0.50 0.49

Table 9: White-box attack performance w.r.t. training set
size.

(a) Full black-box

PGGAN WGANGP DCGAN VAEGAN

before calibration 0.53 0.53 0.51 0.51

after calibration 0.54 0.54 0.52 0.51

(b) Partial black-box

PGGAN WGANGP DCGAN VAEGAN

before calibration 0.57 0.60 0.55 0.58

after calibration 0.58 0.63 0.56 0.59

(c) White-box

PGGAN WGANGP DCGAN VAEGAN

before calibration 0.59 0.59 0.55 0.63

after calibration 0.68 0.64 0.55 0.76

Table 10: Attack performance before and after calibration
on CelebA.

PGGAN WGANGP DCGAN VAEGAN VAE

full bb (LOGAN) 0.56 0.57 0.52 0.50 0.52

full bb (MC) 0.52 0.52 0.51 0.50 0.51

full bb (ours calibrated) 0.54 0.54 0.52 0.51 0.54

partial bb (ours calibrated) 0.58 0.63 0.56 0.59 0.73

wb (ours calibrated) 0.68 0.66 0.55 0.76 0.94

full (LOGAN/MC) 0.91 0.83 0.83 0.61 0.90

Table 12: Comparison of different attacks on CelebA. bb:
black-box; wb: white-box; full: accessible discriminator (full
model).



(a) MIMIC-III (WGANGP)

64 128 256 512 1024 2048 4096 20k

full bb 0.98 0.97 0.93 0.87 0.81 0.68 0.54 0.52

full bb (calibrated) 1.00 0.99 0.97 0.94 0.89 0.84 0.67 0.56

wb 0.98 0.96 0.92 0.87 0.82 0.80 0.67 0.54

wb (calibrated) 0.98 0.97 0.93 0.90 0.87 0.85 0.75 0.59

(b) MIMIC-III (MEDGAN)

64 128 256 512 1024 2048 4096 8192

full bb 0.78 0.65 0.57 0.54 0.52 0.52 0.51 0.51

full bb (calibrated) 0.91 0.71 0.63 0.58 0.55 0.53 0.52 0.51

wb 0.99 0.88 0.77 0.72 0.61 0.59 0.55 0.52

wb (calibrated) 0.96 0.87 0.81 0.75 0.65 0.62 0.57 0.55

(c) Instagram (WGANGP)

64 128 256 512 1024 2048 4096 8192 10k

full bb 1.00 1.00 0.97 0.90 0.72 0.54 0.50 0.50 0.49

full bb (calibrated) 1.00 1.00 0.98 0.91 0.80 0.72 0.65 0.57 0.56

wb 1.00 1.00 0.97 0.90 0.72 0.55 0.50 0.50 0.49

wb (calibrated) 1.00 1.00 0.98 0.92 0.79 0.73 0.67 0.58 0.57

Table 11: Attack performance before and after calibration
for non-image datasets w.r.t. GAN training set sizes. bb:
black-box; wb: white-box.

(a) MIMIC-III (WGANGP)

64 128 256 512 1024 2048 4096 20k

full bb (LOGAN) 0.98 0.97 0.96 0.94 0.92 0.83 0.65 0.54

full bb (ours calibrated) 1.00 0.99 0.97 0.94 0.89 0.84 0.67 0.56

wb (ours calibrated) 0.98 0.97 0.93 0.90 0.87 0.85 0.75 0.59

dis (LOGAN) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

(b) MIMIC-III (MEDGAN)

64 128 256 512 1024 2048 4096 8192

full bb (LOGAN) 0.45 0.57 0.53 0.52 0.51 0.52 0.50 0.51

full bb (ours calibrated) 0.91 0.71 0.63 0.58 0.55 0.53 0.52 0.51

wb (calibrated) 0.96 0.87 0.81 0.75 0.65 0.62 0.57 0.55

dis (LOGAN) 1.00 0.92 0.96 0.90 0.85 0.90 0.80 0.73

(c) Instagram (WGANGP)

64 128 256 512 1024 2048 4096 8192 10k

full bb (LOGAN) 1.00 0.99 0.96 0.91 0.68 0.55 0.58 0.55 0.55

full bb (calibrated) 1.00 1.00 0.98 0.91 0.80 0.72 0.65 0.57 0.56

wb (calibrated) 1.00 1.00 0.98 0.92 0.79 0.73 0.67 0.58 0.57

dis (LOGAN) 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.93

Table 13: Comparison of different attacks on the other two
non-image datasets w.r.t. GAN training set size. bb: black-
box; wb: white-box; dis: accessible discriminator.

𝑘 64 128 256 512 1024 2048 4096 8192 15k 20k 40k 60k 80k 100k

LOGAN 0.51 0.51 0.51 0.52 0.53 0.53 0.53 0.54 0.55 0.56 0.57 0.58 0.57 0.57

MC 0.50 0.50 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.53 0.53 0.53

ours calibrated 0.51 0.51 0.51 0.52 0.52 0.52 0.53 0.53 0.54 0.54 0.54 0.55 0.55 0.55

Table 14: Full black-box attack performance against PGGAN
on CelebA w.r.t. 𝑘 in Equation 5, the number of generated
samples.

C.2.6 Defense. Table 15 corresponds to Figure 12(a) in the main

paper. Table 16 corresponds to Figure 12(b) in the main paper.

full black-box partial black-box white-box

w/o DP 0.54 0.58 0.68

w/ DP 0.53 0.56 0.59

Table 15: Attack performance against PGGAN on CelebA
with or without DP defense.

64 128 256 512 1024 2048 4096

white-box w/o DP 1.00 1.00 1.00 0.99 0.95 0.83 0.62

white-box w/ DP 1.00 1.00 0.99 0.98 0.90 0.70 0.56

full black-box w/o DP 1.00 1.00 1.00 0.99 0.95 0.79 0.57

full black-box w/ DP 1.00 1.00 0.99 0.98 0.89 0.68 0.53

Table 16: Attack performance against PGGAN on CelebA
with or without DP defense, w.r.t. GAN training set size.

C.3 Additional Qualitative Results
Given query samples𝑥 , we show their reconstruction copies𝑅(𝑥 |G𝑣)
and 𝑅(𝑥 |G𝑟 ) obtained in our white-box attack.



(a) Query (real) images

(b) PGGAN victim model reconstruction

(c) PGGAN (w/ DP) victim model reconstruction

(d) PGGAN reference model reconstruction

(e) WGANGP victim model reconstruction

(f) WGANGP reference model reconstruction

(g) DCGAN victim model reconstruction

(h) DCGAN reference model reconstruction

(i) VAEGAN victim model reconstruction

(j) VAEGAN reference model reconstruction

Figure 16: Reconstruction of query samples 𝑥 that are in the training set, i.e., 𝑥 ∈ 𝐷train.



(a) Query (real) images

(b) PGGAN victim model reconstruction

(c) PGGAN (w/ DP) victim model reconstruction

(d) PGGAN reference model reconstruction

(e) WGANGP victim model reconstruction

(f) WGANGP reference model reconstruction

(g) DCGAN victim model reconstruction

(h) DCGAN reference model reconstruction

(i) VAEGAN victim model reconstruction

(j) VAEGAN reference model reconstruction

Figure 17: Reconstruction of query samples 𝑥 that are not in the training set, i.e., 𝑥 ∉ 𝐷train.
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