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ABSTRACT
To prevent the mischievous use of synthetic (fake) point clouds
produced by generative models, we pioneer the study of detect-
ing point cloud authenticity and attributing them to their sources.
We propose an attribution framework FakePCD to attribute (fake)
point clouds to their respective generative models (or real-world
collections). The main idea of FakePCD is to train an attribution
model that learns the point cloud features from different sources
and further differentiates these sources using an attribution sig-
nal. Depending on the characteristics of the training point clouds,
namely, sources and shapes, we formulate four attribution scenar-
ios: close-world, open-world, single-shape, and multiple-shape, and
evaluate FakePCD’s performance in each scenario. Extensive exper-
imental results demonstrate the effectiveness of FakePCD on source
attribution across different scenarios. Take the open-world attri-
bution as an example, FakePCD attributes point clouds to known
sources with an accuracy of 0.82-0.98 and to unknown sources with
an accuracy of 0.73-1.00. Additionally, we introduce an approach to
visualize unique patterns (fingerprints) in point clouds associated
with each source. This explains how FakePCD recognizes point
clouds from various sources by focusing on distinct areas within
them. Overall, we hope our study establishes a baseline for the
source attribution of (fake) point clouds.1

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy.
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1Our code is available at https://github.com/YitingQu/FakePCD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM AsiaCCS 2024, 1-5 July, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Yiting Qu, Zhikun Zhang, Yun Shen, Michael Backes, and Yang Zhang. 2024.
FakePCD: Fake Point Cloud Detection via Source Attribution. In Proceedings
of the 2024 ACM ASIA Conference on Computer and Communications Security
(ACM AsiaCCS 2024), July 1–5, 2024, Singapore. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Point clouds are a set of data points in 3D space to represent 3D ob-
jects or scenes [15, 29]. They are commonly collected using 3D laser
scanners [7, 16] and LiDAR (light detection and ranging) technol-
ogy [8, 51]. Due to their ability in preserving geometric information
in 3D space, point clouds have been widely used for 3D modeling
scenarios, e.g., autonomous driving [15, 28, 32], robotics [9], and
shape synthesis [10, 43].

Recently, deep learning techniques have accelerated the devel-
opment of point cloud generative models [2, 17, 21, 31, 52]. These
models can generate synthetic point clouds with different shapes,
with each shape representing an object, such as an airplane, car,
or chair. These synthetic (fake) point clouds are resembling the
real-world ones, and it is difficult to distinguish them with human
eyes [2, 17, 21, 31, 52](see Figure 1). This advancement eliminates
the need for costly manual point cloud acquisition, thereby im-
proving the training of various models in classification [35, 48],
segmentation [8, 9], and object detection [51].

However, a coin has two sides. Despite their utility, synthetic
point clouds might also be used maliciously. For instance, the data
collector expects point clouds scanned by terrestrial laser scan-
ning (TLS), the contractor, instead, provides synthetic point clouds
to save cost, which may be inferior in quality and introduce the
potential risk [25, 49]. In addition, an adversary could leverage
LiDAR spoofing attacks [4] to inject synthetic point clouds (e.g.,
fake aircraft) into the UAV’s LiDAR sensors. This can render the
Intelligence Surveillance Reconnaissance (ISR) systems ineffective
(i.e., collecting misleading military intelligence) during real-world
operations. The above work exemplifies how synthetic point clouds
can be generated and utilized for malicious purposes.

Research Problem. To reduce the potential security risks of syn-
thetic point clouds, it is imperative to detect the authenticity of
point clouds, i.e., the point clouds are collected from the real world
or generated by different models. Identifying synthetic data from
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(a) Real (b) Fake

Figure 1: Examples of a real point cloud (airplane) and a
fake point cloud. The fake point cloud is generated with
ProgressiveDeconvolutionGenerationNetwork (PDGN) [17].

generative models allows developers to implement protective mea-
sures, such as watermarking, to prevent misuse. To this end, we
pioneer study into the source attribution [54] of point clouds: at-
tributing point clouds to the corresponding sources [57], i.e., collected
from the real world or generated by a specific model. For instance,
given two point clouds of the shape airplane displayed in Figure 1,
we aim to identify whether the point cloud is real or generated with
a particular model, i.e., PDGN [17].
Challenges. This attribution problem leads to non-trivial chal-
lenges. First, to attribute data to their sources, existing efforts [54]
on synthetic images often assume that all sources at both train-
ing time and testing time are known, i.e., close-world attribution.
However, in the real-world scenario, point clouds from unknown
sources are often fused with those of known sources at the test time.
We need to identify point clouds from known sources and recog-
nize those from unknown sources. We term this more challenging
scenario as open-world attribution (see formulation in Section 4).
Secondly, different from synthetic images that can be sampled with
one model, e.g., StyleGAN [18], for synthetic point clouds, training
a new generative model is required for every shape. This suggests
that with a single attribution model, we typically trace the source
of point clouds if they share the same shape. However, enumerating
all shapes can be resource-consuming. Similar to unknown sources,
point clouds of new (unseen) shapes are often fused with seen
shapes during source attribution. The above two points bring chal-
lenges to the source attribution of point clouds and are investigated
in our study.
Our Work. We propose a (synthetic) point cloud detection and
attribution framework, FakePCD, to verify the authenticity of point
clouds and trace their sources. The idea is intuitive. We first learn
the distribution of point clouds from different sources and extract
point cloud features. Then, given a new point cloud, we calcu-
late the feature distance and assign it to the specific source based
on a threshold-based criterion. Specifically, FakePCD comprises
three stages: close-world pre-training, open-world pre-training, and
threshold-based assignment. We train the encoder to extract point
cloud features in a fully supervised manner in the first stage to
solve the close-world attribution problem. Based on the pre-trained
encoder, we train the network in a supervised contrastive manner
in the second stage to learn more generalizable features. Finally, in

the threshold-based assignment stage, we measure the distances of
a testing example and each type of anchors (fixed point clouds from
known sources) as the attribution signal. We classify a point cloud
as an unknown source if the attribution signal is stronger than a
threshold. Otherwise, we attribute it to the closest known source.

To evaluate FakePCD’s performance, we construct a dataset of
99K point clouds from six sources (five generative models + real-
world collection), covering six common shapes, namely, Airplane,
Car, Chair, Bench, Cabinet, and Lamp. We then categorize these
point clouds along two dimensions: known and unknown sources,
seen and unseen shapes. Point clouds of known sources and seen
shapes serve as training data for FakePCD to learn point cloud
features. In close-world attribution, we apply FakePCD to attribute
point clouds to known sources. In open-world attribution, we eval-
uate FakePCD’s performance both in identifying point clouds from
known sources and recognizing ones from unknown sources. In
both attribution scenarios, we further study the FakePCD’s gener-
alizability to attributing point clouds of unseen shapes.

Additionally, we explain how FakePCD attributes point clouds
using critical points [35], a set of points within a point cloud that can
significantly affect a model’s prediction. Using these critical points,
we introduce a novel approach to visualize the unique patterns
in point clouds from different sources. Specifically, we calculate
critical points for each source and project them to the x-y plane as
depth images. By stacking a certain number of depth images from
the same source, we observe unique patterns associated with each
generative model, namely, fingerprints.
Results. Experimental results show that FakePCD perfectly iden-
tifies point clouds from known sources in close-world attribution. It
also achieves an accuracy ranging from 0.72 to 0.79 when attribut-
ing point clouds of unseen shapes, which are not included in its
training data. For open-world attribution, FakePCD attributes point
clouds to known sources with 0.82-0.98 accuracy and to unknown
sources with 0.73-1.00 accuracy. In this scenario, FakePCD demon-
strates generalizability when attributing point clouds of unseen
shapes, especially from known sources, with 0.58-0.84 accuracy.
Interestingly, we find that if an unseen shape closely resembles
seen shapes in the training data, for example, Bench (unseen) being
similar to Chair (seen), then the attribution performance for Bench
tends to be higher compared to other unseen shapes. Furthermore,
we visualize the unique patterns associated with each source with
examples of Airplane, Car, and Chair. We find that FakePCD fo-
cuses on different areas within point clouds depending on their
sources.
Contributions. Our contributions are summarized as follows:

• We provide the first work on point cloud authenticity and
source attribution both in the close-world and open-world
settings.

• We propose FakePCD to attribute a given point cloud to its
source and recognize open-world examples. We also explore
FakePCD’s generalizability in attributing point clouds of
unseen shapes.

• We introduce an approach to visualize the unique patterns
(fingerprints) within point clouds for different sources. This
visualization illustrates how FakePCD attributes point clouds
back to their respective sources.
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2 PRELIMINARY
2.1 Point Clouds
A point cloud is a set of discrete points 𝑂 . Each point 𝑜 ∈ 𝑂 is
a tuple that represents the 𝑥 , 𝑦, and 𝑧 coordinates. These points
are recorded and connected to form the surface of a 3D object in
Euclidean space (see Figure 1 for illustration of point clouds). They
can be captured through various methods, such as laser scanning
or photogrammetry (e.g., LiDAR and Kinect). Due to their ability
to preserve geometric information in 3D space, they are commonly
used in fields such as computer graphics [15], manufacturing [38],
robotics [34], autonomous driving [28], remote sensing [24], and ar-
chitecture [29]. The common research tasks on point clouds include
classification (categorizing points in a point cloud into semantic
classes, e.g., aircraft) [35], segmentation (dividing a point cloud into
smaller semantic pieces, e.g., wings) [35], reconstruction (creating a
3D mesh or surface from a point cloud) [46], registration (aligning
multiple point clouds to a single coherent representation) [34], etc.

2.2 Point Cloud Generative Models
Inspired by the success of generative models in the image do-
main [42], generative models for point clouds have emerged as
a type of machine learning algorithms that can generate synthetic
3D point clouds [2, 17, 21, 31, 52]. These models are trained on large
datasets of real-world point clouds to learn the underlying patterns
and distributions that govern the generation of 3D shapes. The main
challenge in this field is to synthesize high-quality point clouds that
are diverse and faithful to the training data. To address the chal-
lenge, several types of generative models for point clouds have been
developed, including Variational Autoencoders (VAEs) [21], Gener-
ative Adversarial Networks (GANs) [17], normalizing flow [52] and
diffusion models [31]. These models tend to focus on improving the
quality of generated shapes, enhancing efficiency, and extending
the models to handle more complex data distributions. We refer
the audience to Shi et al. [41] for a comprehensive survey of this
research area.

3 THREAT MODEL
3.1 Adversary’s Goal
In this paper, we consider adversaries that have the expertise to train
and run point cloud generative models. Their goal is to produce fake
point clouds with generative models and use them for malicious
purposes. The application scenarios of these fake point clouds are
introduced in Section 3.2). For instance, if their goal is to replace
the original 3D design with generated point clouds to disrupt the
manufacturing process, the adversary can launch (or outsource)
cyber attacks to breach the targeted manufacturing system.

3.2 Application Scenarios
We consider three real-world application scenarios where point
clouds might be used maliciously and source attribution can be an
effective approach to identify the misuse. Their respective details
are outlined below.

• Inauthentic Point Cloud Scanning. In this scenario, the
data collector anticipates genuine point clouds acquired

through terrestrial laser scanning (TLS). The contractor, in-
stead of scanning the real objects, provides artificially gen-
erated point clouds to save costs. These fake point clouds
may be inferior in quality and can lead to models learning
imprecise distributions [25, 49].

• Manufacturing Disruption. In this scenario, the adversary
uses the generated point clouds to disrupt the manufactur-
ing process. Take additive manufacturing (AM), commonly
known as 3D printing in the consumer space, for instance.
It relies on accurate 3D models for the printing process, al-
lowing the machine to build the object layer by layer [12].
Due to the digital nature of AM (a network that connects
computers and robots), the adversary may attack the AM
supply chain via cyber-attack and replace the original design
with the generated point clouds. Note that these generated
point clouds are visually close to the real designs, which may
not be noticed by operators due to automation. Nonetheless,
AM processes are sensitive to small deviations from the
design [36]. Consequently, the adversary can compromise
the quality of the print parts and introduce undesired defi-
ciencies. This practical scenario has been discussed in Ye et
al. [53]

• Counter Intelligence Surveillance and Reconnaissance.
In this scenario, the adversary leverages spoofing attacks
on LiDAR sensors [4, 45] to inject generated point clouds
(e.g., fake aircraft) in the LiDAR field of view of unmanned
aerial vehicles (UAVs). This attack undermines Intelligence
Surveillance Reconnaissance (ISR) systems, misleading real-
world operations with falsified military intelligence. Here,
we do not consider the case that the adversary may remove
point regions from LiDAR readings [3] and, consequently,
UAV may not identify the surveillance targets.

3.3 Attribution Capability
To reliably trace the generative models that originally generated
the suspicious point clouds, we assume the following attribution
capabilities.

• Access to Authentic Point Clouds. The attribution frame-
work has access to adequate point clouds that are obtained
from real-world objects. Note that shape information (e.g.,
Car, Airplane) naturally comes with the point clouds. We
denote these point clouds as real point clouds for ease of
presentation in the rest of the paper.

• Access to Existing Generative Models. The attribution
framework has access to a list of known point cloud gener-
ative models. These models are our attribution targets. We
denote these models as sources for ease of presentation in the
rest of the paper. Note that the attribution framework can
trivially generate point clouds from these sources to form
its training data.

In Section 6.3, we show that these two capabilities are sufficient
for the attribution framework to attribute point clouds to even
unknown sources. This makes our attribution framework more
practical in the real world.
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Table 1: Summary of attribution scenarios.

Close-World Attribution Open-World Attribution

Single-Shape a single shape;
known sources

a single shape;
known/unknown sources

Multi-Shape seen/unseen shapes;
known sources

seen/unseen shapes;
known/unknown sources

4 ATTRIBUTION PROBLEM FORMULATION
To detect whether a point cloud is generated or collected from the
real world, we solve this problem by attributing point clouds to
the corresponding sources. As mentioned in Section 1, two major
factors affect the attribution difficulty - settings (i.e., close-world
attribution or open-world attribution) and shapes. We outline them
below.

Settings. Formally, assume there are K known sources labeled
as {𝐺1,𝐺2, ...,𝐺K } and one additional Real class labeled as 𝑅. Each
source has 𝑁 point clouds sampled from a given shape (e.g., Car).
Given a point cloud 𝑥𝑖 ∈ 𝑋 and its corresponding source 𝑦𝑖 , we
consider the following settings when conducting the attribution:

• Close-World Attribution: If 𝑥𝑖 is a point cloud with 𝑦𝑖
from the existing labels {𝐺1,𝐺2, ...,𝐺K , 𝑅}, the attribution is
considered successful if the predicted label 𝑦𝑖 = 𝑦𝑖 .

• Open-World Attribution: If 𝑥𝑖 is a point cloud with 𝑦𝑖 ∉
{𝐺1,𝐺2, ...,𝐺K , 𝑅}, the attribution is considered successful
if 𝑦𝑖 = 𝐺𝐾+1, where 𝐺𝐾+1 denotes the unknown source.

Shape. The shapes of point clouds 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚} in the train-
ing data also exert a great influence on the attribution outcome.
Intuitively, the attribution performance is likely to be better on the
point clouds of seen shapes (in the training data) compared to un-
seen shapes. To explore the model’s generalizability in attributing
point clouds of unseen shapes, multi-shape modeling should also
be considered. For each type of setting, we further consider the
following two scenarios.

• Single-Shape Scenario: The attribution model is trained
and tested on𝑋𝑠𝑖 , where𝑋𝑠𝑖 denotes the point clouds dataset
of a single shape 𝑠𝑖 . The attribution model is regarded as
single-shape model, as it simply attributes point clouds of the
same shape, e.g., Airplane.

• Multiple-Shape Scenario: The attribution model is trained
on 𝑆 ′ = {𝑋𝑠1 , ..., 𝑋𝑠𝑙 } and tested on 𝑆 ′′ = 𝑆 ′∪{𝑋𝑠𝑙+1 , ..., 𝑋𝑠𝑧 }
where 𝑙 < 𝑧 ≤ 𝑚. We regard it as multiple-shape model,
which attributes point clouds of multiple shapes simultane-
ously including unseen ones. For instance, our attribution
model is trained on Airplane, Car, and Chair. At test time,
we attribute an unseen Bench point cloud to its source.

Summary. We consider four attribution scenarios in the paper,
which are summarized in Table 1. Specifically, we perform close-
world attribution and open-world attribution in both the single-
shape scenario and multiple-shape scenario respectively.

5 ATTRIBUTION FRAMEWORK
5.1 Overview
We present the attribution framework of (synthetic) point clouds,
FakePCD. Figure 2 illustrates the workflow of FakePCD. The main
idea of our framework is to train an encoder to capture the feature
distance among different sources. The point cloud is then assigned
to a source based on a threshold criterion. Concretely, the frame-
work is composed of three stages and takes all the aforementioned
four scenarios into account.
Close-World Pre-training (Section 5.2). Our attribution model
consists of an encoder 𝑓 and a classifier 𝑔, which is trained in a
fully supervised manner. This stage alone can deal with the close-
world attribution problem in both single-shape and multiple-shape
scenarios in our evaluation. It also serves as the stepping-stone
for open-world attribution. The process is illustrated in Part A of
Figure 2.
Open-World Pre-training (Section 5.3). In this stage, we employ
the supervised contrastive learning approach [19] to address the
point cloud attribution problem. The attribution model in this stage
consists of the same encoder 𝑓 and a projection head ℎ . Each point
cloud is augmented via point cloud transformations to create its
augmented version. We then feed both point clouds to the two
identical models with sharing weights. Based on the pre-trained
encoder from the first stage, we continue pre-training the encoder
𝑓 with supervised contrastive loss. The process is illustrated in Part
B of Figure 2.
Threshold-Based Assignment (Section 5.4). We first preserve
the open-world pre-trained encoder 𝑓 and projection head ℎ in
the attribution model. We then build an anchor set that contains
a small set of point clouds from known sources. Given a testing
sample, we obtain its feature vector from the attribution model and
then measure the distance to each example in the anchor set. We
then average these distances to obtain a mean distance value for
each source. Using a threshold-based criterion (see Section 5.4), we
assign the example to one of the existing sources or a new one
(i.e., the unknown source). The process is illustrated in Part C of
Figure 2.
Note. FakePCD is a framework. The users can use or fine-tune
different encoders to instantiate their attribution models. For ease
of presentation, we use an attribution model to describe technical
details in different stages in this section, then use FakePCD to
describe evaluation results in Section 6.

5.2 Close-World Pre-training
We train the attribution model that is composed of an encoder 𝑓
and a classifier 𝑔 in a fully-supervised manner. The parameters of
the attribution model (encoder + classifier) are optimized based on
the cross-entropy loss. Employing supervised learning with cross-
entropy loss is a primary solution for addressing closed-world clas-
sification problems. We resolve the close-world attribution problem
in both single-shape and multiple-shape scenarios in this stage.

5.3 Open-World Pre-training
Supervised learning generally does not yield good results in open-
world attribution, especially under a threshold-based criterion, as it
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Figure 2: Workflow of FakePCD. “E+P” denotes the attribution model comprised of an encoder and a projection head. In the
close-world pre-training stage, we train the attribution model in a fully supervised manner to solve the close-world attribution.
In the open-world pre-training stage, models learn more differentiated point cloud features by supervised contrastive training.
Threshold-based assignment enables us to attribute a point cloud to its source. By selecting point clouds of one-shape or
multi-shape as the training dataset, this framework adapts to all the scenarios introduced in Section 4.

is not designed to handle open-world data. Our initial investigations
show that the attribution model, when trained in a fully supervised
manner, tends to misclassify point clouds from unknown sources
to known ones with overwhelmingly high probabilities (see Sec-
tion 6.3). Supervised contrastive learning [19], on the other hand,
adapts the self-supervised contrastive approach to the supervised
setting. With this learning paradigm, we first create an augmented
version for each point cloud in the training set. We then feed both
original and augmented point clouds to the encoder and projection
head to obtain feature vectors. We optimize the encoder and pro-
jection head to maximize the similarity between feature vectors
of positive pairs (same labels) while minimizing the similarity for
negative pairs (different labels). We use the supervised contrastive
loss (L) [19] to formulate the optimization process.

𝐿 = min
𝜃 𝑓 ,𝜃ℎ

( ∑︁
𝑥𝑖 ∈X

−1
|P(𝑥𝑖 ) |

∑︁
𝑝∈P(𝑥𝑖 )

log
exp (𝑧𝑖 · 𝑧𝑝/𝜏)∑

𝑎∈A(𝑥𝑖 ) exp (𝑧𝑖 · 𝑧𝑎/𝜏)

)
(1)

X represents the training set that contains original point clouds
and their augmented versions. A(𝑥𝑖 ) ≡ X\𝑥𝑖 , denotes the set of all
examples excluding 𝑥𝑖 . P(𝑥𝑖 ) ≡ {𝑝 ∈ A(𝑥𝑖 ) : 𝑦𝑝 = 𝑦𝑖 } is the positive
set containing examples with the same label as 𝑥𝑖 . 𝑧𝑖 = ℎ(𝑓 (𝑥𝑖 )) is
the output of the projection head, i.e., the feature vector of 𝑥𝑖 . 𝜏 is
the temperature scaling parameter.

We apply three types of augmentations commonly used with
point clouds: translation, jittering, and rotation. Translation moves
the origin of coordinates and builds a new coordinate frame. Jitter-
ing adds small Gaussian noise to the coordinates of points. Rotation
turns point clouds with random angles along x, y, and/or z axis.
Practically, when calculating feature vectors, we apply two identical
encoders and projection heads, each processing either the original

point clouds or the augmented ones. During the optimization, we
keep one pair of the encoder and projection head frozen and only
update the other pair (see Figure 2). Note that the encoder can be
randomly initialized or initialized with the checkpoint we obtained
from the close-world pre-training stage. Finally, the encoders learn
differentiated and generalized point cloud features. Based on these
feature vectors, we further introduce a threshold-based criterion to
assign point clouds to their respective sources.

5.4 Threshold-Based Assignment
Wedesign the following threshold-based criterion to assign a testing
example to either a specific known source or an unknown source.
That is, if its distances to all known sources are larger than a threshold,
we recognize the example as a sample from an unknown source;
otherwise, we assign it to the closest known source. To this end, we
first randomly sample point clouds fromK known sources, denoted
as Anchor Set, with each source containing 𝑁 point clouds. These
anchor point clouds are then forwarded to the attribution model
and obtain the feature vectors. Given a testing point cloud, 𝑥𝑖 , we
measure the Euclidean distance between its feature vector (𝑧𝑖 ) and
all feature vectors derived from the anchor set. We then group
these distance values into K clusters (C𝑗 ) based on their sources
and calculate a mean distance value, 𝑑 𝑗 (𝑧𝑖 ), for each source (𝑦 𝑗 ).
We compare these mean values to a selected threshold to attribute
the point clouds.

𝑑 𝑗 (𝑧𝑖 ) =
1

|C𝑗 |
∑︁
𝑥 𝑗 ∈C𝑗

∥𝑧𝑖 − 𝑧 𝑗 ∥2 (2)
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Threshold Selection. We select thresholds based on the intra-
cluster distances of K clusters in the anchor set. Intra-cluster dis-
tances are the distances between examples within the cluster to the
cluster centroid. For example, for point clouds in the cluster (C𝑗 ),
we calculate the Euclidean distance between the centroid and all
point clouds in this cluster. We calculate the intra-cluster distances
for K clusters and obtain K distance sequences, each representing
the compactness of a specific source. An ideal threshold should be
identified within these sequences. It should enable the assignment
of a testing example from known sources to one of the K clusters,
while also assigning a testing example from unknown sources to
a new source. However, the threshold selection is non-trivial as
these K distance sequences might have different distributions. To
address this, we introduce another parameter, 𝑃-percentile, to con-
trol the distance threshold. The distance threshold is the smallest
𝑃-percentile value among all distance sequences. As such, threshold
selection is transformed into a percentile selection problem. Note,
multiple thresholds can be selected, with one corresponding to each
cluster. Here, we use a unified threshold for simplicity, and this
approach has already proven effective in Section 6.

6 EVALUATION
6.1 Experimental Setup
Real Point Cloud Dataset. For real-world collected point clouds,
we use the dataset ShapeNetCore, a subset of ShapeNet [5]. It con-
tains 55 object shapes such as Airplane, Car, Chair, Bench, Cabinet,
and Lamp. We specifically choose these six shapes because they
provide a sufficient number of samples in the dataset, ranging from
1,543 to 7,497 per shape. In contrast, other shapes are underrepre-
sented with only hundreds of samples, making it hard to construct
a sizable dataset. Each point cloud in the dataset is described by
15,000 points. To reduce computation complexity, we follow the
previous studies [21, 35, 48, 52] and downsample each point cloud
to 2,048 points.
Syntheic Point Cloud Dataset. We generate synthetic point
clouds using five generative models: PointFlow [52], ShapeGF [2],
Diffusion [31], PDGN [17], and SetVae [21]. These models cover
a wide spectrum of generative techniques including Variational
Autoencoders (VAEs) [2, 21], Generative Adversarial Networks
(GANs) [17], normalizing flow [52] and diffusion [31]. We train
each generative model using the real point clouds and generate
4,000 point clouds for Airplane, Car, and Chair, and 1,000 point
clouds for Bench, Cabinet, and Lamp.

• PointFlow. We use PointFlow’s official implementation.2
We set 128 as the feature dimension in the encoder and 512
as the hidden dimension in the CNF decoder. We train the
generative models for 4,000 epochs with the Adam optimizer
and set the initial learning rate to 0.002 which decays linearly
after 2,000 epochs. When sampling generative examples for
6 shapes, we generate shapes and points conditioned on the
shape from Gaussian priors.

• ShapeGF. We use ShapeGF’s official implementation.3 In
detail, we first train the auto-encoder models for distribution

2https://github.com/stevenygd/PointFlow
3https://github.com/RuojinCai/ShapeGF

learning for 2,000 epochs and then train the corresponding
generators for 5,000 epochs. Following the default config-
uration, the auto-encoder adopts 128 as the dimension of
the latent code, and the generator takes a 256-dimensional
vector from the Gaussian distribution and outputs the final
256-dimensional latent code. Adam optimizer is used with a
learning rate of 0.0001. We acquire point clouds of six shapes
individually by sampling the corresponding generators.

• Diffusion. We generate point clouds based on the officially
released code.4 We select the flow-based model and set the
latent dimension as 256. We then use the Adam optimizer to
train the diffusion model for 80,000 iterations with an initial
learning rate of 0.002. When generating new point clouds,
we sample from the generative model with a prior drawn
from a Normal distribution.

• PDGN. We use PDGN’s official implementation.5 PDGN
adopts a progressive GAN model with multiple generators
and discriminators. We use multiple resolutions of (256, 512,
1024, and 2048) point clouds from a 128-dimensional latent
vector for the generator based on the original setting. Four
PointNet-like modules serve as the discriminators. We train
the model for 600 epochs with Adam optimizer and an initial
learning rate of 0.0001. In the generating process, we sample
point clouds by feeding noise vectors from the Gaussian
distribution to the generator and record the results at the
highest resolution.

• SetVae. We use the official implementation of SetVae.6 Set-
Vae model has an encoder with Induced Set Attention Blocks
and a generator with Attentive Bottleneck Layers. The pa-
rameters in these components are shared during both the
generation and inference processes. We train the model for
8,000 epochs with the Adam optimizer and an initial learning
rate of 10−3 that linearly decays to 0 after halfway through
the training period.

Dataset Overview. Overall, we construct a dataset consisting
of 99,280 point clouds from six sources (real-world collection +
five generative models), covering six common shapes: Airplane,
Car, Chair, Bench, Cabinet, and Lamp. We use the 3D visualization
toolkit PyVista7 for point cloud rendering. Figure 12 in the Appen-
dix displays generated point cloud examples of six shapes from
each source.

Experimental Settings. We split the above dataset into training
and test sets at a ratio of 0.6 for each source and shape. Further-
more, we leave out PDGN and SetVae as unknown sources and
take the remaining four as known sources. Regarding the encoder,
we adopt the feature extractor in PointNet [35] and DGCNN [48].
The classifier and projection head connected to the encoder is a
multilayer perceptron (MLP). For the single-shape scenario, we
train the attribution model on the Airplane, Car, and Chair indepen-
dently and only test on the point clouds of the same shape. For the
multiple-shape scenario, we train on three mixed shapes: Airplane,

4https://github.com/luost26/diffusion-point-cloud
5https://github.com/fpthink/PDGN
6https://github.com/jw9730/setvae
7https://docs.pyvista.org/

https://github.com/stevenygd/PointFlow
https://github.com/RuojinCai/ShapeGF
https://github.com/luost26/diffusion-point-cloud
https://github.com/fpthink/PDGN
https://github.com/jw9730/setvae
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Figure 3: Attribution performance in multiple-shape scenar-
ios when all the sources are included in the model’s training
set. We report the accuracy (left figure) and F1 score (right
figure).

Car, and Chair, and test on point clouds from all six shapes. Other
experimental settings are outlined in their respective evaluations.
Evaluation Metrics. We measure the attribution performance for
tracing both known and unknown sources, using the metrics of
accuracy and F1 score.

6.2 Close-World Attribution
Setup. The attribution model in this scenario is composed of an
encoder and a classifier. We employ a 3-layer MLP with (512, 256,
K) neurons respectively as the classifier, where K = 1 + 3 with
the Real source and three types of generative models (PointFlow,
Diffusion, and ShapeGF). The above selection of known sources is
consistent with the open-world attribution. The model is trained
on 200 epochs at a batch size of 32. SGD is adopted with a learning
rate of 0.1 and momentum of 0.9 to optimize the training procedure.
Single-Shape Results. We calculate the accuracy and F1 score
when FakePCD attributes point clouds of a single shape, i.e., Air-
plane, Car, or Chair. We find that both FakePCD-PointNet and
FakePCD-DGCNN perfectly attribute point clouds of all three
shapes (accuracy=1, F1 score=1). This implies that the feature dif-
ferences of point clouds from known sources can be well captured.
Multiple-Shape Results. We further test the performance of the
above models on point clouds of unseen shapes, i.e., Bench, Cabinet,
or Lamp. Figure 3 shows that FakePCD with both encoders still
perfectly attribute point clouds of three seen shapes. FakePCD
also achieves an accuracy between 0.68 and 0.92, and an F1 score
ranging from 0.64 to 0.92 on unseen shapes. The results imply that
the learned distinction among different sources can be transferred to
unseen shapes. This also suggests that building a unified attribution
model that is effective across various shapes is promising, especially
when the training dataset contains a sufficient number of point
clouds from diverse shapes. We also find that the DGCNN backbone
outperforms the PointNet backbone in two out-of-shape shapes.
We hypothesize that it is due to the robustness of the Graph Neural
Network (GNN) employed by DGCNN, which better preserves the
local spatial relationship among points.
Takeaways. FakePCD can reliably attribute seen point clouds to
known sources. Moreover, the underlying model used by FakePCD
learns sufficient knowledge during the close-world pre-training
stage (see Part A in Figure 2) to attribute unseen shapes to known
sources with decent accuracy.
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Figure 4: 𝑃−percentile selection when attributing point
clouds (Car) using PointNet and DGCNN. A larger
𝑃−percentile leads to increased accuracy for known
sources while decreased accuracy for unknown sources. The
optimal trade-off is achieved at 95%.

6.3 Open-World Attribution
Setup. The attributionmodel in this scenario consists of an encoder
and a projection head. For the encoder, we initialize the parameters
with the checkpoint trained in close-world attribution. For the pro-
jection head, we adopt a 2-layer MLP with (512, 128) neurons. The
model is trained for 300 epochs using an early stopping strategy
and a batch size of 20. SGD is employed with a learning rate of
0.1 and a momentum of 0.9 to optimize the training procedure. In
the assignment phase, we first construct the Anchors Set contain-
ing 100 random examples from the training set for each known
source. For each unknown source, we use the test set of each shape
introduced in Section 6.1. To determine the optimal threshold, we
randomly sample 100 point clouds from the test set as a valida-
tion set and evaluate FakePCD’s performances on it across various
𝑃−percentiles. Take the shape Car as an example (see Figure 4), with
a larger 𝑃−percentile, the accuracy for known sources increases,
while it decreases for unknown sources. The optimal trade-off is
achieved at 95%. Therefore, we adopt 95% as the optimal threshold
for point clouds of Car and apply it to the remaining examples in
the test set. We report the optimal thresholds for all six shapes in
Table 3. We find that these optimal thresholds range from 70% to
95%, tending to be higher for seen shapes (75%-95%) and lower for
unseen shapes (70%-75%). In practical scenarios, it is advisable to
use thresholds within this range when a validation set of unknown
sources is not available.
Baselines. Due to the absence of previous work in synthetic point
cloud attribution (especially in open-world attribution), we compare
our framework with several baselines that potentially work.

• Fully-Supervised Training Approach We train the Point-
Net encoder and DGCNN encoder in a supervised manner
and leverage the logit probability for attribution. The models
are trained for 200 epochs with a batch size of 32. We use
Adam optimizer with a learning rate of 0.001. In the thresh-
old assignment stage, we select the lowest logit probability
of the training data in the ground-truth class, e.g., 0.95, and
use it as a criterion to identify the sources of point clouds.

• Projection-Based ApproachWe project 3D point clouds
onto 2D images and utilize a ResNet50model to extract visual
features. For each point cloud, we obtain three projections
and concatenate their respective image features into one
final feature, which is then fed into the final classification
layer. The ResNet50 model is trained for 200 epochs with a
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Table 2: Attribution performance (accuracy and F1 score) of FakePCD and baselines across three shapes. “P” and “D” denote the
encoder (Pointnet and DGCNN). “Known” and “Unknown” indicate the attribution performance for known and unknown
sources.

Airplane Car Chair

Method Acc F1 score Acc F1 score Acc F1 score
Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Fully supervised 0.93|0.00 0.95|0.00 0.93|0.00 0.96|0.00 0.87|0.00 0.90|0.00
Projection-based 0.66|0.04 0.69|0.07 0.88|0.12 0.90|0.20 0.88|0.73 0.93|0.84
Siamese-P 0.14|0.25 0.19|0.40 0.83|0.83 0.90|0.90 0.88|0.80 0.92|0.90
Siamese-D 0.82|0.29 0.89|0.45 0.75|0.53 0.75|0.69 1.00|0.43 1.00|0.60
FakePCD-P 0.82|0.78 0.89|0.87 0.95|1.00 0.98|1.00 0.90|0.99 0.95|1.00
FakePCD-D 0.82|0.73 0.90|0.85 0.96|0.99 0.98|1.00 0.96|1.00 0.98|1.00
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Figure 5: Attribution performance in the open-world scenario with unknown sources and unseen shapes. We report the accuracy
and F1 score to evaluate FakePCD-PointNet and FakePCD-DGCNN respectively. “Seen Shapes” shows the average accuracy of
Airplane, Car, and Chair.

Table 3: The Optimal 𝑃−percentile calculated with the vali-
dation set of each shape.

Airplane Car Chair Bench Cabinet Lamp

FakePCD-P 75% 95% 90% 70% 75% 70%
FakePCD-D 85% 95% 95% 70% 70% 70%
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Figure 6: Accuracy of FakePCD in differentiating point clouds
from two unknown sources: SetVae and PDGN.

batch size of 128, using Adam as the optimizer and a learning
rate of 0.01. Regarding threshold assignment, we adopt the
same selection strategy as that used in the fully-supervised
training approach described above.

• Siamese Training Approach As one type of contrastive
learning paradigm, a Siamese network learns to differentiate
pairs of inputs [6]. A Siamese network consists of two iden-
tical encoders with the sharing parameters. It takes in a pair

of point clouds as input and outputs the logit probability that
these originate from the same source. In every pair of point
clouds, there is an equal probability of 50% of originating
from the same source and 50% from different sources. We
train the Siamese network for 200 epochs with a batch size of
20. We use the Adam optimizer, a learning rate of 0.001, and a
weight decay of 1e-4. In the attribution phase, we randomly
select a pair of point clouds from a known source and a new
source respectively, and the model asserts if they originate
from the same source.

Single-Shape Results. Table 2 shows the comparison result of
baselines and FakePCD across three shapes. FakePCD outperforms
all baselines and consistently achieves high accuracy (0.73-1.00) and
F1 score (0.85-1.00) when recognizing point clouds from unknown
sources. For known sources, FakePCD achieves an accuracy be-
tween 0.82 and 0.96 and an F1 score ranging from 0.89 to 0.98. Take
Car as an example, FakePCD-D achieves 0.98 and 1.00 F1 score on
known and unknown sources respectively, while the best accuracy
score from all baselines is 0.96 and 0.90. The best-performing base-
line is the Siamese training approach, which shows a wide accuracy
range from 0.14 to 1.00, occasionally matching FakePCD in certain
shapes, such as Chair. For fully supervised and project-based base-
lines, we observe good attribution performance for known sources,
however, they often fail to identify point clouds from unknown
sources. This result suggests that contrastive learning (supervised
contrastive learning in FakePCD and the Siamese baseline) has
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a better performance in identifying open-world examples com-
pared to the supervised training paradigm (fully supervised and
projection-based baselines).

In the above evaluation, we use the optimal thresholds deter-
mined in Section 6.1. They are determined with the respective vali-
dation set, which has the same distribution as the testing examples.
In the real world, this setting is often not realistic, as the validation
set is not always available. To evaluate whether FakePCD can gener-
alize to more unknown sources, we introduce two more generative
models and test FakePCD’s performance on these new examples.
The result reveals that FakePCD can still recognize point clouds
from new unknown sources with an F1 score between 0.71-0.90.
We present the details in Appendix A.
Multiple-Shape Results. Here, we evaluate the most challenging
task: attributing unseen shapes to unknown sources. This scenario
inevitably impacts attribution accuracy due to two-fold distrac-
tions: the unknown sources and the divergence in shape distri-
bution caused by unseen shapes. The results are depicted in Fig-
ure 5. Although FakePCD fails to attribute unseen point clouds
to unknown sources, it manages to attain decent performance for
known sources (0.58-0.84 accuracy). For example, when attributing
the unseen shape Bench, which resembles the shape of a Chair,
the accuracy reaches 0.84 with FakePCD-PointNet and 0.72 with
FakePCD-DGCNN for known sources.
Multiple Unknown Sources Differentiation. In the above eval-
uation, FakePCD classifies point clouds from all unknown sources
into a single class, i.e., Unknown. We then investigate whether
FakePCD can differentiate various unknown sources (PDGN and
SetVae in our evaluation). To this end, we employ Gaussian clus-
tering on the point cloud feature vectors from these two unknown
sources. Specifically, we input these feature vectors into a Gaussian
mixture model with two components to obtain the predicted clus-
ters. From these clusters, we derive the classification results for the
two sources. Figure 6 presents the differentiation results of three
observed shapes (Airplane, Car, and Chair) from different unknown
sources. The differentiation accuracy scores exceed the random
guess baseline (0.5) for all three shapes. For example, FakePCD-
PointNet achieves an accuracy of 0.75 in separating Chair features
between PDGN and SetVae. This result demonstrates that FakePCD
may further capture the differences among unknown sources.
Visual Analysis. We use t-SNE to project the point cloud features
obtained from FakePCD to a 2-dimensional space. The visualiza-
tions are shown in Figure 13 and Figure 14 in the Appendix. Among
all three shapes, Car and Chair demonstrate satisfactory clustering
performances, where embedding projections from different sources
are distinguishable from each other. We notice that it is difficult
to separate Airplane point clouds between PointFlow and SetVae.
Nevertheless, the projections from two unknown sources are sepa-
rated for all three shapes, indicating that FakePCD can recognize
more than one unknown source.
Takeaways. Based on the above analysis, we have several take-
aways: 1) FakePCD can reliably attribute seen shapes to both
known and unknown sources; 2) It can further distinguish point
clouds from multiple unknown sources; 3) The attribution ability
can generalize to point clouds of unseen shapes, in particular, those
unseen shapes that are visually close to the seen ones.

7 EXPLAINABLE ATTRIBUTION
In this section, we discuss the nature of source attribution and
introduce an approach to visualize the unique patterns in point
clouds associated with each source. This explains how FakePCD
recognizes point clouds from different sources.

7.1 Behind the Attribution
Generative models synthesize fake point clouds by sampling from
a distribution that is learned using real-world data. The sampled
distribution, in practice, is often biased toward the real-world data
distribution. Take Generative Adversarial Neural Network (GAN)
as an example. Due to the imperfect convergence during the train-
ing process, the generator and the discriminator often fall into
the sub-optimal solution, such that GAN only partially describes
the data distribution from the real world. The bias between the
sampled distribution and real distribution has made the source at-
tribution possible. The attribution model captures the unique bias
by transforming point clouds into feature vectors and learning to
differentiate them in a supervised or self-supervised fashion.
Critical Points. To explain how the attribution model differenti-
ates point cloud feature vectors, we introduce critical points [35],
which is defined as a set of points that significantly affect the feature
vectors. Critical points contain the most geometric and semantic
information about point clouds. We identify critical points of a
point cloud by tracing the points that contribute the most to the
maximum pooled feature obtained from PointNet. To ensure permu-
tation invariance, which states that the order of points is invariant
to the feature extraction, PointNet calculates the individual point
feature or local geometric feature and then aggregates the local
features into a global descriptor with a symmetric max-pooling
function. For instance, PointNet transforms a point cloud of dimen-
sion (2048, 3) into a feature map of dimension (2048, 1024) before
down-sampling into a global feature whose length is 1024 by max-
pooling. We trace and record the points of these largest values in
the feature map (input of the max-pooling layer) as critical points.
Examples of critical points are demonstrated in Figure 15 in the
Appendix. In this figure, we present three columns of point clouds,
each representing a different type of airplane. Comparing the criti-
cal points within one column, we can see how FakePCD identified
different points/areas in point clouds from different sources. More
details on selecting these examples are presented in Appendix B.

7.2 Fingerprint Visualization
Fingerprints are persistent and identifiable patterns that could be
distinguished from other sources/models. There are multiple ways
to build fingerprints of image generative models [1, 54]. However, to
our knowledge, none of the existing work explores the fingerprint
associated with point cloud models. Here, we introduce how to
visualize the fingerprints of the point cloud generative models and
verify the uniqueness of the fingerprints qualitatively.

To build fingerprints, we first extract the critical points during
the attribution process. Specifically, we randomly select 100 sets
of critical points of a generative model (or collected from the real
world) of the same shape, e.g., 100 airplanes. We then project the
critical points to the same plane, e.g., x-y plane, and obtain 100 depth
images. By stacking these depth images to form an average depth
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Real PointFlow Diffusion ShapeGF PDGN SetVae

Figure 7: Visualization of six fingerprints on three shapes: Airplane, Car, and Chair, from top to bottom. These fingerprints are
built by stacking 100 depth images projected from critical points from each source.
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Figure 8: Attribution performances on known and unknown sources when the threshold is increasing. From left to right, we
display the attribution results of Airplane, Car, and Chair.

image that shows the frequency spectra, we extract and visualize
the unique patterns of each source.

Fingerprints of six different sources on three shapes are visu-
alized in Figure 7. For the same shape shown in each row, every
source presents a unique pattern that distinguishes it from other
sources. Take Airplane from the Real source, as an example, points
at the airplane’s head, end of the wings, and tail have higher fre-
quencies than other areas. An airplane whose critical points set is
similar to this pattern is likely to be attributed to the Real source.
Similarly, for airplanes generated by ShapeGF, the critical points
mainly describe the airplane’s skeleton. Overall, the above analysis
enhances the understanding of how FakePCD conducts the source
attribution task.

8 ABLATION STUDY
In this section, we conduct a series of ablation studies to investigate
how attribution performance can be affected by several factors. We
start with investigating how threshold selection in FakePCD influ-
ences the performances of both close-world attribution and open-
world attribution. Second, we explore whether the feature vector
dimension, i.e., the output dimension of encoding backbones, affects
the attribution performance. In addition, we study the effect of the
close-world pre-training stage in attributing point clouds compared
to performing open-world pre-training from scratch (without the

close-world pre-training stage). Finally, we evaluate the robustness
of FakePCD against common perturbations on the point clouds.
Effect of Threshold Selection. According to our threshold-based
assignment principle, threshold selection can affect the attribution
accuracy of both known sources and unknown sources. Figure 8
shows the trend of attribution accuracy in both settings whenwe en-
large the threshold by increasing the 𝑃-percentile gradually. As the
threshold increases, the attribution accuracy of unknown sources
demonstrates an evident rising trend, as the testing examples are
more inclined to be assigned to known sources. Meanwhile, the
accuracy of identifying known sources exhibits a reversed or steady
trend depending on different shapes. For the attributing result of
Airplane in the first column, we capture a trade-off relation with
the intersection point at the range of 75%-80%. The accuracy on
unknown sources maintains a high level for other shapes that can
be differentiated more easily, and intersection appears after we set
a higher percentile.
Effect of Feature Vector Dimension. We vary the dimension
from 32 to 512 and evaluate the performance of FakePCD on Air-
plane, Car, and Chair. Figure 9 demonstrates the attribution per-
formances on varying dimensions. For shapes such as Car and
Chair, various dimensions do not significantly affect the attribution
performance to a large extent. However, for point clouds that are
relatively hard to differentiate, e.g., Airplane, we obtain the most
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Figure 9: Attribution performances on both known and unknown sources when feature vector dimension is varied. Attribution
performances of Airplane on both worlds are more balanced when the dimension is 128.
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leads to better attribution accuracy when recognizing unknown sources.
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Figure 11: Attribution performances on Car against perturbations. Perturbations include translate, jitter, rotate, and the three
combined. The attribution accuracy on both known and unknown sources is robust against most of the applied perturbations.

balanced attribution performance when the dimension size is 128,
under the same threshold setting. Note that we adopt 128 as the
feature vector dimension in the main experiments, following the
work[19].

Effect of Close-World Pre-training Stage. To study how the
encoder pre-training stage in FakePCD affects the open-world attri-
bution, we compare the attribution performances when the encoder
is randomly initiated or initiated with the parameters updated from
the pre-training stage. Figure 10 displays the comparison results
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of attributing three shapes, i.e., Airplane, Car, and Chair. We vary
the 𝑃-percentile from 85 to 95 to gradually increase the threshold
values. Figure 10 shows that FakePCD with the pre-training en-
coder performs almost equally as well as the training-from-scratch
encoder when attributing data to known sources. However, the
pre-training stage benefits the attribution accuracy of unknown
sources to a certain extent.
Effect of Perturbations. We study the effect of common pertur-
bations on point clouds to evaluate the robustness of FakePCD.
Figure 11 shows the result after we exert different perturbations
on the testing examples. We observe that jitter, rotate, and com-
bined perturbations do not degrade attribution accuracy both on
known and unknown sources, which demonstrates the resistance
of FakePCD to these perturbations. However, we observe a de-
cline when we translate point clouds in different coordinate frames,
especially when the coordinate origin is distant from the old ori-
gin. The conjectured reason is that the point cloud features are
not aligned in the feature space when point clouds are in different
coordinate frames, resulting in a biased distance distribution for
threshold-based attribution.

9 RELATEDWORK
Point Cloud Generation. Generative models of point clouds can
be broadly classified into three categories: Generative adversarial
networks (GAN) based models, flow-based models, and variational
auto-encoders (VAE) based models. To adapt GAN [14] in the point
cloud domain, PC-GAN [26] modifies GAN model to learn a hier-
archical sampling process for point cloud generation. As an end-
to-end generation model, PDGN [17] proposes a progressive GAN
network composed of multiple stacking deconvolution networks.
Flow-based models [44] explicitly model the density function using
continuous normalizing flow [37]. PointFlow [52] generates 3D
point clouds by learning a distribution of distributions and models
each distribution as an invertible parameterized transformation
of 3D points from a prior distribution. Other novel works such as
ShapeGF [2] model a shape by learning the gradient field of its log
density, and then moving the points gradually from a generic prior
distribution towards the surface. Diffusion models [31] generate
point clouds in the perspective of thermodynamics.
Point Cloud Classification. Different from 2D images, 3D point
cloud classification and segmentation tasks cannot be achieved with
standard deep neural network models (i.e., MLP) due to irregular
structure. PointNet [35] is the first work to directly forward raw
point cloud data to the DNN model and obtain global features lever-
aging the symmetric max pooling function. Inspired by PointNet
and convolution modules, follow-up works such as A-CNN [22]
PointGrid [23], ShellNet [58], and PointCNN [27] learn the local
features by adapting convolution modules to point clouds. Graph
neural networks [39] are also applied in learning point cloud fea-
tures.Wang et al. [48] propose DGCNN by constructing local graphs
and learning the edge information that describes the relationships
between a point and its neighbors.
Deepfake Image Detection and Attribution. Deepfake detec-
tion and attribution already emerged in 2D image [30, 54–56, 59]
and text domain [11, 33]. For 2D images, existing work [47, 54, 59]
has demonstrated that deepfake image detection could achieve a

favorable accuracy in the close-world attribution. Wang et al. [47]
and Zhao et al. [59] detect fake images in the close world by train-
ing binary or multi-class classifiers. Ning et al. [54] attribute fake
images to its GAN model by learning and analyzing image finger-
prints. Previous studies [13, 55, 56] on tracing data in the open
world also received much attention. Ning et al. [55, 56] actively
embed fingerprints into generative models, such that open-world
models can be verified by decoding and matching fingerprints. Re-
cently, Sha et al. [40] carry out a systematic study on the detection
and attribution of fake images generated by the latest text-to-image
generation models, including stable diffusion, DALLE-2, GLIDE, etc.
Inspired by the success of deepfake image detection and attribution,
we explore the possibility of detecting fake point clouds in this
work.

10 CONCLUSION
In this paper, we proposed an attribution framework FakePCD to
pioneer the study of point cloud authentication and source attri-
bution. This framework can attribute point clouds to both known
and unknown sources. We also study the generalizability of attri-
bution on different shapes by training single-shape models and
multiple-shape models. Evaluation results verified the effectiveness
of FakePCD when attributing both known and unknown sources,
even shapes that are not included in the training set. The finger-
print visualization we introduced assists in understanding how
our framework recognizes the critical points in point clouds and
captures the uniqueness of each generative model. We hope that
our study can also foster research in driving responsible and trust-
worthy artificial intelligence in point cloud generative models to
prevent them from mischievous use.
Limitations and Future Work. This work has limitations. The
first key area for improvement is to expand the number of genera-
tive models. In the main experiments, we currently only include
four known sources and two unknown sources. In future work, we
will explore incremental learning to incrementally involve more
generative models on top of the trained attribution model. Sec-
ond, when evaluating the performance of FakePCD, we rely on a
small number of samples in the validation set to determine the op-
timal threshold, which is often not realistic in practice. We test two
additional unknown sources in the Appendix and found that the
threshold remains effective, although in a limited capacity, on more
unknown sources. We will continue exploring the best approach to
determine thresholds for recognizing closed-world and open-world
examples.

ACKNOWLEDGMENTS
We thank all reviewers for their constructive suggestions. This
work is partially funded by the European Health and Digital Ex-
ecutive Agency (HADEA) within the project “Understanding the
individual host response against Hepatitis D Virus to develop a per-
sonalized approach for the management of hepatitis D”(D-Solve)
(grant agreement number 101057917).

REFERENCES
[1] https://github.com/flairNLP.
[2] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge J. Belongie,

Noah Snavely, and Bharath Hariharan. Learning Gradient Fields for Shape

https://github.com/flairNLP


FakePCD: Fake Point Cloud Detection via Source Attribution ACM AsiaCCS 2024, 1-5 July, 2024, Singapore

Generation. In European Conference on Computer Vision (ECCV), pages 364–381.
Springer, 2020.

[3] Yulong Cao, S Hrushikesh Bhupathiraju, Pirouz Naghavi, Takeshi Sugawara,
Z Morley Mao, and Sara Rampazzi. You can’t see me: physical removal attacks
on lidar-based autonomous vehicles driving frameworks. In USENIX Security
Symposium (Usenix Security’22), 2022.

[4] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z. Morley Mao. Adversarial Sensor Attack
on LiDAR-based Perception in Autonomous Driving. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 2267–2281. ACM, 2019.

[5] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan,
Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. CoRR abs/1512.03012, 2015.

[6] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
15750–15758. IEEE, 2021.

[7] ZhenDong, Fuxun Liang, Bisheng Yang, YushengXu, Yufu Zang, Jianping Li, Yuan
Wang, Wenxia Dai, Hongchao Fan, Juha Hyyppä, and Uwe Stilla. Registration of
Large-scale Terrestrial Laser Scanner Point Clouds: A Review and Benchmark.
ISPRS Journal of Photogrammetry and Remote Sensing, 2020.

[8] Bertrand Douillard, James Patrick Underwood, Noah Kuntz, Vsevolod Vlaskine,
Alastair James Quadros, Peter Morton, and Alon Frenkel. On the Segmentation
of 3D LIDAR Point Clouds. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2798–2805. IEEE, 2011.

[9] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan I. Nieto, Roland Siegwart, and
Cesar Cadena. SegMatch: Segment based Place Recognition in 3D Point Clouds.
In IEEE International Conference on Robotics and Automation (ICRA), pages 5266–
5272. IEEE, 2017.

[10] Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, and Simone Frintrop.
CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis
on Point Clouds. In IEEE International Conference on Robotics and Automation
(ICRA), pages 11081–11087. IEEE, 2021.

[11] Anastasia Giachanou, Guobiao Zhang, and Paolo Rosso. Multimodal Multi-image
Fake News Detection. In International Conference on Data Science and Advanced
Analytics (DSAA), pages 647–654. IEEE, 2020.

[12] Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani, David Rosen, Brent
Stucker, and Mahyar Khorasani. Additive manufacturing technologies, volume 17.
Springer, 2021.

[13] Sharath Girish, Saksham Suri, Sai Saketh Rambhatla, and Abhinav Shrivastava.
Towards Discovery and Attribution of Open-World GAN Generated Images. In
IEEE International Conference on Computer Vision (ICCV), pages 14094–14103.
IEEE, 2021.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Annual Conference on Neural Information Processing Systems (NIPS), pages
2672–2680. NIPS, 2014.

[15] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. Deep Learning for 3D Point Clouds: A Survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[16] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki
Trigoni, and Andrew Markham. RandLA-Net: Efficient Semantic Segmentation
of Large-Scale Point Clouds. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11105–11114. IEEE, 2020.

[17] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. Progressive Point Cloud
Deconvolution Generation Network. In European Conference on Computer Vision
(ECCV), pages 397–413. Springer, 2020.

[18] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4401–4410. IEEE, 2019.

[19] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, AaronMaschinot, Ce Liu, andDilip Krishnan. Supervised Contrastive Learn-
ing. In Annual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2020.

[20] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo
Kim. Softflow: Probabilistic framework for normalizing flow on manifolds. Ad-
vances in Neural Information Processing Systems, 33:16388–16397, 2020.

[21] Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. SetVAE: Learning
Hierarchical Composition for Generative Modeling of Set-Structured Data. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 15059–
15068. IEEE, 2021.

[22] Artem Komarichev, Zichun Zhong, and Jing Hua. A-CNN: Annularly Convolu-
tional Neural Networks on Point Clouds. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7421–7430. IEEE, 2019.

[23] Truc Le and Ye Duan. PointGrid: A Deep Network for 3D Shape Understanding.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
9204–9214. IEEE, 2018.

[24] Franz Leberl, Arnold Irschara, Thomas Pock, Philipp Meixner, Michael Gruber,
Set Scholz, and Alexander Wiechert. Point clouds. Photogrammetric Engineering
& Remote Sensing, 76(10):1123–1134, 2010.

[25] Ville V. Lehtola, Harri Kaartinen, Andreas Nüchter, Risto Kaijaluoto, Antero
Kukko, Paula Litkey, Eija Honkavaara, Tomi Rosnell, Matti T. Vaaja, Juho-Pekka
Virtanen, Matti Kurkela, Aimad El Issaoui, Lingli Zhu, Anttoni Jaakkola, and
Juha Hyyppä. Comparison of the Selected State-Of-The-Art 3D Indoor Scanning
and Point Cloud Generation Methods. Remote. Sens., 2017.

[26] Chun Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, and Ruslan
Salakhutdinov. Point Cloud GAN. CoRR abs/1810.05795, 2018.

[27] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
PointCNN: Convolution On X-Transformed Points. In Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 828–838. NeurIPS, 2018.

[28] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A. Chapman, Dongpu Cao,
and Jonathan Li. Deep Learning for LiDAR Point Clouds in Autonomous Driving:
A Review. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[29] Shan Liu, Min Zhang, Pranav Kadam, and C-C Jay Kuo. 3D Point Cloud Analysis:
Traditional, Deep Learning, and Explainable Machine Learning Methods. Springer,
2021.

[30] Zhengzhe Liu, Xiaojuan Qi, and Philip H. S. Torr. Global Texture Enhancement
for Fake Face Detection in the Wild. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8057–5066. IEEE, 2020.

[31] Shitong Luo and Wei Hu. Diffusion Probabilistic Models for 3D Point Cloud
Generation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2837–2845. IEEE, 2021.

[32] Anthony Ngo, Max Paul Bauer, and Michael M. Resch. Deep Evaluation Met-
ric: Learning to Evaluate Simulated Radar Point Clouds for Virtual Testing of
Autonomous Driving. CoRR abs/2104.06772, 2021.

[33] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. PinnerSage: Multi-Modal User Embedding Framework for
Recommendations at Pinterest. In ACM Conference on Knowledge Discovery and
Data Mining (KDD), pages 2311–2320. ACM, 2020.

[34] François Pomerleau, Francis Colas, Roland Siegwart, et al. A review of point
cloud registration algorithms for mobile robotics. Foundations and Trends® in
Robotics, 4(1):1–104, 2015.

[35] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 77–85. IEEE,
2017.

[36] Prahalad K Rao, Jia Liu, David Roberson, Zhenyu Kong, and ChristopherWilliams.
Online real-time quality monitoring in additive manufacturing processes us-
ing heterogeneous sensors. Journal of Manufacturing Science and Engineering,
137(6):061007, 2015.

[37] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Nor-
malizing Flows. In International Conference on Machine Learning (ICML), pages
1530–1538. JMLR, 2015.

[38] M Samie Tootooni, Ashley Dsouza, Ryan Donovan, Prahalad K Rao, Zhenyu
Kong, and Peter Borgesen. Classifying the dimensional variation in additive
manufactured parts from laser-scanned three-dimensional point cloud data using
machine learning approaches. Journal of Manufacturing Science and Engineering,
139(9):091005, 2017.

[39] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. The Graph Neural Network Model. IEEE Transactions on Neural
Networks, 2009.

[40] Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-fake: Detection and at-
tribution of fake images generated by text-to-image diffusion models. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2023.

[41] Zifan Shi, Sida Peng, Yinghao Xu, Yiyi Liao, and Yujun Shen. Deep generative
models on 3d representations: A survey. arXiv preprint arXiv:2210.15663, 2022.

[42] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmenta-
tion for deep learning. Journal of big data, 6(1):1–48, 2019.

[43] Zhenbo Song,Wayne Chen, Dylan Campbell, and Hongdong Li. Deep Novel View
Synthesis from Colored 3D Point Clouds. In European Conference on Computer
Vision (ECCV), pages 1–17. Springer, 2020.

[44] Michal Stypulkowski, Maciej Zamorski, Maciej Zieba, and Jan Chorowski. Con-
ditional Invertible Flow for Point Cloud Generation. CoRR abs/1910.07344, 2019.

[45] Jiachen Sun Sun, Yulong Cao Cao, Qi Alfred Chen, and Z Morley Mao. Towards
robust lidar-based perception in autonomous driving: General black-box adver-
sarial sensor attack and countermeasures. In USENIX Security Symposium (Usenix
Security’20), 2020.

[46] George Vosselman, Sander Dijkman, et al. 3d building model reconstruction from
point clouds and ground plans. International archives of photogrammetry remote
sensing and spatial information sciences, 34(3/W4):37–44, 2001.

[47] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A.
Efros. CNN-Generated Images Are Surprisingly Easy to Spot... for Now. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8692–8701.
IEEE, 2020.



ACM AsiaCCS 2024, 1-5 July, 2024, Singapore YitingQu et al.

[48] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds. ACM
Transactions on Graphics, 2019.

[49] Steven Webster, Todd Du Bosq, Vinh Tran, Kirby Thomas, and Christopher
May. Simulation of LIDAR Systems for Aerial Intelligence, Surveillance, and
Reconnaissance. STO-MP-MSG-149, 2017.

[50] Jianwen Xie, Yifei Xu, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. Gen-
erative pointnet: Deep energy-based learning on unordered point sets for 3d
generation, reconstruction and classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14976–14985, 2021.

[51] Bin Yang,Wenjie Luo, and Raquel Urtasun. PIXOR: Real-time 3DObject Detection
from Point Clouds. CoRR abs/1902.06326, 2019.

[52] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge J. Belongie, and
Bharath Hariharan. PointFlow: 3D Point Cloud Generation With Continuous
Normalizing Flows. In IEEE International Conference on Computer Vision (ICCV),
pages 4540–4549. IEEE, 2019.

[53] Zehao Ye, Chenang Liu, Wenmeng Tian, and Chen Kan. A deep learning approach
for the identification of small process shifts in additive manufacturing using 3d
point clouds. Procedia Manufacturing, 48:770–775, 2020.

[54] Ning Yu, Larry Davis, andMario Fritz. Attributing Fake Images to GANs: Learning
and Analyzing GAN Fingerprints. In IEEE International Conference on Computer
Vision (ICCV), pages 7555–7565. IEEE, 2019.

[55] Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. Artificial Finger-
printing for Generative Models: Rooting Deepfake Attribution in Training Data.
In IEEE International Conference on Computer Vision (ICCV), pages 14448–14457.
IEEE, 2021.

[56] Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis, and Mario Fritz. Re-
sponsible Disclosure of Generative Models Using Scalable Fingerprinting. CoRR
abs/2012.08726, 2020.

[57] Baiwu Zhang, Jin Peng Zhou, Ilia Shumailov, and Nicolas Papernot. On Attribu-
tion of Deepfakes. CoRR abs/2008.09194, 2021.

[58] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. ShellNet: Efficient Point
Cloud Convolutional Neural Networks Using Concentric Shells Statistics. In
IEEE International Conference on Computer Vision (ICCV), pages 1607–1616. IEEE,
2019.

[59] Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei, Weiming Zhang,
and Nenghai Yu. Multi-Attentional Deepfake Detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2185–2194. IEEE, 2021.

A GENERALIZABILITY TO MORE UNKNOWN
SOURCES

In the open-world attribution, FakePCD presents satisfactory per-
formance in identifying point clouds from two unknown sources:
PDGN and SetVae. To evaluate whether FakePCD can generalize
to more unknown sources, especially when their validation sets
are not accessible, we introduce two additional generative models,
GPointNet [50] and SoftFlow [20]. For each model, we generate
1,000 point clouds of the shape Airplane, Car, and Chair, respec-
tively. We directly adopt the optimal thresholds obtained in Table 3
and measure FakePCD’s performances in attributing these samples.
Table 4 displays the attribution performance. FakePCD identifies
the point clouds from unknown sources with an accuracy rang-
ing from 0.41 to 0.81 across three shapes. The best performance is
observed in Car, where FakePCD-P achieves an accuracy of 0.81
and an F1 score of 0.9. This finding suggests that FakePCD may
generalize to more unknown sources with previously determined
thresholds in Table 3.

Table 4: Attribution performance of FakePCD in identify-
ing point clouds from additional unknown sources: GPoint-
Net [50] and Softflow [20].

Airplane Car Chair
Acc F1 score Acc F1 score Acc F1 score

FakePCD-P 0.41 0.58 0.55 0.71 0.81 0.90
FakePCD-D 0.57 0.73 0.51 0.68 0.43 0.60

B CRITICAL POINTS VISUALIZATION
We explain the intrinsic reason for the source attribution of point
clouds in the main text. FakePCD attributes point clouds from
different sources by identifying critical points. We also extract fin-
gerprints of each source based on the critical points. Figure 15
illustrates the critical points visualization of the shape Airplane
when we extract features with PointNet in the open-world attri-
bution. For every shape, we select 3 representative point clouds
from each source and also keep point clouds from one column as
similar as possible to better compare the critical points distribution.
We use Chamfer Distance to find out the similar point clouds in
one column. Point clouds described only by red points are cap-
tured by the models, and the information provided by gray points
is discarded in the max-pooling operation. Examples from the same
source demonstrate a certain recognition pattern, e.g., in the Real
source, critical points primarily describe the head and wings’ edge
of the airplane; and in the ShapeGF source, these points are scat-
tered at the airplane’s surface; in the Diffusion source, extra focus
locates in the main body area. When we compare the examples
from PointFlow and SetVae, their individual patterns are sometimes
indistinguishable. This observation explains the relatively weaker
performance when attributing Airplane. When we compare air-
planes with similar outlooks (smaller Chamfer Distance) in one
column, critical points draw slightly different outlines, which ex-
plains why FakePCD can recognize point clouds from different
sources.
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(a) Real

(b) PointFlow

(c) Diffusion

(d) ShapeGF

(e) PDGN

(f) SetVae

Figure 12: Generated examples from five generative models plus the real world. From left to right, we display the shapes:
Airplane, Car, Chair, Bench, Cabinet, and Lamp
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(a) Airplane
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(c) Chair

Figure 13: t-SNE visualization of clustered point cloud features obtained from FakePCD-PointNet (better viewed in color). PDGN
and SetVae are unknown sources.
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(a) Airplane
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(b) Car

Real
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Diffusion
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(c) Chair

Figure 14: t-SNE visualization of clustered point cloud features obtained from FakePCD-DGCNN (better viewed in color). PDGN
and SetVae are unknown sources.
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(a) Real

(b) PointFlow

(c) Diffusion

(d) ShapeGF

(e) PDGN

(f) SetVae

Figure 15: Critical points of Airplane. Grey points describe the original point cloud, and the red points are the identified critical
points. Each row contains examples from one source and demonstrates certain commonalities. For example, the majority of
critical points focus on the airplane head and wing area in the Real class, while the majority of those critical points are found
on the main body in the Diffusion class.
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