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ABSTRACT
Deep learning techniques have made tremendous progress in a va-
riety of challenging tasks, such as image recognition and machine
translation, during the past decade. Training deep neural networks
is computationally expensive and requires both human and intellec-
tual resources. Therefore, it is necessary to protect the intellectual
property of the model and externally verify the ownership of the
model. However, previous studies either fail to defend against the
evasion attack or have not explicitly dealt with fraudulent claims
of ownership by adversaries. Furthermore, they can not establish a
clear association between the model and the creator’s identity.

To fill these gaps, in this paper, we propose a novel intellectual
property protection (IPP) framework based on blind-watermark for
watermarking deep neural networks that meet the requirements
of security and feasibility. Our framework accepts ordinary sam-
ples and the exclusive logo as inputs, outputting newly generated
samples as watermarks, which are almost indistinguishable from
the origin, and infuses these watermarks into DNN models by as-
signing specific labels, leaving the backdoor as the basis for our
copyright claim. We evaluated our IPP framework on two bench-
mark datasets and 15 popular deep learning models. The results
show that our framework successfully verifies the ownership of all
the models without a noticeable impact on their primary task. Most
importantly, we are the first to successfully design and implement a
blind-watermark based framework, which can achieve state-of-art
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performances on undetectability against evasion attack and un-
forgeability against fraudulent claims of ownership. Further, our
framework shows remarkable robustness and establishes a clear
association between the model and the author’s identity.
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1 INTRODUCTION
Intellectual Property (IP) refers to the protection of creations of the
mind, which have both a moral and commercial value. IP is pro-
tected under the law framework in the form of, for example, patents,
copyright, and trademarks, which enable people to earn recogni-
tion or financial benefit from what they invent or create. However,
it is not always easy to protect intellectual property. Nowadays,
counterfeiters and infringers often exploit procedural loopholes
and utilize advanced techniques, such as reverse engineering, to
invalidate legitimate patents and trademarks.

Deep learning techniques have witnessed tremendous develop-
ment during the past decade, and are adopted in various fields
ranging from computer vision [3, 11, 12, 15, 24, 25] to natural lan-
guage processing [4, 28, 29]. However, they are facing serious deep
learning privacy and security problems [14, 23]. It is a non-trivial
task to build an effective model, especially at a production level.
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Extensive computing power, large datasets, and human expertise
are required. Therefore, protecting the intellectual property of a
model is essential to maintain the creator’s competitive advantage.

The necessity of intellectual property protection for deep learn-
ing models has raised attention worldwide. On November 1, 2018,
the European Patent Office reviewed guidelines on the patentabil-
ity of AI and machine learning technologies [2, 6]. Other major
political entities are also taking steps to formulate relevant policies.
However, protecting the IP of models faces difficulties. A model
owner can only rely on the legal system, the process of which
is lengthy and expensive. And following the current rules of IP
protection, the proof of model ownership requires technical means.

To this end, digital watermark which has been widely applied
to protect multimedia content is introduced to the IP protection of
deep learning models. An effective watermarking mechanism needs
to satisfy multiple requirements including Fidelity, Effectiveness,
Integrity, Security, Legality and Feasibility. However, none of
the existing methods for watermarking deep learning models can
meet all of the above requirements. In another way, the extension
of watermarking protection technology to deep learning is still in
its infancy.

1.1 Related Works
Researchers have proposed approaches facilitating watermarking
deep learning model for protecting intellectual property.

Uchida et al. [26] proposed a framework to watermark models
for the first time in a white-box way. They assumed the owner can
access the target model directly, including the model parameters, to
verify the ownership. However, the stolenmodel is usually deployed
as a remote service, which indicates that themodel owner is actually
unable to access the model parameters.

Rouhani et al. [22] proposed a watermark methodology that
meets both the white-box and black-box requirements. They se-
lected a pair of random images and random labels as the watermark,
which is also called key samples. Zhang et al. [30] proposed a similar
watermarking method while they employed other multiple types
of watermarks. Adi et al. [1] chosen a set of abstract images with
pre-defined labels as a watermark. Guo et al. [10] proposed a digital
watermark technique by adding a message marks associated with
the signature to the original images as the watermark. One obvious
drawback is that the distribution of their key samples is distant
from the origin. An attacker can easily build a detector to evade
identification by detecting the key samples, thus avoiding the detec-
tion of model theft. Another attack is that the above watermarking
methods are also vulnerable to the threat of fraudulent claims be-
cause the feature distribution of the key samples is significant and
striking, an attacker can easily build a set of fake samples, coinci-
dentally making the model behave as if it were real. We discuss the
two vulnerabilities as our main motivations in section 3.

Namba et al. [20] proposed a watermarking method that can de-
fend against evasion attacks. They selected a set of original samples
as a watermark from the training set with label change. Although
this approach is promising, it is as incapable of establishing a clear
association between the model and the creator’s identity as most
of the existing methods [1, 22, 26].

1.2 Our Contribution
Therefore, we propose a novel IPP framework based on blind-
watermark for watermarking deep neural networks that meets
all the requirements of an effective watermarking mechanism. Our
contributions in this paper are three-fold:
• We propose the first blind-watermark based IPP framework
aiming to generate the key samples of which the distribution
is similar to the original samples, and clearly associate the
model with an actual creator’s identity.
• We implement a prototype of our IPP framework and eval-
uate it on two benchmark image datasets and 15 popular
classification DNNmodels. Extensive experiments show that
our framework is effective to verify the ownership without
significant side effects on primary tasks.
• We conduct extensive empirical validations to show that our
IPP framework achieves state-of-art performances on un-
detectability, unforgeability, and robustness against several
forms of attacks.

2 BACKGROUND
In this section, we introduce the relevant background knowledge
about deep neural networks and digital watermarks, which are
closely related to our work.

2.1 Deep Neural Networks (DNNs)
Deep neural networks are a crucial component of state-of-the-
art artificial intelligence services, showing a level of exceeding
humans in various tasks such as visual analysis, speech recognition,
and natural language processing. They have dramatically changed
the way we conceive software and quickly became a universal
technology, and more importantly, it is significantly better than
the most advanced machine learning algorithms previously used in
these areas.

Although deep neural networks have made significant progress
in various fields, it is still a non-trivial task to build deep learning
models, especially a production-level model. We need to utilize
(1) a large-scale labeled training dataset that can completely cover
potential scenarios. (2) a lot of computing power, exceptionally
high-performance devices such as GPU, TPU, etc. (3) long-term
training to update the parameters of the neural network. (4) the
corresponding domain expertise and engineering knowledge to
design the network structure and select the hyperparameters. Con-
sequently, building a well-trained model constitutes an important
part of the owner’s IP, and it is essential to design an intellectual
property protection technique to maintain the owner’s competitive
advantage and economic benefits.

2.2 Digital Watermark
The digital watermark is a brand-new information hiding tech-
nology in the last twenty years. It is to embed the identification
information (i.e., a digital watermark) directly into digital carriers
(including multimedia, documents, software, etc.) without affecting
the characteristics of the original.

Digital watermark can typically be divided into non-blind wa-
termark and blind watermark, the former refers that it is perceived
or noticed by a Human Visual System (HVS). In contrast, blind
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watermark is usually invisible or imperceptible. Due to the feature
distribution of key samples generated by the existing watermark
method varies greatly, previous studies based on non-blind water-
mark either fail to defend against the evasion attack or have not
explicitly dealt with fraudulent claims of ownership by adversaries.
Therefore, we need to design a newwatermark framework based on
blind-watermark to embed the watermark into the neural network
model.

Alice
(owner)

Eve
(thief)

Bob
(buyer)

Oscar
(counterfeiter)
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Resell/Steal
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Figure 1: The threat of security and legality

3 MOTIVATION
In addition to the above limitations of previous works we addressed,
in this section, we mainly discuss the two forms of attack: evasion
attack and fraudulent claims of ownership. Figure 1 illustrates the
threat.

3.1 Security: Evasion Attack
Suppose there is a model owner Alice, a thief Eve, and a model
buyer Bob. Two possible scenarios can lead to evasion attack: (1)
Eve has stolen the model in some way, (2) Bob has resold the model
without Alice’s authorization. Both of these behaviors are detri-
mental to the owner’s interests. If the model is well-watermarked,
the model owner Alice would successfully verify the ownership of
the suspected model by issuing prediction queries of key samples.

To evade the verification by the legitimate owners, Eve will at-
tempt to build a detector to detect whether the queried sample is a
clean one or a possible key sample [14]. Once the detector decides
the queried instance is a possible key sample, the stolen model
would return a random label from its output space. However, all the
existing watermark methods [1, 10, 22, 30] are susceptible to the
above form of attack. The distribution of the key samples and the
original samples varies greatly, once the model owner issues pre-
diction of these key samples, Eve can easily detect the watermarks
by utilizing a sample detector. Hence, in the following sections, a
blind-watermark based IPP framework is presented that is aiming
to defend against the evasion attack. We conduct extensive experi-
ments, and the results demonstrate that our novel IPP framework
can achieve state-of-art performances on undetectability against
evasion attack.

3.2 Legality: Fraudulent Claims of Ownership
Suppose there is a counterfeiter, Oscar, who tries to illegally claim
the ownership of the model. This behavior will not only infringe on
Bob’s interests but will even infringe on Alice’s interests, which will

directly lead to the invalidation of the IPP technology — the model
owner Alice is no longer the only one that can claim the ownership.
Counterfeiters will try to make a set of key samples by himself, that
is to say, design a set of fake samples that can induce the behavior
of the licensed model to achieve the purpose of falsehood.

In the watermarking method proposed by Zhang et al. [30], the
three types of perturbations superimposed to the ordinary sam-
ples is so obvious and striking that Oscar can easily superimpose
the same perturbations to the ordinary samples to obtain the key
samples. Due to the intrinsic generalization and memorization ca-
pabilities of deep neural networks, the newly generated samples
can still be identified and responded with predefined labels [30]. In
the approaches of Adi et al. [1] and Rouhani et al. [22], the space
of abstract images and random images is so large, Oscar can easily
obtain another set of images, for example, generated by computer
script or genetic algorithms [9]. Furthermore, the counterfeiters
even can monitor and intercept key samples on the communication
channel of the network.

In this paper, we make an assumption that the hyper-parameters
of the training setting, the parameters, and the architecture of en-
coder are confidential. Therefore it is impossible for an attacker
to get the same watermark generation strategies. Further encour-
agingly, even we relax this key assumption, our IPP framework
still achieves a remarkable performance on unforgeability against
fraudulent claims of ownership.

4 WATERMARKING NEURAL NETWORK
In this section, we first briefly introduce the overview of embedding
and verification of watermarking model. Hereafter, we introduced
the details of the implementation of our IPP framework, including
the objective functions and the watermarking algorithm.

4.1 Tasks I: Embedding
To protect the intellectual property of our model, we tried to water-
mark the model to leave the backdoor. In the embedding procedure,
we need a set of labeled samples, which is also known as the key
samples xkey , to be a watermark. The key sample xkey is generated
by an encoder e which accepts the original samples x and logo l
as inputs. In this paper, we hope that the distribution of the key
sample xkey is as close to that of the original samples x . To this
end, we present a novel generation algorithm G to achieve it:

xkey = G (e,x , l ), (1)

xkey → x

Then we adopt an embedding algorithm E to embed a watermark
to model f :

fk = E ( f ,x
key ) (2)

The resultant model fk (i.e., the watermarked model) will predict
a query of key sample xkey to a pre-defined label tkey . Details of
each algorithm are explained in the next section.

4.2 Task II: Verification
Consider a scenario that the model owner suspects that the model
deployed remotely violates its copyright interest. To confirm the
ownership of the remote DNN, in this procedure, the model owner
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Figure 2: Workflow of our IPP framework

first prepares a set of key samples {xkey1 ,x
key
2 , ...} by a generation

algorithm G:

xkey = G (e,x , l ) (3)

Then the model owner will issue a prediction query to the remote
model д with these key samples, obtain resulting predictions, and
evaluate the accuracy of the resulting predictions over pre-defined
labels.

accд = V (д,xkey , tkey ) (4)

If the accд is a value close to 1, or accд > Tacc , where Tacc is a
threshold parameter close to 1. Then the owner can verify the IP of
a suspected model and claim the ownership of the remote model.

4.3 Algorithm Pipeline
Figure 2 shows the workflow of our IPP framework, which consists
of three parts: encoder, discriminator and host DNN.

Encoder: Here our encoder e is essentially a lightweight au-
toencoder. The encoder accepts the part samples from the training
dataset and the exclusive logo as inputs and attempts to output the
key samples which are undistinguished from the ordinary samples.
We typically denote the parameters of encoder as θe , the exclu-
sive logo as l , and try to obtain a function θe (x , l ) = xkey where
xkey → x by solving the optimization problem with a batch of
{x1,x2, ...,xm }:

argmin
θe

1
m

m∑
i=1

(xi − θe (xi , l ))
2 (5)

The above term is the reconstruction error for the encoder e .
Due to the limited capacity of the encoder, it is impossible to

achieve the goal of perfect reconstruction. Moreover, compared
to perfect reconstruction, we hope that the distribution of key
samples generated by the encoder only needs to be as close as that of
ordinary samples, i.e., x ≈ xkey , not x = xkey . The tiny difference
between the key samples and the ordinary samples is exactly what
we need — the magnitude of fluctuation achieves a comparable
trade-off between security and effectiveness, the smaller preserving
better security against evasion attack and the larger providing better
effectiveness of watermarking DNN.

From a mathematical perspective, in order to prove whether the
objective function 5 is exact to achieve the goal, i.e., x ≈ xkey ,
not x = xkey , we denote the distribution of original samples from
training dataset as Pdata (x ), and the distribution of key samples
produced by the encoder as Pe (xkey ;θe ). The objective function
can be formalized as follows:

argmax
θe

m∏
i=1

Pe (xi ;θe ) =argmax
θe

log
m∏
i=1

Pe (xi ;θe )

=argmax
θe

m∑
i=1

log Pe (xi ;θe )

=argmax
θe
Ex∼Pdata [log Pe (x ;θe )]

=argmax
θe

∫
x
Pdata (x ) log Pe (x ;θe )dx

−

∫
x
Pdata (x ) log Pdata (x )dx

=argmin
θe

KL (Pdata (x )∥Pe (x ;θe ))

(6)

where KL is the Kullback-Leibler divergence. The above objective
function is essential to minimize the Kullback-Leibler divergence
which is a measure of how one probability distribution diverges
from another. Further derivation:

KL(Pdata ∥Pe ) = −H (Pdata ) + H (Pdata , Pe ) (7)

The former of equation 7 represents the information entropy of
Pdata , the latter is the cross entropy of Pdata and Pe . That is to
say, minimizing the KL divergence is equivalent to minimizing the
cross entropy. At the same time, the objective function 5 is actually
the cross entropy of the empirical distribution and the gaussian
model [7], while we cannot determine which distribution Pdata
and Pe obey. In order to solve the objective function 6, we adopt
the negative sampling approach [19]. Furthermore, the equation 5
only punishes the larger error of the corresponding pixels of the
two images, and ignores the underlying structure of the image. So
we introduce the structural similarity index (SSIM) [27], and the
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objective function can be formalized as follows:

argmin
θe

1
m

m∑
i=1

(1 − SSIM (xi ,θe (xi , l ))) (8)

Discriminator: The negative sampling approach targets a dif-
ferent objective than the original function 6. We typically interpret
this objective as a binary classification problem. The discrimina-
tor efforts to determine whether the samples are synthesized or
extracted from the ordinary samples and the encoder converges
to capture the distribution of given samples. The keypoint of the
discriminator is essentially the theory proposed in generative ad-
versarial networks [8], which is well-designed to minimize the KL
divergence exactly. The discriminator also acts as a detector to
detect if input data is generated by the encoder.

We denote the distribution of training dataset Pdata (x ) as a
positive sample, that of the key samples Pe (xkey ;θe ) as a negative
sample. In order to speed up the learning process, we adopt x
and xkey to present the distribution P which is unable to obtain.
The discriminator d accepts the original samples x or key samples
xkey as inputs, outputting a binary classification probability to
indicate whether the input data comes from the ground truth. The
discriminator outputs a conditional probability p (Θ|χ ;θd ) (χ ∈
{x ,xkey }) which is modeled as logistic regression:

p (Θ|χ ;θd ) =
1

1 + e−θd (χ )
(9)

where we use θd to represent the discriminator and adopt a random
variable Θ to denote the binary answer: Θ = 1 if the input sample
is the origin, and Θ = 0 otherwise. The objective function (Od )
of the discriminator is denoted by:

argmin
θd

−
1
m

m∑
i=1

*
,
Θ log

1
1 + e−θd (χi )

+

(1 − Θ) log(1 −
1

1 + e−θd (χi )
)+
-

(10)

After the optimal θd is given, we simultaneously train the encoder
e to maximize the probability of d making a mistake. Then, the new
objective function of encoder e is:

argmin
θe

−
1
m

m∑
i=1

log
1

1 + e−θd (θe (xi ,l ))
(11)

We train the discriminator d and the encoder e iteratively to ob-
tain the final optimal θ∗d and θ∗e . Competition in this procedure
derives both teams to improve their ability until the Pe (xkey ;θe )
is indistinguishable from the genuine Pdata (x ). Note that, both
of the objective function 5, 8 and 11 regularize the encoder e by
encouraging the distribution Pe (xkey ;θe ) to match the given distri-
bution Pdata (x ). Next, we introduce how to induce the host model
to mispredict a key sample to a pre-defined label.

Host DNN: Due to the capacity limitations of the encoder e , the
distribution of key samples generated from encoder can only be
"close" to that of ordinary samples. That is, there must be a "some"
difference between xkey and x . Hence, we utilize this difference to
induce the host DNN (θh ) to correctly identify xkey to a pre-defined
label under the premise of correctly identifying x . In the image

classification task, it is common to employ the softmax function at
the final layer to obtain the probability vector:

so f tmax (θh (x ))i =
eθh (x )i∑n
j e

θh (x )j
(12)

Where j denotes the j-th element of the output vector of n-class.
Given the original sample x with normal label t , and key sam-
ple xkey with a pre-defined label tkey , we briefly define D =
{(x1, t1), ..., (x

key
1 , t

key
1 ), ...}, then the objective function (Oh ) of

the host model h is denoted by:

argmin
θh

−
1
m

m∑
(χ,τ )∈D

*.
,
log

eθh (χ )τ∑n
j e

θh (χ )j
+/
-

(13)

Note that, the equation 13 of which xkey = θe (x , l ) with label tkey
can also be formalized to update θe as follows:

argmin
θe

−
1
m

m∑
i=1

*..
,
log

e
θh (θe (xi ;l ))tkeyi∑n
j e

θh (θe (xi ;l ))j

+//
-

(14)

By adding all the equations 5, 8, 11 and 14 together, we have the
following objective function (Oe ) for encoder e:

argmin
θe

1
m

m∑
i=1

*
,
α (xi − θe (xi , l ))

2 + β (1 − SSIM (xi ,θe (xi , l ))

+ γ (− log
1

1 + e−θd (θe (xi ,l ))
) + δ (− log

e
θh (θe (xi ;l ))tkeyi∑n
j e

θh (θe (xi ;l ))j
)+
-

(15)

where α , β ,γ ,δ > 0 are the hyper-parameters to trade-off between
four parts. The 4th term regularizes the encoder e by encouraging
the generated key samples misclassified to pre-defined labels more
easily. The global watermarking algorithm is as follow:

Algorithm 1: Minibatch gradient descent training of water-
marking algorithm.
Input: training set D, logo l , hyper-parameters α , β ,γ ,δ ,

minibatchsizem,n, sampling number k1,2;
Output: θe ,θh ,θd ;

1 Initialize original samples D ′ sampled from D randomly;
2 For convenience, objective function is denoted by Oe,d,h ;
3 for number of training epochs do
4 for i = 1; i ≤ k1; i + + do
5 sample minibatch of m original samples from D ′;
6 update θd by descending its adam gradient: ∇θdOd ;
7 update θe by descending its adam gradient: ∇θeOe ;
8 end
9 for i = 1; i ≤ k2; i + + do

10 sample minibatch of n sample from D;
11 merge minibatch ofm + n;
12 update θh by descending its stochastic gradient:

∇θhOh ;
13 end
14 end
15 return θe ,θh ,θd ;
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Table 1: Details of the DNNs and datasets used to evaluate our IPP framework

Dataset Dataset Host DNN Host DNN Test
Description Architecture Description Acc.#

MNIST[5] Hand-written
digits

LeNet-1[18]
A classic CNN Architecture

98.73%
LeNet-3[18] 98.86%
LeNet-5[18] 98.92%

CIFAR-10[17] A collection of
General images

VGG-11[24] Very Deep
Convolutional Networks

for Large-Scale
Image Recognition

91.40%
VGG-13[24] 93.47%
VGG-16[24] 93.08%
VGG-19[24] 92.86%

ResNet-18[11] Deep residual
learning for

image recognition

94.62%
ResNet-34[11] 94.80%
ResNet-101[11] 93.97%

PreActResNet-18[12] Identity Mappings in
Deep Residual Networks

94.43%
PreActResNet-34[12] 94.95%

GoogleNet[25] Going Deeper with Convolutions 94.38%

DPN-26[3] Dual Path Networks 94.53%

MobileNetV2[15] Efficient CNN for Mobile App 91.35%
# The accuracy is obtained from regular test set in unwatermarked setting.

(a) Original (b) "test" [30] (c) "symbol" [30] (d) "heart" [30] (e)"unrelated"
[30]

(f) "mask" [10] (g) "abstract" [1] (h) "random"
[22]

(j) Ours

Figure 3: The examples of key samples of existing watermark methods and our framework

5 IMPLEMENTATION
5.1 Datasets and DNNs
As a proof-of-concept, we adopt two benchmark datasets with dif-
ferent types of data—MNIST and CIFAR-10—and implement our IPP
framework on a total of fifteen host DNNs. We provide a summary
of the two datasets and the corresponding DNNs in Table 1.

MNIST [5] is a large handwritten digital dataset containing
28 × 28 pixel images with class labels from 0 to 9. The dataset
consists of 60,000 training samples and 10,000 test samples. Each
pixel value is within a grayscale between 0 and 255.

CIFAR-10 [17] is labeled subsets of the 80 million tiny color
images dataset, consisting of 50,000 training images (10 classes,
5,000 images per class) and 10,000 test images (10 classes, 1000
images per class). All the images are normalized and centered in a
fixed-size image of 32 × 32 pixels.

To evaluate our blind-watermark based IPP framework, we use
1% of total training samples for the key sample generation, and for
each image, we randomly select a target label. The encoder and
discriminator are trained iteratively using Adam algorithm [16]
(β1 = 0.5, β2 = 0.999) with a mini batch-size of 20 and a fixed
learning rate of 0.001. The host DNNs are simultaneously trained
using stochastic gradient descent [13] with a batch-size of 120 (100
original samples and 20 key samples) and a declining learning rate
of 0.1, which is decayed by 0.1 per 40 epochs. we perform grid search
to find the optimal hyper-parameters α = 3, β = 5,γ = 0.1,δ = 0.01
and train a prototype of our framework for 100 epochs withk1,2 = 1.
We implement all the experiments1 by Pytorch [21], on a Ubuntu
18.04 server with a Tesla K80 GPU card.

1Source code is available at https://github.com/zhenglisec/Blind-Watermark-for-DNN

https://github.com/zhenglisec/Blind-Watermark-for-DNN
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Figure 4: Accuracy of different models on regular test set

5.2 Results
The training of our IPP framework has been successfully imple-
mented, and we compare the key samples generated by our frame-
work with the existing methods. Figure 3 shows examples of key
samples created from CIFAR-10 dataset. Figure 3 (a) are two exam-
ples of original images; Figure 3 (b)-(h) are key samples generated
by methods proposed in [1, 10, 22, 30]. Figure 3 (j) are two key
samples generated by our blind-watermark based IPP framework.
As we can see, the examples of ours are so similar to the original
samples that the differences between them are too tiny to be seen
by humans. In contrast, the examples of other existing methods are
visible and striking, which indicates the distribution of the features
of them is distant from the feature distribution of the training sam-
ples. In next section, we conduct extensive empirical validations to
show that our IPP framework satisfies multiple requirements.

6 EVALUATION
We analyze the performance of our IPP framework by measuring
the following criteria: fidelity, the side effect made to the primary
classification task; effectiveness and integrity, whether it can
successfully verify the ownership of the host DNN; security, the
ability of defending against evasion attack; legality, the ability of
anti-counterfeiting; feasibility, The ability to resist model modi-
fications and whether it explicitly associates the model with the
identity of the actual creator.

6.1 Fidelity
Fidelity requires our IPP framework to watermark a host model
without significant side effects on the primary task. Ideally, a well-
watermarked model should be as accurate as an unwatermarked
model. To measure the side effects on the primary task, we im-
plemented a comparative evaluation of the accuracy between the
clean model and watermarked model. As depicted in Figure 4, all
the evaluated models are trained on the test set in two different
settings: unwatermarked setting and watermarked setting. We first
train a model without watermark embedding and evaluate it on
the test set that it has not seen before. Then we implement our

framework to watermark the same model and evaluate it on the
test set.

The results expressly demonstrate that all the watermarked mod-
els still have the same level of accuracy as the unwatermarked
model. The accuracy drops by up to 0.66% on average. In the best
case, we achieve a drop of only 0.14%. That is to say, the side effects
caused by our IPP framework are entirely within the acceptable
performance variation of the model and has no significant impact
on the primary task. Thus our framework meets the fidelity require-
ment.

6.2 Effectiveness and Integrity
The purpose of effectiveness is to measure whether we can suc-
cessfully verify the copyright of the target DNN model under
the protection of our IPP framework. Ideally, a well-watermarked
model should identify key samples and predict them to the pre-
defined labels with high accuracy. The integrity requires that our
IPP framework shall not falsely claim the authorship of unwater-
marked models. To measure the effectiveness and integrity, we im-
plement another comparative evaluation of the accuracy between
the unwatermarked model and the watermarked model. We typi-
cally denote the forward inference function of the unwatermarked
model by θuw and that of the watermarked model by θw . Only if
θuw (xkey ) , tkey and θw (xkey ) == tkey , we confirm that our IPP
framework can successfully verify the ownership. We issue predic-
tion queries of key samples and tests whether the model returns
correct labels specified by key samples.

Figure 5 shows the accuracy of the different models implemented
in our evaluation. We use 1% of dataset to test the accuracy. The
"unwatermarked" shows the accuracy of key samples that are not
induced into the unwatermarked model. All the unwatermarked
models achieve an accuracy of 9%—13%, a totally random guess. In
contrast, the "watermarked" encouragingly shows the accuracy of
key samples exceeds over 90%. In the best case, the watermarked
model even achieve an accuracy of 100% on the key samples. The
results show that our framework can successfully verify the own-
ership without falsely claiming the authorship of unwatermarked
models. Thus the effectiveness and the integrity requirements are
met.
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Figure 5: Accuracy of different models on our key samples

6.3 Security
Security requires that the verification process is imperceptible and
undetectable, which can resist identification and detection by unau-
thorized service providers. In this section, we introduce a novel
watermark invalidation method, evasion attack [14], and demon-
strate that an attacker can evade the verification by the model
owners. Considering that the premise of illegal service provision
is due to the limitation of data resources or computing power, we
make an assumption that an attacker can access to 10% of total
training samples for detector build-up. Essentially, the binary classi-
fication is supervised learning. They can generate the same amount
of key samples according to the proposed methods in [1, 10, 22, 30]
and our framework, then get the training set for detector build-up.
We typically design a simple detector based on 3 fully-connected
layers, which are composed of 512, 256 and 1 neural unit followed
by sigmoid activation. We use θd to represent the parameters of
the detector, and the objective function is denoted by:

argmin
θd

−
1
m

m∑
i=1

log
1

1 + e−θd (xi )
−

1
m

m∑
i=1

log(1 −
1

1 + e−θd (x
key
i )

)

(16)

We apply stochastic gradient descent with a fixed learning rate of
0.01 for 20 epochs to solve the objective function 16. We adopt the
ROC (receiver operating characteristic), which reports the relation
between true positive rate and false negative rate over multiple
thresholds, as the evaluation metric. Figure 6 presents the trained
3-layers detector’s performance over the queried samples. The ROC
curve of our IPP framework demonstrates that the performance
of the detector is close to random guessing with an AUC (area
under the ROC curve) of 0.5. In contrast, the ROC curve of previous
methods demonstrates that the detector has a performance on AUC
of well above 0.94, which indicates that the unauthorized service
provider is enough to evade the verification.

A further assumption is that the attacker tries to build a more
powerful detector based on the weights transferred from the stolen
model. In addition to the last several fully connected layers, most
of the current classification models are playing the role of feature
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Figure 6: The receiver operating characteristic (ROC) curve
produced by the detector based on 3 linear layers
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Figure 7: The receiver operating characteristic (ROC) curve
produced by the detector based on ResNet-18

extractors. Therefore, we utilize the former layers of ResNet-18 as a
feature extractor, which is then followed by a fully-connected layer
with one output. We trained the detector in the same setting as the
3-layer detector and report the results in Figure 7. As we can see, the
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Original Ours Difference×1 Difference×5

Figure 8: The examples of difference image

detection performance has indeed increased. The ROC curves of the
existing methods show that the key samples used in their methods
are more easily detected with an AUC of 0.98. Encouragingly, the
ROC curve of our framework demonstrates that the detector is only
slightly more effective than random guessing with an AUC of 0.65.
This result convincingly shows that our IPP framework can achieve
remarkable performances on undetectability against evasion attack.

In addition to evasion attack, we also consider another type of
attack: removing the backdoor-based watermark. For example, an
attacker can fine-tune the stolen model to achieve the purpose of
removing the watermark. More often in practice, it is common to
fine-tune the existing state-of-the-art models on new insufficient
datasets to achieve higher performance or to implement new tasks.
As for an authorized user, fine-tuning the model does not mean
that he wants to launch this type of attack. Hence, we discuss the
behavior of the fine-tuning model in detail in section 6.5, which is
regarded as a test of the robustness of our scheme.

6.4 Legality
Here, we consider an attack scenario in which the counterfeiter
knows that the model purchased by Bob is watermarked and at-
tempts to claim ownership of the model illegally. This behavior will
not only infringe on Bob’s interests but will even infringe on Al-
ice’s benefits, which will directly lead to the invalidation of the IPP
technology — the model owner Alice is no longer the only one that
can claim the ownership. The counterfeiter attempts to designing
a set of fake samples, which can induce the abnormal behavior of
the licensed model. Therefore, the goal of legality is to resist the
fraudulent claims of ownership by adversaries. In this paper, we
study two different types of fraudulent claims of ownership.

What if the ordinary samples and thekey samples became
accessible? Although the ROC curve of our framework demon-
strates that the detector based on ResNet-18 is only slightly more
effective than random guessing with an AUC of 0.65, the counter-
feiter can actually detect a small number of key samples. Therefore,
we assume that what if the original and key samples became acces-
sible by intercepting the communication channel? What could then
be ascertained about the intercepted samples? In Figure 3 (b)—(d),
the features of superposed images are so prominent and striking
that the counterfeiter can easily generate a set of fake samples by

adding them to other original samples. Therefore, we apply the
same logo "TEST" to other samples to generate a set of new key
samples, and then issue prediction queries of the new key samples
to the watermarked model, obtained an average accuracy higher
than 91%. In contrast, as depicted in Figure 8, the features of the
difference images from our framework are too subtle for the human
to observe distortion, and we magnify all difference images by five
times. It can be found that the distortion mode made upon each
original sample is unique, and the distribution of distortions is re-
lated to the properties (e.g., complexity and texture) of the original
samples. This result indicates that it is impossible to design a set
of fake samples by superposing the difference images to other new
original samples.
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Figure 9: The performance (accuracy) of our key samples
transferring attack

What if the encoder was leaked? In most cases, it can safely
be assumed that access to the learned encoder directly is impossible
for an attacker. However, what if the attacker trained a "same" en-
coder by using the same architecture, dataset, and hyper-parameters?
To test this attack, we implement our IPP framework to watermark
MobileNetV2 for five times with different seeds, then we get five
identical pairs of encoder and MobileNetV2 (MNV2), which are
numbered 1⃝, 2⃝, 3⃝, 4⃝ and 5⃝. Figure 9 depicts the key samples
transferring attack’s performance. The x-axis represents the host
model being attacked, and the y-axis represents the key samples
generated by the trained encoder. Concretely, we issue queries to
each MobileNetV2 with the key samples generated by each encoder
to evaluate the accuracy of predicting the pre-defined labels. As
we can see, the high accuracy of the attack results is listed at the
diagonal of Figure 9, which shows that the key samples can only
induce their corresponding model to pre-defined labels. The reason
why it can’t transfer is that the initialization of the neural network
is an important part of the training process, which will have an
important impact on the performance, convergence, and conver-
gence speed of the model. Random initialization and stochastic
gradient descent can cause the objective function to find a new
local minimum (sometimes adjacent local minimum, resulting in
slightly higher transferring attack performance, e.g., 68%), which
means that the resultant model is different each time. This result
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Table 2: Robustness for model fine-tuning: the trend of wa-
termarking accuracy with fine-tuning epochs

epochs V-13 V-16 R-18 R-34 PreActR-18

0 95.75% 96.50% 97.00% 93.40% 91.75%
10 92.50% 95.50% 92.00% 90.70% 90.75%
20 90.25% 95.25% 91.75% 89.75% 90.00%
30 90.00% 95.50% 90.50% 88.75% 89.25%
40 90.00% 95.20% 89.75% 88.50% 88.50%
50 90.00% 95.75% 89.50% 87.75% 88.25%
60 90.00% 95.25% 89.00% 87.00% 88.25%
70 90.15% 95.00% 88.00% 86.75% 88.00%
80 90.00% 95.25% 87.75% 86.25% 87.50%
90 90.25% 95.50% 87.50% 85.50% 87.50%
100 90.00% 95.50% 87.50% 84.75% 87.00%

shows that the encoder, as well as the host model, can’t be exactly
reproducible with different random seeds for initialization, not to
mention that it is almost impossible for an attacker to get the same
architecture, dataset, and hyper-parameters. For more results of the
transferring attack, see Figures in Appendix A.

The above results hint at an advantage of learned encoders: un-
like static watermark generation algorithms, they can employ a
unique watermark generation strategy each time. Our IPP frame-
work undoubtedly performs remarkable unforgeability against the
fraudulent claims of ownership.

6.5 Feasibility
We consider two aspects of the feasibility: robustness and func-
tionality. The purpose of robustness is to measure whether our
framework is robust to the model modification, and the purpose of
functionality is to measure whether our framework can associate
the host model with the author’s identity.

Robustness Training a high-performance model from scratch
requires a lot of resources, and insufficient datasets can significantly
affect the performance of the model. Fine-tuning is a common
strategy in practice. When there is not enough training data, we
can fine-tune pre-trained models to complete new tasks or achieve
higher performance. Therefore, an attacker can fine-tune the stolen
model with fewer new datasets to obtain a new model that inherits
the performance of the stolen model but is also different from the
stolen model.

In this experiment, we divide the testset into two halves. The
first half (80%) is used for fine-tuning pre-trained models while
the second half (20%) is used for evaluating new models. We use
watermark (key samples) accuracy of newmodels to measure the ro-
bustness of our framework for modifications caused by fine-tuning.
Table 2 shows that even after 100 epochs, our framework still has a
high accuracy of all the models (only drop 9.50% in the worst case).
The reason behind this is fine-tuning can lead to an adjacent local
minimum, which means weights of the model don’t change signifi-
cantly. This result indicates our framework can perform remarkable
robustness against model modification. Note that, we don’t con-
sider such modification that can cause significant side effects on
primary tasks, which leads a totally different model. We agree with

Table 3: A summary of all methods meets the requirements

Requirements [1, 22] [10] [20] [26] [30] Ours

Fidelity
√ √ √ √ √ √

Effectiveness
√ √ √ √ √ √

Integrity
√ √ √ √ √ √

Security
√ √ √

Legality
√ √ √

Feasibility
√ √ √

[10] that the "proof-of-authorship" during actual model usage and
"proof-of-origin" of a model should be two different problems.

Functionality The functionality requires that our IPP frame-
work shall clearly associate the host model with the author’s iden-
tity. In a highly competitive global marketplace, the exclusive logo
is the most widely used, the most frequent and the most important
element in the process of corporate image transmission. However,
none of the existing methods take it into account, and they do not
closely associate the host model to be protected with the identity
of the individual or organization. Essentially, we take advantage
of the intrinsic over-fitting of the neural networks to achieve the
goal, where we turn the weakness into a strength. Over-fitting is a
modeling error that occurs when a function is too closely fit for a
limited set of data points. In our framework, the host model is over-
fitting for the key samples generated by encoder, and the encoder
is over-fitting for the exclusive logo. This indicates that only the
logo that participates in the training will lead a watermarked DNN
to exhibit the desired behavior. That is to say, our IPP framework
can clearly associate the host model with the author’s identity.

To the best of our knowledge, we are the first to take the usage of
the logo into consideration and successfully design and implement
our IPP framework. Furthermore, our framework also meets the
requirements of white-box and black-box.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose the first blind-watermark based IPP frame-
work aiming to generate the key samples of which the distribution
is similar to the original samples. We successfully design and im-
plement our IPP framework on two benchmark datasets and 15
popular deep learning models. We conduct extensive experiments
to show that our framework is adequate to verify the ownership
without significant side effects on primary tasks and achieves a
remarkable performance on undetectability against evasion attack
and unforgeability against fraudulent claims of ownership. Besides,
our framework shows remarkable robustness against model modi-
fication. Lastly, we are the first to take the usage of the logo into
consideration and establish a clear association between the model
and the creator’s identity. In briefly, our IPP framework meets all
the requirements summarized in Table 3.

For future work, we plan to protect the intellectual property of
the speech recognition model. We expect this work to be expanded
to other forms of deep learning, e.g., recurrent neural networks,
etc.
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A THE PERFORMANCE OF TRANSFERRING
ATTACK ON VGG-13 AND RESNET-34
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